# 



Prepared for:



Prepared by:



**OCTOBER 2023** 

## WEST YANKTON COUNTY SUBAREA TRANSPORTATION STUDY

Prepared for:





Prepared by:



October 2023

SRF No. 16002.00

#### **Study Funding**

The preparation of this report has been financed in part through grant(s) from the Federal Highway Administration and Federal Transit Administration, U.S. Department of Transportation, under the State Planning and Research Program, Section 505 of Title 23, U.S. Code. The contents of this report do not necessarily reflect the official views or policy of the U.S. Department of Transportation. The preparation of this report has been financed through the South Dakota Department of Transportation's SPR Funding for Local Agencies program. The contents and recommendations of this report do not necessarily reflect official views, policy, or endorsement of the South Dakota Department of Transportation.

### **SDDOT Title VI Statement**

The South Dakota Department of Transportation provides services without regard to race, color, gender, religion, national origin, age or disability, according to the provisions contained in SDCL 20-13, Title VI of the Civil Rights Act of 1964, the Rehabilitation Act of 1973, as amended, the Americans with Disabilities Act of 1990 and Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, 1994.

Any person who has questions concerning this policy or wishes to file a discrimination complaint should contact the Department's Civil Rights Office at 605-773-3540.

## **Table of Contents**

| LIST OF FIGURES                                       | III |
|-------------------------------------------------------|-----|
| LIST OF FIGURES                                       | IV  |
| EXECUTIVE SUMMARY                                     | 1   |
| Introduction<br>Recommendations                       |     |
| INTRODUCTION/STUDY APPROACH                           | 1   |
| INTRODUCTION                                          | 1   |
| Study Approach                                        |     |
| ANALYSIS OF EXISTING CONDITIONS                       | 5   |
| TRAFFIC DATA COLLECTION                               | 5   |
| TRAFFIC VOLUMES                                       | 6   |
| Seasonal Traffic Volume Comparison                    |     |
| Vehicle Speeds                                        |     |
| Pedestrian/Bicycle Facilities                         |     |
| ROADWAY CHARACTERISTICS                               |     |
| Traffic Operations Analysis                           |     |
| Segment (Corridor) Operations Analysis                |     |
| Intersection Capacity Analysis                        |     |
| Corridor Access Locations and Density                 |     |
| CRASH DATA COLLECTION AND HISTORY                     | 20  |
| ANALYSIS OF FUTURE CONDITIONS                         |     |
| Traffic Forecasts                                     | 24  |
| Traffic Growth Rates for State Routes                 |     |
| Traffic Growth – Deer Boulevard and Timberland Drive  |     |
| TRAFFIC OPERATIONS ANALYSIS                           |     |
| Corridor Operations Analysis                          |     |
| Intersection Capacity Analysis                        |     |
| Crash Prediction – 2050 Current Road Conditions       |     |
| MITIGATION ALTERNATIVES TO ADDRESS TRAFFIC OPERATIONS |     |
| Actions to Address Roadway Segment Needs              |     |
| SD50 from SD153 to West City Limits Road              |     |
| Actions to Address Intersection Operations            | 35  |
| SD52 / Gavin's Point Road                             |     |
| SD52 / SD153                                          |     |
| SD52 / Toe Road                                       |     |
| SD52 / Deer Boulevard                                 |     |
| SD52 / Timberland Drive                               |     |
| SD52 / West City Limits Road                          |     |
| SD50 / SD52                                           |     |



| SD50 / SD153                                                      |          |
|-------------------------------------------------------------------|----------|
| SD50 / SD314                                                      |          |
| South of SD52 Collector/Arterial Framework                        |          |
| Framework Network Alignments                                      |          |
| Framework Network Cross Section                                   |          |
| Funding Collector/Arterial Framework Construction and Maintenance |          |
|                                                                   |          |
| PUBLIC AND STAKEHOLDER ENGAGEMENT                                 | 45       |
| PUBLIC AND STAKEHOLDER ENGAGEMENT                                 |          |
|                                                                   | 45       |
| Engagement                                                        | 45<br>45 |

D:\Documents\Projects\Yankton County Subarea\Draft Report\_Yankton County\_V1.docx





## List of Figures

| Figure 1.  | West Yankton County Study Area1                                  |
|------------|------------------------------------------------------------------|
| Figure 2.  | West Yankton County Transportation Study Approach                |
| Figure 3.  | Data Collection Summary7                                         |
| Figure 4.  | SD52 Hourly Traffic Volume Profile                               |
| Figure 5.  | SD50/SD153/SD314 Hourly Traffic Profiles9                        |
| Figure 6.  | Existing Pedestrian/Bicycle Facilities12                         |
| Figure 7.  | Roadway Lane Configurations13                                    |
| Figure 8.  | Existing Geometrics and Travel Conditions                        |
| Figure 9.  | Total Crash Frequency by Year                                    |
| Figure 10. | Crash History (2017 through 2022)                                |
| Figure 11. | Historical Change in Average Daily Traffic (2012 through 2021)24 |
| Figure 12. | 2022 Sewer Feasibility Study – Sub District Map                  |
|            | Year 2035 Forecasts                                              |
|            | Year 2050 Forecasts                                              |
| Figure 15. | Examples of Super-Two Configurations                             |
| Figure 16. | Locations of Recent Development - Commercial and Residential     |
| Figure 17. | Subarea Collector/Arterial Framework Concept                     |
| Figure 18. | Northwest Area Connection Alternatives                           |
| Figure 19. | Collector/Arterial Framework Route Typical Section               |





## **List of Figures**

| Table 1.  | Yankton County/Yankton/Study Area Change in Population and Employment – 2010 through 2020 | 2 |
|-----------|-------------------------------------------------------------------------------------------|---|
| Table 2.  | FWHA Vehicle Classifications                                                              | 9 |
| Table 3.  | Weekday Vehicle Classification by Location1                                               |   |
| Table 4.  | Vehicle Speed by Segment Location 1                                                       | 0 |
| Table 5.  | Existing Roadway Characteristics1                                                         | 1 |
| Table 6.  | Existing Corridor Analysis Summary1                                                       | 4 |
| Table 7.  | Average Daily Traffic (ADT) Volume Review1                                                | 5 |
| Table 8.  | Level of Service Criteria for Signalized and Unsignalized Intersections1                  | 6 |
| Table 9.  | Existing Intersection Capacity Analysis1                                                  |   |
| Table 10. | South Dakota State Route Access Point Density 1                                           | 9 |
| Table 11. | Crash Type Summary - Intersections 2                                                      | 0 |
| Table 12. | Crash Type Summary - Segments2                                                            |   |
| Table 13. | SDDOT Yankton County Traffic Growth Factors                                               | 5 |
| Table 14. | 2022 Sewer Feasibility Study Sub District Growth – Traffic Forecasting Assumptions        |   |
| Table 15. | Future Corridor Analysis Summary                                                          | 0 |
| Table 16. | Future Projected Average Daily Traffic (ADT) Volume Review                                | 1 |
| Table 17. | Future Intersection Capacity Analysis3                                                    |   |





## **Executive Summary**

#### Introduction

The West Yankton County subarea included in this transportation planning study is highly influenced by activities at and development that relies on or is associated with the summer activities at the Lewis and Clark State Recreation Area. The recreation area creates <u>direct impacts</u> from visitors coming to the area for boating, camping, day picnics and/or to hike/bike/walk trails within the park in passenger cars, recreational vehicles (RV), vehicles pulling boats or vehicles pulling boats and RVs. In addition, as the park draws visitors from a substantial area around Yankton, it has created a summer economy generating <u>indirect impacts</u> from vehicle, pedestrian and bicycle traffic from retail businesses catering to recreation visitors, campgrounds, camper and boat sales, and summer homes. The need for additional detailed analysis of the area most influenced by the summer activities was documented in the 2015 Yankton County Master Transportation Plan. Recognizing the influence of the recreation activity areas, traffic growth rates along roads in the West Yankton County Subarea Transportation Plan were proposed to be much higher than the county in general. Additionally, the 2015 plan included recommendations for identifying designated recreation vehicle routes as a part of the truck route analysis. The county proposed the West Yankton County Subarea Transportation Study as a more detailed assessment of the transportation system most influenced by recreation activities and enhanced growth opportunities spinning off the recreation uses.

The subarea transportation plan focuses on:

- Understanding the current physical multimodal network of state routes, county routes, and multi-purpose trails within the study area.
- Reviewing crash data for state and county routes to understand whether there are opportunities to make changes to the network to reduce crashes.
- Inventorying and evaluating access points along the primary network in the study area. For most segments of the state road network in the study area the number of access points that have evolved over time exceed the desirable number/density defined in the SDDOT Road Design Manual. Through the subarea plan development, the question of whether there is the need to proactively consolidate and/or close access points is critical to answer.
- Looking to the future county network transportation needs. In the area directly east of Lewis and Clark State Recreation
  Area there has been a tremendous amount of development, led by more and more campground/RV parks popping up each
  year. Most of the development has occurred on parcels with frontage road access to SD52 or off primary routes such as
  Deer Boulevard and Timberland Drive. Continued development of the area south of SD52 without consideration of an
  internal support network directs even local traffic on to the state highway network for very short trips. A missing internal
  network results in traffic being pushed through a small number of corridors to/from SD52 that results in congestion.

### Recommendations

When prioritized from the perspective of need and benefit, the county focused much of the analysis effort on the area south of and including SD52 between the recreation area and the Yankton city limits. The SD52 corridor through this area carries the most recreation-destination traffic in the summer and is the area with the greatest potential for new development. While there is on-going residential development farther west along SD52, in the SD314 corridor and along SD153, subdivisions in these areas may have the capacity to accommodate 15 to 30 units. In the areas south SD52, there is an estimated capacity of an



additional 3,500 residential units<sup>1</sup>, which has the potential generate volume that will warrant additional lanes at intersection and upgraded intersection control. To mitigate the impacts of future development of the area south of SD52, the plan includes recommendations for development of an internal arterial/collector framework network supporting travel across the subarea, provides additional paths into and out of currently developed areas to the south that rely on Deer Boulevard as the only means of access, and balances traffic along the SD52 corridor.



Arterial/Collector Framework Network

A universal concern among residents and business owners attending public meetings and Stakeholder meetings is congestion and safety, especially in the

higher volume summer months, at SD52/Deer Boulevard. Based on peak summer hourly traffic, it is recommended that a signal be installed at the intersection. The SDDOT completed a parallel independent analysis of the intersection and based on the work have included a signal at the intersection for fiscal year 2024 (FY24).



Access along most segments of each of the state

routes in the study area include more access than is supported in the SDDOT Road Design Manual for rural highway corridors (five access points per side).

While the number of access points exceeds the threshold level, there is not an elevated number or rate of crashes along any segment of the state network in the study area. Thus, review of each location with the intention of preparing a program of driveway consolidations and closures is not currently warranted. Going forward, however, the SDDOT and Yankton County will review every development proposal along the state network with the goal of not increasing the density of access points and if possible, working back towards the SDDOT design guideline.

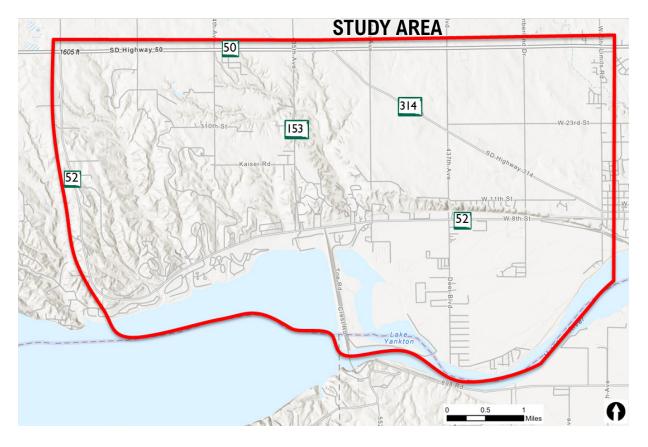
More minor intersection improvement recommendations are outlined in the Recommendations section of the final plan, with recommendations being limited to adding turn lanes to minor street approaches. No changes to the intersection control, other than at SD52/Deer Boulevard, have been included in the plan recommendations.

<sup>&</sup>lt;sup>1</sup> West Yankton Sanitary Sewer Feasibility Study, Amendment #1, April 2022, Table 2.





Looking North from Deer Boulevard to SD52


## Introduction/Study Approach

### Introduction

In 2015, Yankton County and the South Dakota Department of Transportation (SDDOT) completed an update of the Transportation Master Plan. Through the countywide effort, the areas immediately west of Yankton through the Gavin's Point Recreation area and north to South Dakota 50 (SD50) was identified as the portion of the county likely to see development at levels substantially greater than other areas of the county outside one of the municipalities. Figure 1 displays the West Yankton County Transportation Study coverage area. The area is generally bounded by:

- SD50 on the north
- West City Limits Road on the east
- Missouri River on the south
- SD52 on the west.









To quantify the assumption the study area is a higher growth opportunity area in the county, population and employment change in the period from the 2010 census to the 2020 census was reviewed for three geographies:

- The study area.
- The city limits of Yankton.
- Yankton County.

Change over the 10-year period in the west Yankton County study area relative to Yankton and the remainder of the county was quantified through a comparison of Census data change by tract for the county. In the tracts representing the study area (note: study area boundaries do not exactly follow the tract boundaries) growth has outpaced change in both Yankton and the remainder of Yankton County. Thus, one of the principal assumptions of the need for the study is supported by census data. Population and employment change in the general study area relative to the remainder of the county is documented in Table 1. In 2010, the population of the study area was less than 40% of the population of either Yankton or the remainder of the county. Over the next decade, population in the study area grew by more than 3.5 times the amount of the city. Population growth in the remainder of the county was minor.

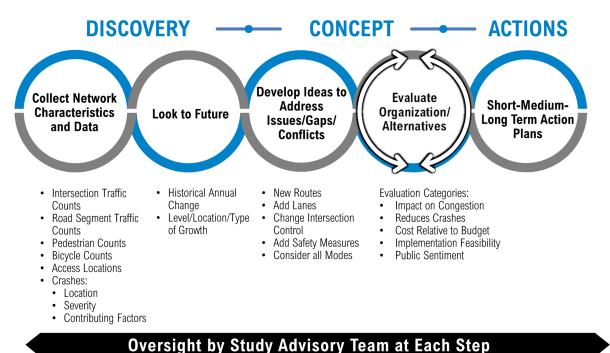
Employment values over the same 10-year period reflect a different picture for the combination of the study area, Yankton and the remainder of the county. In 2010, just over 75 percent of the employment in the county was located within the city limits of Yankton. By 2020, the percentage increased slightly to just over 77 percent. This high percentage of total county employment is expected as critical services needed to support employment development (municipal water and sewer) are principally available only within the city limits. Municipal water and sewer are not available in the study area, which limits opportunities for higher density employment developments that would need these critical services.

#### Table 1. Yankton County/Yankton/Study Area Change in Population and Employment – 2010 through 2020

|                                                                 | Population By Census<br>Year |       | Change in | • •   | t Change by<br>s Year | Change in |
|-----------------------------------------------------------------|------------------------------|-------|-----------|-------|-----------------------|-----------|
| Location/Area                                                   | 2010                         | 2020  | Decade    | 2010  | 2020                  | Decade    |
| West Yankton County Study Area                                  | 3,462                        | 4,125 | 663       | 353   | 555                   | 202       |
| City of Yankton                                                 | 9,613                        | 9,798 | 185       | 8,743 | 9.365                 | 790       |
| Remainder of Yankton County<br>(Outside Yankton and Study Area) | 9,363                        | 9,386 | 23        | 2,458 | 2,122                 | -336      |

Source: US Census Bureau

### **Study Approach**


Completion of the subarea transportation plan was organized into a five-step process as outlined below:

Step 1: Discovery – In this phase of the study the consultant team collected and analyzed a range of transportation network facility physical attributes and use of the range of facilities by vehicles, person by bicycles and pedestrians. Traffic and pedestrian, and bicycle counts were collected at key intersections of county or other routes and the state highway network. Crash data retained by the SDDOT was also collected, aligned with specific intersections and roadway segments and analyzed to detail total numbers, crash rates, crash severity and basic information about the crashes observed.



Through this step the team held the initial public meeting at which the technical data collected and evaluated was presented and local stakeholders were asked to provide input about their travel (across all modes), locations where they see issues, and parts of the network they think are positives and negatives for the community.

The purpose of completing the study is to provide recommendations for transportation network improvements that will provide benefit today and into the longer-term future through 2050. To assist with implementation phasing of any improvements, an interim period of 2035 is also included in the future period analysis.





Step 2: Concept - The heart of the study is development and review of alternatives to address current and future gaps/issues/

deficiencies identified in the transportation network. Alternatives developed need to address all modes from pedestrians, bicyclists and motorized vehicles and the intersection/road segment operations issues, access management needs, and gaps in the network to support development.

The range of alternatives will be assessed using a broad range of criteria, including:

- A concept's ability to reduce/resolve congestion along a segment or through an intersection
- · A concept's impact on crashes, with an emphasis on severe crashes
- Cost of an improvement relative to the transportation budget
- The feasibility of implementing the concept
- Public input received through meetings with landowners and with the public



Step 3: Actions – Improvements needed in the study area not all be warranted for the same period and the cost of the range of improvements recommended will likely exceed the budget for any one year of construction. Thus, a multi-year implementation plan for the study area will be needed to provide for an orderly advancement of projects from the study phase, through engineering and into construction.

Technical analysis throughout the study was supported by engaging local engineering and planning staff from Yankton County and the SDDOT, coordinating with County Commissioners, conversation with stakeholders made up of residents and business owners and through open public meetings. A Study Advisory Team (SAT) including representatives from the agencies/organizations listed to the right met six times through the course of the study. Each of the meetings focused on specific aspects of the study from identifying and discussing issues to be addressed to operations and safety analysis results, to development of improvements to evaluate to reviewing recommendations and options for funding implementation.

#### Study Advisory Team (SAT)

Yankton County Planning and Zoning Yankton County Board of Commissioners City of Yankton SDDOT Road Design SDDOT Project Development Yankton County Highway Department SDDOT Yankton Area Office US Corps of Engineers South Dakota Game, Fish and Parks





## **Analysis of Existing Conditions**

Through the information in this section, data collection efforts, roadway characteristics reviews, pedestrian/bicycle facilities review, traffic operations analysis, access inventory, and crash review conducted are detailed. Included are the:

- Data collection methods and results.
- Analysis methods for the individual elements reviewed.
- Results of the evaluation.

### **Traffic Data Collection**

12-hour vehicle turning movement and pedestrian/bicyclist counts were collected by All Traffic Data Services (ATD) during the weeks of July 25, 2022, and September 19, 2022, at the following study intersections.

- SD52/Gavin's Point Road
- SD52/Toe Road
- SD52/Timberland Drive
- SD52/West City Limits Road
- SD50/SD52
- SD50/SD153
- SD50/SD314

In addition, the South Dakota Department of Transportation (SDDOT) collected 12-hr vehicular turning movement and pedestrian/bicyclist counts during the week of June 6th, 2022, at the following study intersections:

- SD52/Deer Boulevard
- SD52/SD153

Traditionally, the SDDOT methods are to evaluate traffic operations at intersections and along road segments using data collected during periods when school is in session, as peak period traffic volumes are generally greater. The Lewis and Clark State Recreation Area changes the traffic dynamics in the study area from those typically observed in most other areas of the state. Along key corridors and at focus intersections, the recreation traffic in the peak hours of summer months (June through August) results in the following unique conditions that lead to colleting summertime traffic also:

- Overall peak hour volume is greater/higher than during the traditional school in session periods.
- Turning movement percentages by intersection and approach have a greater orientation to the park area than in the fall/winter months.

The SDDOT also obtained roadway segment classification counts from Thursday, July 28 to Tuesday, August 2, 2022 at eight (8) locations in the study area. The segment counts provided 24-hour volumes, vehicle classification, and speed data, which are discussed further in this document. Segments where volume and speed information were collected were:

1. Segment 1: SD52 between SD50 and Gavin's Point Road





- 2. Segment 2: SD52 between Gavin's Point Road and SD153
- 3. Segment 3: SD52 between SD153 and Deer Boulevard
- 4. Segment 4: SD52 between Deer Boulevard and West City Limits Road
- 5. Segment 5: SD50 between SD52 and SD153
- 6. Segment 6: SD50 between SD153 and SD314
- 7. Segment 7: SD153 between SD50 and SD52
- 8. Segment 8: SD314 between SD50 and SD52

A summary of the data collected as part of the study is shown in Figure 3.

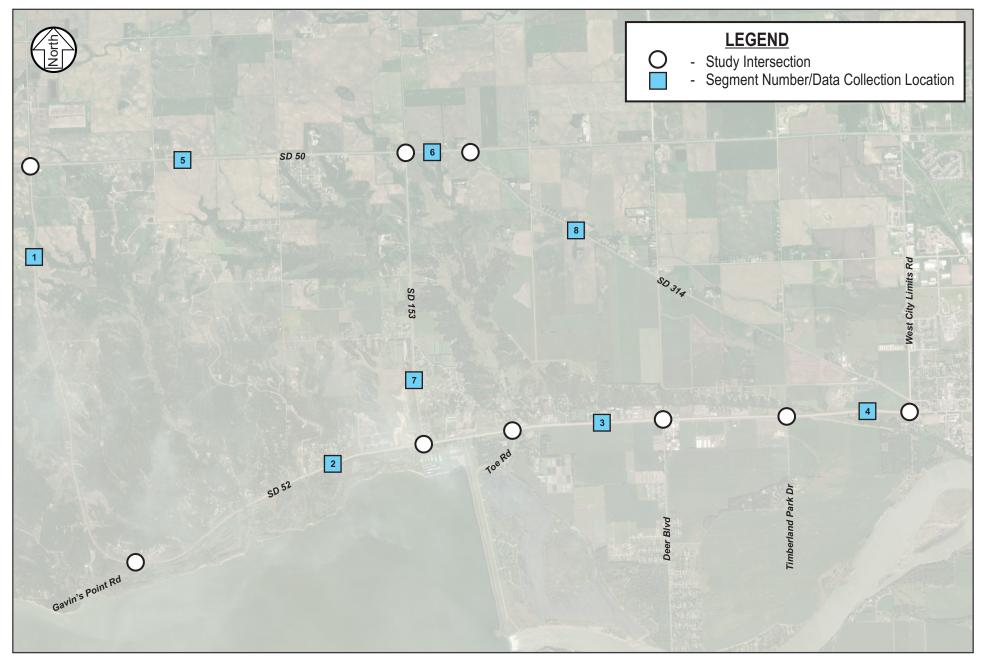
#### **Traffic Volumes**

The traffic data collected was analyzed to determine seasonal traffic volume changes, as well as vehicle classifications and speeds within the study area, which are summarized in the following sections.

#### **Seasonal Traffic Volume Comparison**

The Lewis and Clark State Recreation Area, located immediately west of the SD52/SD153 intersection, attracts regional recreational traffic during the summer. To understand whether the recreational area creates operational differences within the study area, collected during both the school-in-session (non-summer) and peak summer conditions were utilized to develop and compare hourly volume profiles along the study segments.

#### Volume Profile - SD52 East of Lewis and Clark State Recreational Area


When comparing summer weekday (Thursday), summer "weekend" (counts on a Friday) and what is traditionally the traffic condition analyzed by the SDDOT (weekdays with school in session), hourly volume pattern differences in both magnitude and percent of daily volume were evident in the SD52 corridor. Figure 4 displays hourly volume profiles for each of the collection dates.

The data indicates:

- School-in-session (non-summer) weekday volumes are higher than both summer counts (weekday and weekend) during the traditional morning peak hour starting at 7 a.m.
- After the morning peak, the general hourly patterns for the summer weekday and school in session periods are similar, with the summer weekday carrying slightly more traffic in each hour.
- Weekend summer traffic does not show the morning "peak" observed in the other two collection periods. Traffic essentially builds through the morning with a peak at noon, followed by a small decline, which is followed by another building through the 5 p.m. hour. Throughout the day (except for the early morning) peak summer weekend volumes exceed the weekday summer and weekday school-in-session (non-summer) volumes.
- Summer weekend traffic is typically 50 to 60 percent higher each hour after approximately 9:30 a.m. than school-insession (non-summer) counts and approximately 35 to 45 percent higher than summer weekday traffic.
- SD52 volumes adjacent to Timberland Park Drive represent the highest segment volume along the corridor and within the study area. While segment volumes to the west of Timberland Park Drive are lower, the hourly patterns through west of SD153 are similar.









West Yankton County Subarea Study

02316002 October 2023 Figure 3

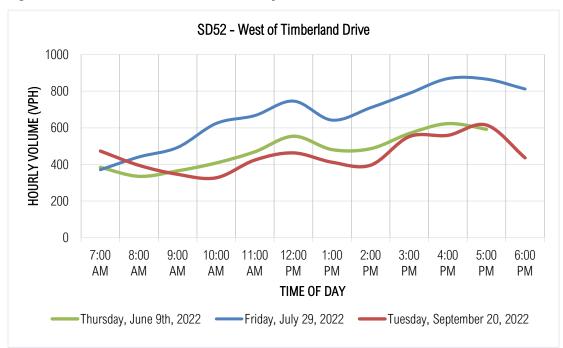



Figure 4. SD52 West of Timberland Drive Hourly Traffic Volume Profile

#### Volume Profile - SD50, SD153 and SD314 Corridors

Figure 5 displays the profiles for SD50 west of the junction with SD52. The hourly profile pattern displayed in the figure is representative of the hourly profiles also observed along the SD153 and SD314 corridors, even as the volume in each corridor may differ at the collection points within the study area. A comparison of school-in-session (non-summer) and peak summer volumes indicates traffic volumes remained relatively consistent over the course of the day between the periods. Key observations of the data across the various locations are:

- A similar less pronounced or essentially non-existent morning peak is not observed in the summer weekend traffic profile.
- Traffic in the summer builds throughout the morning period, while traffic in the school-in-session (non-summer) period decreases slightly through the morning period.
- A modest noon hour peak is observed in the summer weekend traffic, while the school-in-session period traffic peaks closer to 1 p.m.
- Afternoon traffic during summer weekends build quickly in the early afternoon, slightly level off before building again with an afternoon peak at about 5 p.m. Non-summer traffic afternoon also builds from the early hours of the afternoon, but at a slower rate. Additionally, the peak in the late afternoon is not as pronounced and takes a longer period to subside.

#### **Vehicle Classification Summary**

Vehicle classification data was collected along the eight (8) target segments within the study area. The data was classified based on the Federal Highway Administration (FHWA) Vehicle Classifications criteria, which is shown in Table 2. Classification numbers four (4) through 13 are considered heavy vehicles. Table 3 represents the daily vehicles per classification at each of the eight (8) segment locations. In general, SD52 and SD153 have heavy vehicle percentages between three (3) and six (6) percent, whereas SD50 and SD314 generally have higher heavy vehicle percentages, ranging from nine (9) to 12 percent.





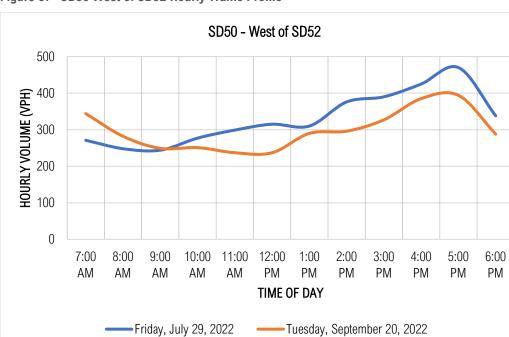



Figure 5. SD50 West of SD52 Hourly Traffic Profile

Table 2. FWHA Vehicle Classifications

| Classification<br>Number | Vehicle Description            | Classification<br>Number | Vehicle Description           |
|--------------------------|--------------------------------|--------------------------|-------------------------------|
| #1                       | Motorcycles – 2 axles          | #8                       | Double Unit – 4 axles or less |
| #2                       | Passenger Cars – 2 axles       | #9                       | Double Unit – 5 axles         |
| #3                       | Pickup Trucks, Vans – 2 axles  | #10                      | Double Unit – 6 axles or more |
| #4                       | Buses – 2 or 3 axles           | #11                      | Multi-Unit – 5 axles or less  |
| #5                       | Single Unit – 2 axles, 6 tires | #12                      | Multi-Unit – 6 axles          |
| #6                       | Single Unit – 3 axles          | #13                      | Multi-Unit – 7 axles or more  |
| #7                       | Single Unit – 4 axles or more  | 1                        |                               |



| Percent by Classification Category                    |                                       |                                         |                                          |                |  |
|-------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|----------------|--|
| Segment Number                                        | Passenger<br>Car/Pickups<br>(#1 - #3) | Bus/Single-<br>Unit Trucks<br>(#4 - #7) | Double/Multi-<br>Unit Trucks<br>(#8-#13) | Weekday<br>ADT |  |
| 1 - SD52 West of Gavin's Point Road                   | 482 (95%)                             | 10 (2%)                                 | 14 (3%)                                  | 506            |  |
| 2 - SD52 from SD153 to Gavin's Point Road             | 2814 (97%)                            | 28 (1%)                                 | 60 (2%)                                  | 2902           |  |
| 3 - SD52 From Deer Boulevard to SD153                 | 5133 (95%)                            | 54 (1%)                                 | 207 (4%)                                 | 5394           |  |
| 4 – SD52 from West City Limits Road to Deer Boulevard | 7432 (96%)                            | 81 (1%)                                 | 266 (3%)                                 | 7779           |  |
| 5 - SD50 from SD52 to SD153                           | 3810 (88%)                            | 101 (2%)                                | 439 (10%)                                | 4350           |  |
| 6 - SD50 east of SD153                                | 4983 (89%)                            | 128 (2%)                                | 471 (9%)                                 | 5582           |  |
| 7 - SD153 from SD50 to SD52                           | 1370 (94%)                            | 38 (2%)                                 | 54 (4%)                                  | 1462           |  |
| 8 - SD314 fromSD50 to West City Limits Road           | 1487 (91%)                            | 65 (4%)                                 | 88 (5%)                                  | 1640           |  |

### **Vehicle Speeds**

Vehicular speed data was collected at the eight (8) segment locations within the study area and is summarized in Table 4. Note the posted speed limit can vary based on the location along the segment. Average and 85th percentile speeds were generally consistent with the posted speed limits, except segment 8, which is the segment of SD314, between SD50 and SD52. This segment was observed to have 85th percentile speeds approximately 8-mph over the posted speed limit.

| Table 4. | Vehicle | Speed | by | Segment | Location |
|----------|---------|-------|----|---------|----------|
|----------|---------|-------|----|---------|----------|

| Segment Number/Location                               | Posted Speed<br>Limit (MPH) | Average Speed<br>(MPH) | 85th Percentile<br>Speed (MPH) |
|-------------------------------------------------------|-----------------------------|------------------------|--------------------------------|
| 1 - SD52 West of Gavin's Point Road                   | 55                          | 50                     | 57                             |
| 2 - SD52 From SD153 to Gavin's Point Road             | 50                          | 47                     | 52                             |
| 3 - SD52 From Deer Boulevard to SD153                 | 50                          | 46                     | 51                             |
| 4 – SD52 From West City Limits Road to Deer Boulevard | 40/50 (1)                   | 42                     | 47                             |
| 5 - SD50 From SD52 to SD153                           | 65                          | 60                     | 66                             |
| 6 - SD50 East of SD153                                | 65                          | 50                     | 56                             |
| 7 - SD153 From SD50 to SD52                           | 45/55 <sup>(2)</sup>        | 42                     | 49                             |
| 8 - SD314 FromSD50 to West City Limits Road           | 55                          | 57                     | 63                             |

Speed limit is 40-mph immediately west of West City Limits Road and transitions to 50-mph approximately ¼-mile west of the West City Limits Road.
 Speed limit is 45-mph south and 55-mph north of Horeshoe Hollow Drive.

- Average and 85th percentile speeds exceed the current posted speed limit





### **Pedestrian/Bicycle Facilities**

The *Yankton County Master Transportation Plan* was used to identify current non-motorized facilities within the study area. A summary of the existing pedestrian and bicycle facilities is illustrated in Figure 6. There is an existing off-street trail along the south side of SD52 and along the west side of Deer Boulevard. These facilities provide an important connection from the City of Yankton to the Lewis and Clark Recreation Area. While the south side of SD52 is well served with multi-modal facilities, the north side of SD52 generally lacks any multi-modal facilities. As future development is planned within the study area, it is important to address gaps and enhance multimodal facilities and connections.

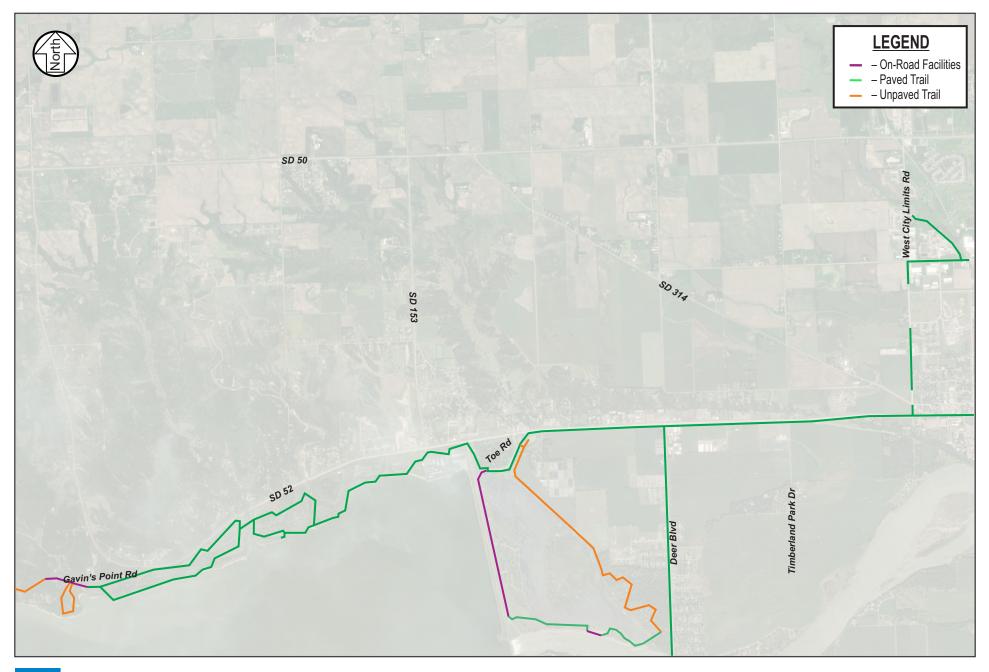
### **Roadway Characteristics**

In addition to traffic data collection, the following observations were completed to identify roadway characteristics within the study area (i.e., roadway geometry, posted speeds limits, and traffic controls). A summary of the roadway characteristics is shown in Table 5 and the roadway lane configuration is summarized in Figure 7. Note that SD52 is broken up into three segments within Table 5, due to the deviations of the roadway characteristics as the roadway extends west of Yankton. It should be noted that all study roadways are classified as rural within the *Yankton County Transportation Master Plan*. From a traffic control perspective, all study intersections are unsignalized with side-street stop control.

| Roadway                             | Functional<br>Classification <sup>(1)</sup> | General<br>Configuration | Posted<br>Speed Limit<br>(MPH) | Shoulder<br>Width | Ped/Bike<br>Facilities? |
|-------------------------------------|---------------------------------------------|--------------------------|--------------------------------|-------------------|-------------------------|
| SD52 (SD50 to State Park Entrance)  | Minor Arterial                              | 4-Lane divided           | 50/55 <sup>(2)</sup>           | 5 ft              | No                      |
| SD52 (State Park Entrance to SD153) | Minor Arterial                              | 3-lane undivided         | 50                             | 9 ft              | No                      |
| SD52 (SD153 to West City Limits)    | Minor Arterial                              | 5-lane undivided         | 40/50 (3)                      | 6 ft              | Yes – South<br>Side     |
| SD50                                | Principal<br>Arterial                       | 2-lane undivided         | 65                             | 9 ft              | No                      |
| SD153                               | Major Collector                             | 2-lane undivided         | 45/55 (4)                      | 1 ft              | No                      |
| SD314                               | Major Collector                             | 2-lane undivided         | 55                             | 3 ft              | No                      |

#### Table 5. Existing Roadway Characteristics

(1) Functional Classification based on the Yankton County Transportation Master Plan. Note all study segments are classified as rural roadways.

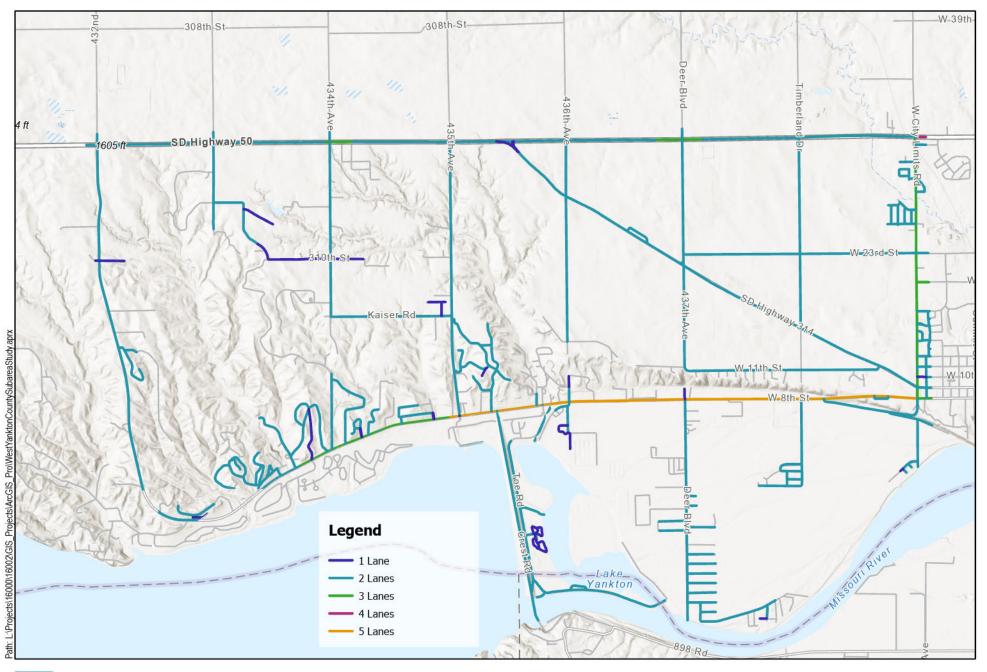

(2) The speed limit of SD52 is 50-mph east of Gavin's Point Rd and 55-mph west of Gavin's Point Rd.

(3) The speed limit of SD52 transitions from 40-mph to 50-mph 0.25 miles west of West City Limits Rd.

(4) The speed limit of SD153 is 45-mph south of Horseshoe Hollow Dr and 55-mph north of Horseshoe Hollow Dr.








#### **Existing Bicycle and Pedestrian Facilities** SRF

West Yankton County Subarea Study SDDOT & Yankton County

Figure 6

02316002 October 2023



Roadway Lane Configuration
West Yankton County Subarea Trans

West Yankton County Subarea Transportation Study South Dakota Department of Transportation and Yankton County Figure 7

### **Traffic Operations Analysis**

In the Existing Conditions analysis, the quality of traffic flow in the study area was evaluated in two ways:

- Roadway segment analysis utilizing the Highway Capacity Software (HCS).
- Detailed intersection capacity analysis utilizing Synchro/SimTraffic software.

Analysis of both key segments and intersections employ methods outlined in the *Highway Capacity Manual, 6th Edition (HCM)*. The following information summarizes the capacity analyses conducted for existing conditions. As mentioned previously, all study segments are classified as rural within the *Yankton County Transportation Master Plan.* However, the SD52/West City Limits Road intersection is considered urban, whereas all other study intersections are classified as rural. Based on SDDOT policy, the minimum level of service guidelines are as follows:

- Rural:
  - Segment LOS B
  - Overall Intersection LOS B
  - Worst Intersection Approach (side-street stop) LOS C
- Urban:
  - Segment LOS D
  - Overall Intersection LOS D
  - Worst Intersection Approach (side-street stop) LOS E

#### Segment (Corridor) Operations Analysis

Analysis of the key segments using existing traffic and current geometrics and intersection control was completed using HCS software to identify any existing issues and establish a baseline for future conditions operations. Results of the corridor analysis, shown in Table 6, indicate that all study segments currently operate with an acceptable LOS B or better during the typical weekday a.m. and p.m. peak hours, and the summer p.m. peak hour.

| Table 6. | Existing | Corridor | Analysis | Summary |
|----------|----------|----------|----------|---------|
|----------|----------|----------|----------|---------|

|                                            | Level of Service |                 |              |  |  |
|--------------------------------------------|------------------|-----------------|--------------|--|--|
|                                            | School-ii<br>Wee | Peak            |              |  |  |
| Segment                                    | AM Peak<br>Hour  | PM Peak<br>Hour | Summer<br>PM |  |  |
| 1 – SD52: SD50 to Gavin's Point Rd         | А                | А               | А            |  |  |
| 2 – SD52: Gavin's Point Rd to SD153        | А                | А               | А            |  |  |
| 3 – SD52: SD153 to Deer Blvd               | А                | А               | А            |  |  |
| 4 – SD52: Deer Blvd to West City Limits Rd | А                | А               | А            |  |  |
| 5 – SD50: SD52 to SD153                    | В                | А               | В            |  |  |
| 6 – SD50: SD153 to SD314                   | В                | В               | В            |  |  |
| 7 – SD153: SD52 to SD50                    | А                | А               | А            |  |  |
| 8 – SD314: SD50 to West City Limits Rd     | А                | А               | А            |  |  |





In addition to the segment/corridor analysis, average daily traffic volumes collected as part of the study were reviewed for each facility type with general ADT guidance from the SDDOT Design Manual and are summarized in Table 7. Note that both the typical weekday ADT and summer peak ADT are shown in the table for comparison purposes. Results of the detailed corridor analysis and ADT comparison indicate that all roadway segments provide sufficient capacity to accommodate current traffic volumes.

| Segment Number and Description                    | School-in-Session<br>Weekday ADT | Summer Peak<br>ADT | SDDOT Lane<br>Configuration<br>Guidance |
|---------------------------------------------------|----------------------------------|--------------------|-----------------------------------------|
| 1 – SD52: SD50 to Gavin's Point Road              | 500                              | 800                | <8,000                                  |
| 2 – SD52: Gavin's Point Road to SD153             | 2,900                            | 4,900              | <8,000                                  |
| 3 – SD52: SD153 to Deer Blvd                      | 5,400                            | 8,000              | 8,000 - 20,000                          |
| 4 – SD52: Deer Boulevard to West City Limits Road | 7,800                            | 10,500             | 8,000 - 20,000                          |
| 5 – SD50: SD52 to SD153                           | 4,350                            | 5,000              | <8,000                                  |
| 6 – SD50: SD153 to SD314                          | 5,580                            | 6,375              | <8,000                                  |
| 7 – SD153: SD52 to SD50                           | 1,460                            | 2,100              | <8,000                                  |
| 8 – SD314: SD50 to West City Limits Road          | 1,640                            | 1,700              | <8,000                                  |

#### Table 7. Average Daily Traffic (ADT) Volume Review

#### **Intersection Capacity Analysis**

Each of the key study area intersections were evaluated relative to their ability to reasonably accommodate current summer and fall traffic using the Synchro/SimTraffic software. The current condition analysis also establishes a baseline to which forecasted 2035 and 2050 traffic would be compared to characterize the need for action. The capacity analysis was completed for the typical weekday a.m. and p.m. peak hours, as well as the summer p.m. peak hour at the study intersections.

Capacity analysis results identify a Level of Service (LOS), which indicates the quality of traffic flow through an intersection. Signal, all-way stop control, and roundabout intersections are assigned a measure from LOS A through LOS F based on the seconds of delay each vehicle experiences as it travels through the intersection. Characteristics associated with each letter grade category are shown in Table 8. LOS A reflects the least amount of delay per vehicle and smooth travel through the intersection. The other end of the measurement table, LOS F indicates an intersection where demand exceeds capacity, or a breakdown of traffic flow.

The SDDOT has set minimum preferred operating guidelines for urban and rural intersections. The minimum threshold for rural intersection, which are most of those in the study area, is LOS B. For intersections in urban areas, the SDDOT has

established a minimum LOS of D. Of the key intersections, only SD52/ West City Limits Road is located in an urban area. All others are reviewed against the rural LOS guidelines.

For two-way stop control conditions, special emphasis is given to providing an estimate for the level of service of the side-street approach. Traffic operations at an unsignalized intersection with two-way stop control were described in two ways:



Minor Street Stop Control Intersection





| Level-of-<br>Service (LOS)<br>Designation | Signalized<br>Intersection<br>Average<br>Delay/Vehicle<br>(seconds) | Unsignalized<br>Intersection<br>Average<br>Delay/Vehicle<br>(seconds) |
|-------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|
| А                                         | ≤ 10                                                                | ≤ 10                                                                  |
| В                                         | > 10 - 20                                                           | > 10 - 15                                                             |
| С                                         | > 20 - 35                                                           | > 15 – 25                                                             |
| D                                         | > 35 - 55                                                           | > 25 – 35                                                             |
| E                                         | > 55 - 80                                                           | > 35 - 50                                                             |
| F                                         | > 80                                                                | > 50                                                                  |

| Table 0  | Loval of Comiso ( | Critoria for Signalizad | and Unsignalized Intersections |
|----------|-------------------|-------------------------|--------------------------------|
| laple o. | Level of Service  | Uniterna for Signalizeg | and Unsignalized Intersections |
|          |                   |                         |                                |

Source: Highway Capacity Manual, 6th Edition, US DOT

- First, consideration was given to the overall intersection level of service, takes into account the total number of vehicles entering the intersection and the capability of the intersection to support the volumes. This metric provides a basis of comparison to other intersections in the subarea and helps understand impacts associated with a lack of left-turn lanes.
- Second, consider delay on the minor approach. As the mainline does not have to stop, most delay calculated is attributed to the side-street approaches. It is typical of intersections with higher mainline traffic volumes to experience high levels of delay (i.e., poor level of service) on the side-street approaches, but an acceptable overall intersection level of service during peak hour conditions. Therefore, the delay and level of service for the worst minor road approach is considered for two-way stop-controlled intersections.

Results of the existing capacity analysis, shown in Table 9, indicate the key study intersections currently operate at an acceptable **overall** LOS A during the typical weekday a.m. and p.m. peak hours, and the summer p.m. peak hour, with the existing geometric layout and traffic controls. All reported delay and LOS are based on the HCM analysis. Detailed traffic operation results are provided in the **Appendix**. The existing geometrics, traffic controls, speed data, volumes, and traffic operations within the study area are summarized in Figure 8.

All of the key intersections in the study area operate within the SDDOT LOS thresholds which are reflective of the peak **hour**. Within the peak hour, there are periods (generally relatively short) where intersection queuing and delay for vehicles is elevated. These times and conditions are outlined below:

SD52/Deer Boulevard: Methods employed in characterizing traffic flow through the intersection reflect conditions over the
one hour peak. While factors have been incorporated into the analysis that address the short, higher volume conditions
that exist over the entire one hour period, conditions reported by travelers in the peak summer period reflect more delay
than is calculated in the operations analysis. The increased delay may be connected to recreational vehicle traffic (vehicles
towing trailers into/out of campgrounds, vehicle towing trailers and boats, etc.) and travelers that are relatively unfamiliar
with the area as they are from out of town visiting the recreation area being overly cautious in their selection of a gap in
the mainline traffic that does not stop.

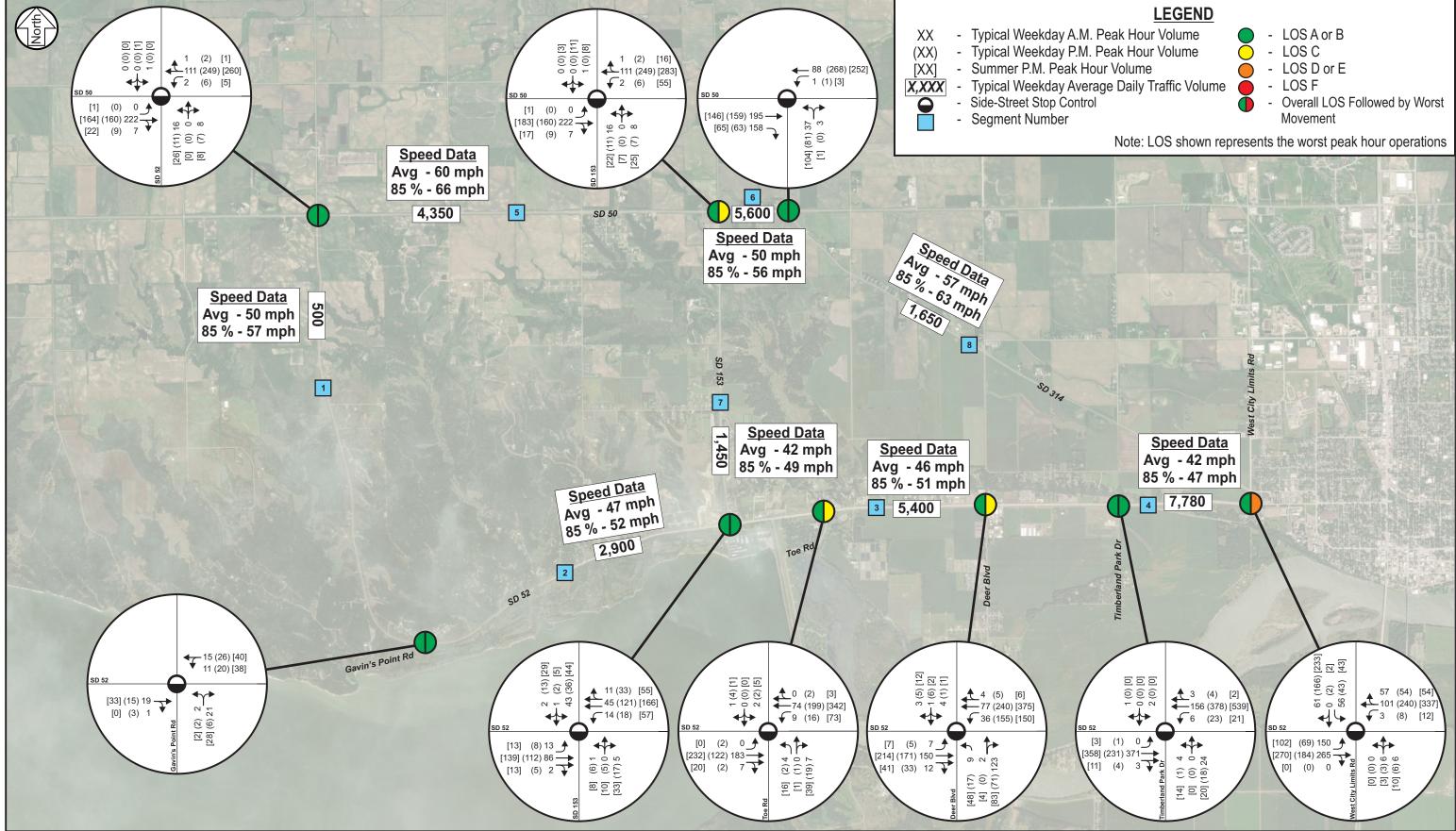
The intersection operations analysis assumptions were not adjusted to consider the speculative conditions listed above, however, in the mitigation analysis additional leeway to be conservative in the assumptions for determining whether improvements such as a signal were warranted was incorporated in the analysis. While typically, warrant analysis for





|                                                          | Level of Service (Delay) <sup>(1)</sup> |                           |                   |  |  |
|----------------------------------------------------------|-----------------------------------------|---------------------------|-------------------|--|--|
|                                                          | School-in-Se                            | School-in-Session Weekday |                   |  |  |
| Intersection                                             | AM Peak Hour                            | PM Peak Hour              | Peak Summer<br>PM |  |  |
| SD52 / Gavin's Point Road                                | A/A (9 sec.)                            | A/A (9 sec.)              | A/A (9 sec.)      |  |  |
| SD52 / SD153                                             | A/B (10 sec.)                           | A/B (11 sec.)             | A/B (13 sec.)     |  |  |
| SD52 / Toe Road                                          | A/A (10 sec.)                           | A/A (10 sec.)             | A/C (16 sec.)     |  |  |
| SD52 / Deer Boulevard                                    | A/B (11 sec.)                           | A/C (16 sec.)             | A/C (16 sec.)     |  |  |
| SD52 / Timberland Park Road                              | A/B (12 sec.)                           | A/A (10 sec.)             | A/B (13 sec.)     |  |  |
| SD52 / West City Limits Road $^{\scriptscriptstyle (2)}$ | A/E (46 sec.)                           | A/C (19 sec.)             | A/D (26 sec.)     |  |  |
| SD50 / SD52                                              | A/B (12 sec.)                           | A/B (12 sec.)             | A/B (13 sec.)     |  |  |
| SD50 / SD153                                             | A/B (15 sec.)                           | A/B (14 sec.)             | A/C (17 sec.)     |  |  |
| SD50 / SD314                                             | A/B (12 sec.)                           | A/B (14 sec.)             | A/B (14 sec.)     |  |  |

#### Table 9. Existing Intersection Capacity Analysis


1 – All intersection reflect unsignalized traffic control with side-street stop control. First value is the overall intersection LOS. The second value is the worst side-street approach LOS. The delay shown represents the worst side-street approach delay.

2 - Considered an urban intersection, which has different LOS thresholds than rural intersections based on SDDOT policy.

signals discounts right turning volume to a great extent (as these vehicles are less influenced by cross route traffic relative to left turning vehicles) for the mitigation analysis at Deer Boulevard incorporated half of the right turning vehicles. This assumption is included in this section as there may be some inconsistencies given the operations analysis results with the minor street stop condition do not reflect the need for action today relative to the warrant analysis (a signal is warranted today based on peak summer traffic). To ensure clarity, the assumptions regarding addressing northbound right turning vehicle accounting is repeated.

- SD52/West City Limits Road: During the peak 15-minute window (i.e., 7:45 to 8:00 a.m.) of the school-in-session a.m. peak hour, as high as 45 percent of the entire hourly eastbound traffic tries to use the intersection. This influx in eastbound traffic, destined to Yankton, is likely due to a combination of the Yankton High School start time (i.e. 8:05 a.m.) and typical business/shift hours.
- SD52/West City Limits Road: The high eastbound peaking characteristics (traffic does not have a stop sign) result in the southbound left-turn movement from West City Limits Road (which has a stop sign) backs up and reflects an average vehicle delay characteristic of LOS E (46 seconds). This condition occurs during the peak 15-minute window each day. Outside of the peak 15-minute window, there is substantially less traffic, and the southbound left turn movement operates much better (LOS C).
- SD52/West City Limits Road: There are numerous complementary alternate paths for **passenger cars** that experience the noted delay. Thus, the level of delay experienced at the intersection can be mitigated by passenger car drivers finding an alternate path to avoid the intersection during the highest traffic period. Truck traffic using this intersection does not have the same opportunities to use alternates with less delay. Both West City Limits Road and SD52 are designated truck routes and many of the alternates to West City Limits Road from the north are restricted for trucks.







**Existing Geometrics and Travel Conditions** 

West Yankton County Subarea Study SDDOT & Yankton County

|              | _ | LOS A or   |
|--------------|---|------------|
| $\mathbf{a}$ |   | LOS C      |
| $\bigcirc$   | - |            |
| $\bigcirc$   | - | LOS D or   |
| Ŏ            | - | LOS F      |
| Ŏ            | - | Overall LC |
|              |   |            |

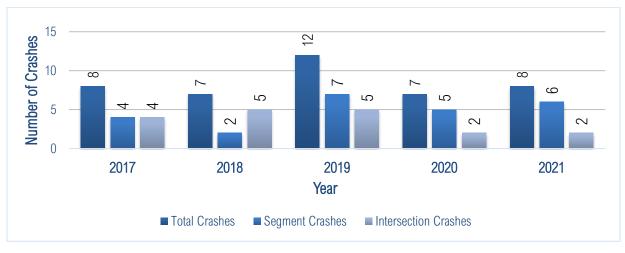
### **Corridor Access Locations and Density**

To determine the existing level of access along the study segments, an access inventory was compiled. Results of the access inventory is shown in Table 10. In addition to the study intersections previously mentioned, other access locations along the corridor include frontage roads and minor roadways, residential and commercial driveways, and farm fields. Access density varies throughout the study area, with more frequent access located along SD52 from West City Limits Road to Gavin's Point Road.

The South Dakota Access Location Criteria (see *SDAR Chapter 70:09:02 Appendix A*) provides access guidance based on the roadway classification. As mentioned previously, based on the *Yankton County Transportation Master Plan* all study segments are classified as rural roadways. Access density along rural roadways should be no more than five (5) accesses per side per mile, with a minimum access spacing of 660 feet if approved by an Area Engineer. Therefore, as future development occurs, it is important to review existing access locations for potential consolidations, relocations and/or closures to meet guidelines and justify that any new access allowed will not be detrimental to the existing roadway. Furthermore, as opportunities arise, existing access should be reviewed to determine if access consolidation is feasible.

| Segment                                       | Side of<br>Roadway | Access<br>Points | Segment<br>Length<br>(miles) | Access<br>Density<br>(points/mile) |
|-----------------------------------------------|--------------------|------------------|------------------------------|------------------------------------|
| 1 – SD52: SD50 to Gavin's Point Road          | North              | 18               | 3.5                          | 5                                  |
|                                               | South              | 16               | 5.0                          | 5                                  |
| 2 – SD52: Gavin's Point Road to SD153         | North              | 19               | 2.6                          | 7                                  |
| z – SD52. Gavins Point Road to SD155          | South              | 3                | 2.0                          | 1                                  |
| 3 – SD52: SD153 to Deer Boulevard             | North              | 29               | 1.0                          | 15                                 |
|                                               | South              | 5                | 1.9                          | 3                                  |
| 4 – SD52: Deer Blvd to West City Limits Road  | North              | 14               | 2.0                          | 7                                  |
| 4 – SDS2. Deer bivu to west City Lillius Rodu | South              | 13               | 2.0                          | 7                                  |
|                                               | North              | 11               | 3.0                          | 4                                  |
| 5 – SD50: SD52 to SD153                       | South              | 20               | 3.0                          | 7                                  |
| C CDE0, CD1E2 to CD214                        | North              | 4                | 0.5                          | 8                                  |
| 6 – SD50: SD153 to SD314                      | South              | 3                | 0.0                          | 6                                  |
|                                               | East               | 16               | 0.4                          | 7                                  |
| 7 – SD153: SD52 to SD50                       | West               | 16               | 2.4                          | 7                                  |
| 9 SD214: SDE0 to West City Limits Dood        | North              | 31               | 4.2                          | 7                                  |
| 8 – SD314: SD50 to West City Limits Road      | South              | 17               | 4.2                          | 4                                  |

#### Table 10. South Dakota State Route Access Point Density


- Number of access points per side per mile exceeds the SDDOT thrreshold

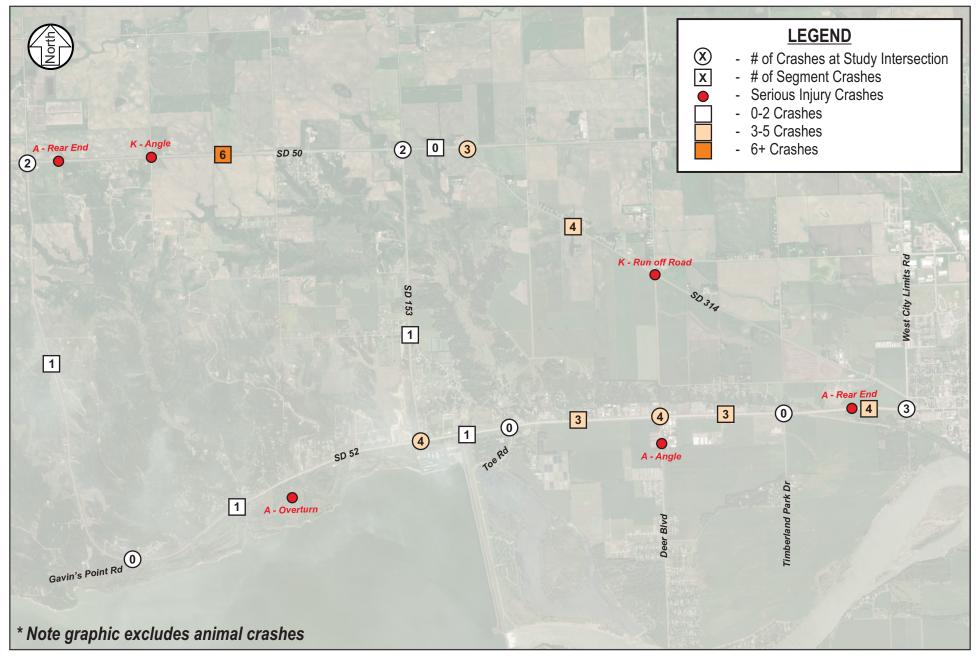




### **Crash Data Collection and History**

Crash data was provided by the SDDOT from July 1, 2017 through June 30, 2022, which represents the most recent five-year period relative to the study. This data was used to summarize current conditions and crash trends, and as well as provide inputs to Highway Safety Manual (HSM) Predictive Method model used to predict future crashes within the study area. The crash frequency by year, with respect to total study area segment and intersection crashes, which excludes animal crashes, is presented in Figure 9. A summary of the crash data is illustrated in Figure 10. Reported crashes occurring at study area intersections and segments over the analysis period are summarized in Tables 10 and 11, respectively.






NOTE: 1 - Excludes animal crashes.

|                              | Single Veh | Single Vehicle Crashes |       | Multiple Vehicle Crashes |       |  |
|------------------------------|------------|------------------------|-------|--------------------------|-------|--|
| Intersection                 | Animal     | Ran off<br>Road        | Angle | Rear End                 | Total |  |
| SD52 / Gavin's Point Road    | -          | -                      | -     | -                        | 0     |  |
| SD52 / SD153                 | 1          | 2                      | 2     | -                        | 5     |  |
| SD52 / Toe Road              | 3          | -                      | -     | -                        | 3     |  |
| SD52 / Deer Boulevard        | 1          | -                      | 2     | 2                        | 5     |  |
| SD52 / Timberland Drive      | 1          | -                      | -     | -                        | 1     |  |
| SD52 / West City Limits Road | 3          | 1                      | 2     | -                        | 6     |  |
| SD50 / SD52                  | 2          | 1                      | 1     | -                        | 4     |  |
| SD50 / SD153                 | 3          | -                      | 1     | 1                        | 5     |  |
| SD50 / SD314                 | 3          | 1                      | 2     | -                        | 6     |  |
| Intersection Totals          | 17         | 5                      | 10    | 3                        | 35    |  |









02316002 October 2023 Crash History (2017-2022)

West Yankton County Subarea Study SDDOT & Yankton County

Figure 10

|                                              | Singl  | e Vehicle Cı    | rashes |       | Multiple Vel | nicle Crashe | S             |       |
|----------------------------------------------|--------|-----------------|--------|-------|--------------|--------------|---------------|-------|
| Segment                                      | Animal | Ran off<br>Road | Other  | Angle | Head On      | Rear End     | Side<br>swipe | Total |
| SD52                                         |        |                 |        |       |              |              |               |       |
| SD50 to Gavin's Point Road                   | 4      | 1               | -      | -     | -            | -            | -             | 5     |
| Gavin's Point Road to SD153                  | 18     | -               | -      | -     | -            | 1            | -             | 19    |
| SD153 to Toe Road                            | 6      | -               | -      | 1     | -            | -            | -             | 7     |
| Toe Rd to Deer Boulevard                     | 14     | 1               | -      | 2     | -            | -            | -             | 17    |
| Deer Blvd to Timberland Drive                | 4      | 1               | -      | -     | -            | 2            | -             | 7     |
| Timberland Drive to West City<br>Limits Road | 18     | 2               | -      | -     | -            | 1            | 1             | 22    |
| SD50                                         |        |                 |        |       |              |              |               |       |
| SD52 to SD153                                | 35     | 1               | 1      | 1     | -            | 3            | -             | 41    |
| SD153 to SD314                               | 5      | -               | -      | -     | -            | -            | -             | 5     |
| SD153                                        |        |                 |        |       |              |              |               |       |
| SD50 to SD52                                 | 7      | -               | 1      | -     | -            | -            | -             | 8     |
| SD314                                        |        |                 |        |       |              |              |               |       |
| SD50 to West City Limits Road                | 8      | 3               | -      | 1     | -            | -            | -             | 12    |
| Segment Totals                               | 119    | 9               | 2      | 5     | 0            | 7            | 1             | 143   |

Table 12. Crash Type Summary - Segments

The South Dakota Strategic Highway Safety Plan (SHSP) identifies core performance measures, including the number of fatalities, fatality rate (per vehicle mile of travel), number of serious injuries, and serious injury rate (per 100 million vehicle miles traveled (MVMT)). The following information provides a summary of how reported crashes (between years 2017 to 2021) within the study area relate to these performance measures:

- 1. Number of Fatalities: Two (2)
- 2. Fatality Rate: 1.68 Fatalities per MVMT (the goal identified in the SHSP is 1.55 per MVMT)
- 3. Number of Serious Injuries: Two (2)
- 4. Serious Injury Rate: 3.36 Injuries per MVMT (no goal is identified)

A summary of predominant crash statistics includes:

- Crash Severity:
  - 13 percent of the reported crashes were injury crashes:
    - Two (2) fatal crashes were reported:
    - One was an alcohol-related run off the road crash along SD314, and the other was an angle crash at a non-study intersection access along SD50.





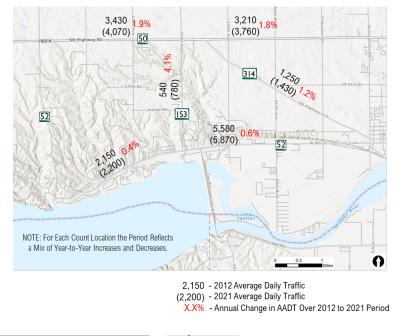
- Four (4) incapacitating injuries were reported:
  - Two incapacitating injuries were the result of rear end crashes, one along SD52 just west of West City Limits Road, and one along SD50 just east of SD52.
  - The other two incapacitating injuries occurred off the state system. One was an angle crash along Deer Boulevard involving a motorcycle. The other was a rollover crash within the Lewis and Clark Recreational Area and the report did not include clear contributing factors.
- Time of the Year Summary:
  - 40 percent of the reported crashes took place during summer/camping season (May-September).
  - 65 percent of reported crashes along SD52 took place during summer/camping season (May-September).
  - 19 percent of the reported summer/camping season crashes were injury crashes, including both fatal crashes recorded in the last 5 years.
- Animal Crashes:
  - 76 percent of the reported crashes were animal hits.
- Lighting Conditions:
  - 41 percent of the reported crashes occurred in the dark with the roadway not lighted.
- Surface Conditions:
  - 8 percent of the reported crashes occurred in icy or snowy conditions.





## **Analysis of Future Conditions**

One of the products of the West Yankton County Transportation Study is a plan of action to not only address traffic and safety concerns of today but look to the future in 2023 in order to identify an orderly set of actions needed to accommodate anticipated growth. The focus of this section of the plan includes:


- Developing traffic forecasts for key routes in the study area.
- Assessing the traffic operations impacts of the increment of traffic added to the current network.

#### **Traffic Forecasts**

Future interim (2035) and horizon (2050) year forecasts were developed for key segments and intersections in the study area through a two-step process:

- Step 1: Applying similar methods and assumptions developed and used in the 2015 Yankton County Transportation Master Plan.
- Step 2: Modifying the transportation plan process to address the potential for more residential and commercial development identified for areas south of SD52 in the 2022 West Yankton Sanitary Sewer Study.

To confirm that the 2015 Transportation Master Plan methodology was still valid, changes in average daily traffic from 2012 to 2021 were reviewed along the study area routes. Figure 11 displays the traffic counts from 2012 to 2021 and the average annual change across the analysis period. Over the analysis period, the annual change in traffic volumes on most segments did not keep pace with the two percent per year change assumption in the 2015 Transportation Master Plan. The exception to the slower paced change was SD153 between SD50 and SD52, which has shown a growth of about four percent per year.f SD153.









In general, historical counts do not capture the summer recreational peak, which was captured as part of this study. This statement is supported by the fall counts along SD52, east of SD153, that more closely reflect historical values. In addition, summer period counts from July 2022 were approximately 35 percent higher than the fall counts. As historical count data was reviewed as the source of annual growth rates, the key to determining the reasonableness of the data is whether peak summer and off-peak remainder of the year volume change over the period were similar or different. SDDOT counting methods are to conduct data collection while school is in session, which does not provide a multi-year source to compare summer peak and school in session periods. Thus, for the growth assessment, published counts were the basis for assessing annual change on state routes.

#### **Traffic Growth Rates for State Routes**

The SDDOT maintains a traffic growth factor table covering rural interstates, urban interstates, rural arterial/collector/local routes and urban arterials/collectors/local routes looking ahead 20 to 35 years, in five-year increments. The 2021 table was the latest available for this study. Table 1 documents the SDDOT growth rates for Yankton County routes. This table, along with historical count data was used as the basis for expanding traffic volumes along segments and intersections to derive 2035 and 2050 traffic.

#### Table 13. SDDOT Yankton County Traffic Growth Factors

| Roadway Category                | Horizon Period                  |       |       |       |  |
|---------------------------------|---------------------------------|-------|-------|-------|--|
|                                 | 20 Year 25 Year 30 Year 35 Year |       |       |       |  |
| Rural Arterial/Collector/ Local | 1.504                           | 1.630 | 1.756 | 1.882 |  |

Source: SDDOT, 2021

The *2015 Transportation Master Plan* utilized a similar methodology, where both the average annual change in traffic counts and the SDDOT growth factors were assessed.

*The 2015 Transportation Master Plan* recommended growth rates ranging from 1.0 percent to 2.0 percent across the county to expand base year volumes used in the planning effort to the 2040 horizon. The 2021 SDDOT growth factors for Yankton County rural arterial/collector/local routes represent a compounded average growth rate of 1.8 percent, which was rounded to 2 percent for the study. This rate, when compared to the historical change observed in the 2012 through 2021 period data represented a more conservative (higher) rate than observed at the count locations with more than 1,000 vehicle per day. Understanding there is an expectation a combination of residential and retail-commercial growth will continue to occur throughout the study area, it is recommended that the more conservative rate calculated from the SDDOT growth factors be used to expand current summer peak and fall counts used in the base year traffic operations analysis.

#### Traffic Growth – Deer Boulevard and Timberland Drive

Cross route forecasts on Timberland Drive and Deer Boulevard to/from the south incorporated development opportunities in the areas south of SD52. In April 2022, the county completed a sanitary sewer feasibility study that included estimates of future development potential for the area south of SD52. The increment of residential expansion potential was the basis for estimating traffic growth on Deer Boulevard and Timberland Drive as they approach SD52 from the south. The method for using the combination of current traffic and future development is outlined below:





- Step 1: Estimate peak period traffic per residence using current data. Deer Boulevard traffic counts for the peak periods and estimates of residential units from the 2022 sewer study were the basis for estimating traffic per unit. Peak summer traffic data was used to prepare the peak hour generation of 0.66 vehicles per unit.
- Step 2: Apply the vehicles per unit rate from 2022 summer Deer Boulevard counts to the increments of residential development in the 2022 sewer feasibility study. The sewer study increment represented what was defined as ultimate growth, which has been interpreted to be a level of development that would result in a conservative sizing for sewer needs as expansion is difficult. The ultimate growth level represents an annual housing unit growth rate of 1.5 percent per year. For the transportation study, residential unit expansion from the sewer study were reduced to reflect the likely conservative nature of the sewer sizing-based development forecasts. Subareas outlined in the sewer basin study are displayed in Figure 12 and the increment of growth assumed for the forecasting is documented in Table 14.

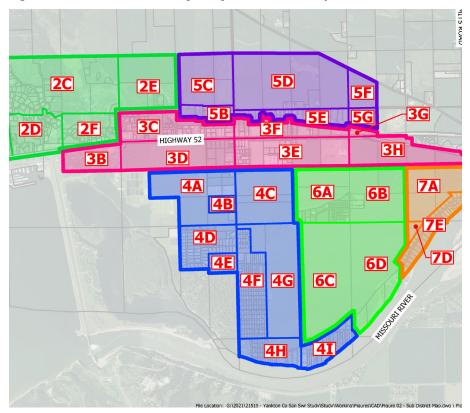



Figure 12. 2022 Sewer Feasibility Study – Sub District Map

Source: 2022 Sewer Feasibility Study - Figure 2

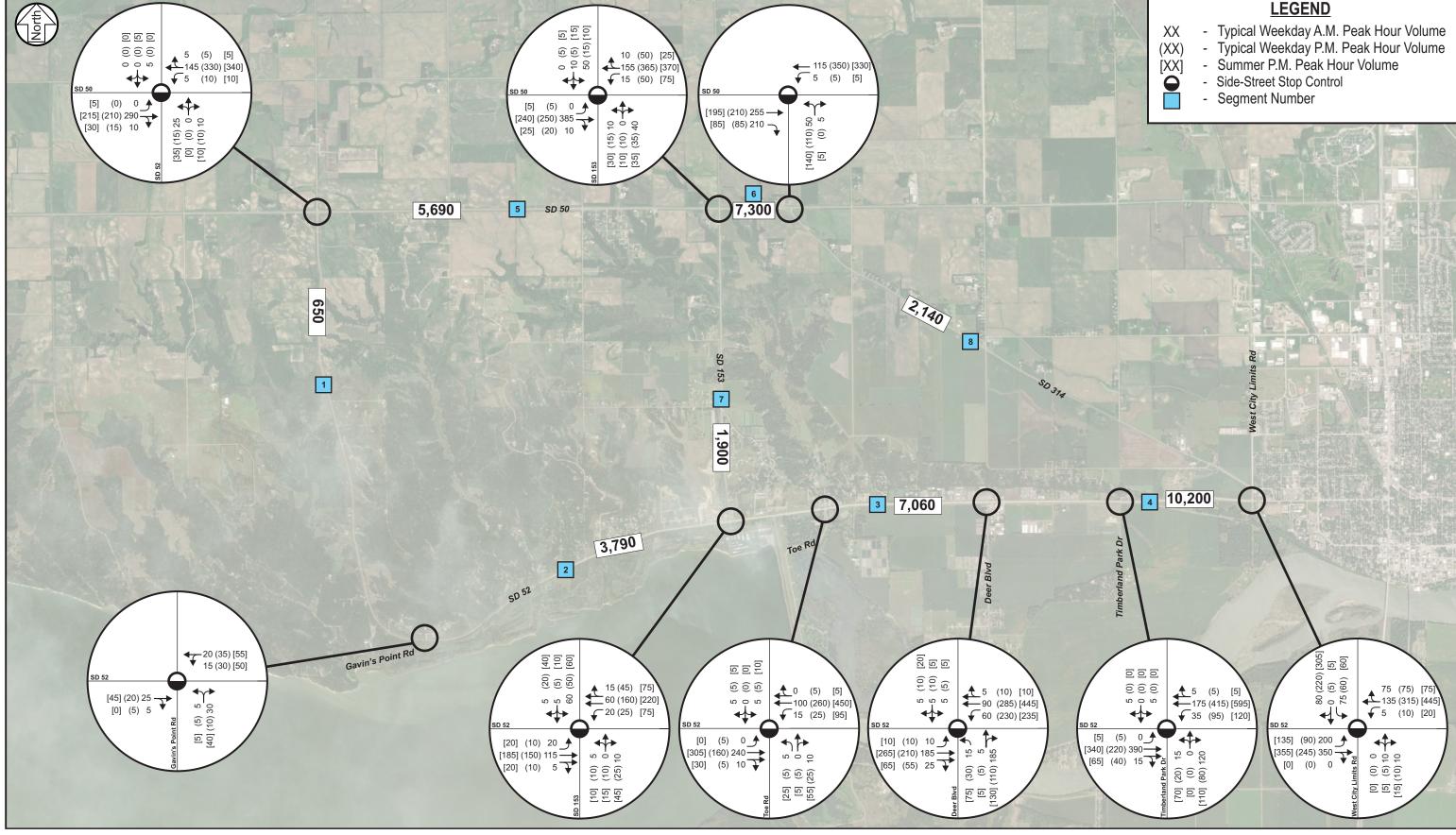
- Step 3: Apply peak hour directional splits and intersection movement percentages from current counts to the forecasted peak period link volumes on Deer Boulevard and Timberland Drive to derive intersection movements.
- Step 4: Adjust SD52 through and turning volumes to account for added cross route volume without substantially increasing mainline total volume. Growth in the SD52 corridor average daily volume has been modest over the last nine years, while development on the south side has continued. Thus, SD52 forecasts derived through application of SDDOT growth factors were assumed to be reasonable. Increased cross route traffic was assumed to be included in the SD52 factored growth, which results in reassignment of turning movements, not increasing the total approach traffic.





| Development<br>Area (Sub Basin) | 2022 Sewer<br>Study<br>Increment | Traffic Forecast<br>Estimated<br>Increment | Traffic Study<br>Percent of<br>Sewer Study |  |  |  |  |  |
|---------------------------------|----------------------------------|--------------------------------------------|--------------------------------------------|--|--|--|--|--|
| Deer Boulevard Corridor         |                                  |                                            |                                            |  |  |  |  |  |
| 4A                              | 287                              | 144                                        | 50%                                        |  |  |  |  |  |
| 4B                              | 34                               | 17                                         | 50%                                        |  |  |  |  |  |
| 4C                              | 267                              | 134                                        | 50%                                        |  |  |  |  |  |
| 4D                              | 38                               | 19                                         | 50%                                        |  |  |  |  |  |
| 4E                              | 0                                | 0                                          | 50%                                        |  |  |  |  |  |
| 4F                              | 34                               | 17                                         | 50%                                        |  |  |  |  |  |
| 4G                              | 350                              | 175                                        | 50%                                        |  |  |  |  |  |
| 4H                              | 41                               | 21                                         | 50%                                        |  |  |  |  |  |
| 41                              | 27                               | 14                                         | 50%                                        |  |  |  |  |  |
| Totals                          | 1078                             | 541                                        | 50%                                        |  |  |  |  |  |
| Timberland Drive C              | orridor                          |                                            |                                            |  |  |  |  |  |
| 6A                              | 208                              | 104                                        | 50%                                        |  |  |  |  |  |
| 6B                              | 250                              | 125                                        | 50%                                        |  |  |  |  |  |
| 6C                              | 460                              | 115                                        | 25%                                        |  |  |  |  |  |
| 6D                              | 387                              | 97                                         | 25%                                        |  |  |  |  |  |
| Totals                          | 1,305                            | 441                                        | 34%                                        |  |  |  |  |  |

 Table 14. 2022 Sewer Feasibility Study Sub District Growth – Traffic Forecasting Assumptions


Forecasted volumes for key intersections in the study area for 2035 (interim) and 2050 (horizon) are displayed in Figure 13 and Figure 14.

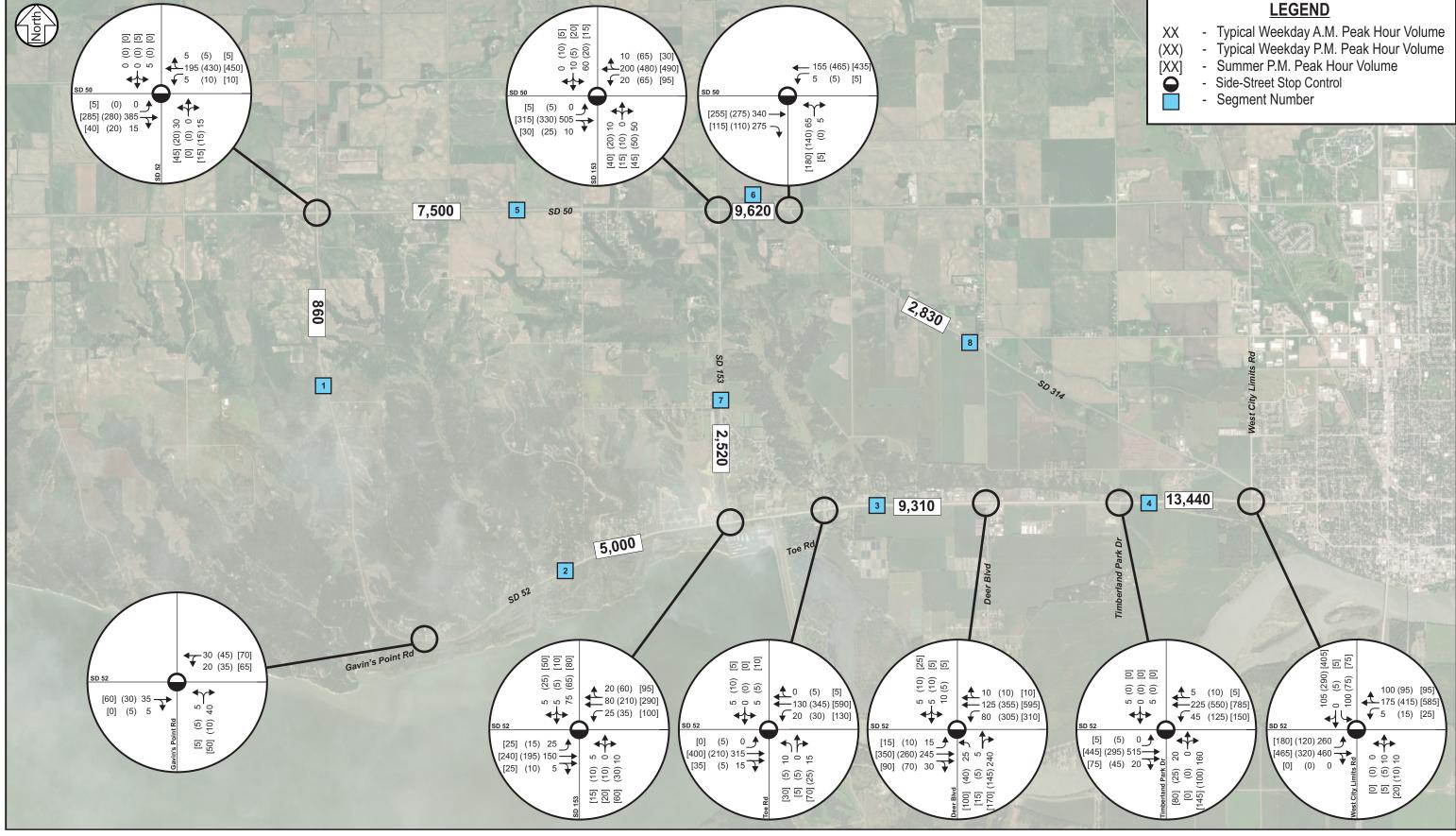
### **Traffic Operations Analysis**

Two capacity analyses were conducted to quantify future operations. These analyses focused on both the segment analysis utilizing the Highway Capacity Software (HCS), as well as a detailed intersection capacity analysis utilizing Synchro/SimTraffic software, both of which are based on the *Highway Capacity Manual, 6th Edition (HCM)*. The following information summarizes the capacity analyses conducted for both 2035 interim and 2050 horizon conditions. Note that the SD52/West City Limits Road intersection is considered urban, whereas all other study intersections and segments are classified as rural. Based on SDDOT policy, the minimum level of service (LOS) guidelines are as follows:

- Rural:
  - Segment LOS B
  - Overall Intersection LOS B
  - Worst Intersection Approach (side-street stop) LOS C
- Urban:
  - Segment LOS D
  - Overall Intersection LOS D
  - Worst Intersection Approach (side-street stop) LOS E








October 2023

West Yankton County Subarea Study SDDOT & Yankton County

### LEGEND







Year 2050 Traffic Forecasts West Yankton County Subarea Study SDDOT & Yankton County

### LEGEND



## **Corridor Operations Analysis**

A future corridor segment analysis was completed using HCS software to further understand how the existing roadways can accommodate the future traffic forecasts and is summarized in Table 15. Note the existing conditions analysis was included in the table for comparison purposes. Results of the corridor analysis indicate that Segment 6 (SD50 between SD153 and SD314) is expected to operate at a LOS C in Year 2050 conditions, which is below the SDDOT LOS criteria threshold. All other study segments are expected to operate with an acceptable LOS B or better during the school-in-session (non-summer) weekday a.m. and p.m. peak hours, and the summer p.m. peak hour through the 2050 horizon year.

|                                            | Existir            | ng Level (                       | of Service           | 2035 Level of Service 20 |                    |                      | 2050                             | 2050 Level of Service |                      |  |
|--------------------------------------------|--------------------|----------------------------------|----------------------|--------------------------|--------------------|----------------------|----------------------------------|-----------------------|----------------------|--|
|                                            |                    | School-in-<br>Session<br>Weekday |                      | Scho<br>Ses<br>Wee       |                    |                      | School-in-<br>Session<br>Weekday |                       |                      |  |
| Segment No.                                | AM<br>Peak<br>Hour | PM<br>Peak<br>Hour               | Peak<br>Summer<br>PM | AM<br>Peak<br>Hour       | PM<br>Peak<br>Hour | Peak<br>Summer<br>PM | AM<br>Peak<br>Hour               | PM<br>Peak<br>Hour    | Peak<br>Summer<br>PM |  |
| 1 – SD52: SD50 to Gavin's Point Rd         | А                  | А                                | А                    | А                        | А                  | А                    | А                                | А                     | А                    |  |
| 2 – SD52: Gavin's Point Rd to SD153        | А                  | А                                | А                    | А                        | А                  | А                    | А                                | А                     | А                    |  |
| 3 – SD52: SD153 to Deer Blvd               | А                  | А                                | А                    | А                        | А                  | А                    | А                                | А                     | А                    |  |
| 4 – SD52: Deer Blvd to West City Limits Rd | А                  | А                                | А                    | А                        | А                  | А                    | А                                | А                     | А                    |  |
| 5 – SD50: SD52 to SD153                    | В                  | А                                | В                    | В                        | А                  | В                    | В                                | А                     | В                    |  |
| 6 – SD50: SD153 to SD314                   | В                  | В                                | В                    | В                        | В                  | В                    | С                                | С                     | С                    |  |
| 7 – SD153: SD52 to SD50                    | А                  | А                                | А                    | А                        | А                  | А                    | А                                | А                     | А                    |  |
| 8 – SD314: SD50 to West City Limits Rd     | А                  | А                                | А                    | А                        | А                  | А                    | А                                | А                     | А                    |  |

 Table 15. Future Corridor Analysis Summary

- Segment operations below the SDDOT threshold for a rural state highway.

In addition to the detailed corridor analysis, the projected future daily traffic volumes for 2035 and 2050 were reviewed for each facility type with general ADT guidance from the SDDOT Design Manual and are summarized in Table 16. Traffic volumes were reviewed for both the school-in-session (non-summer) weekday ADT and summer peak ADT. Note that existing ADT information was included in the table for comparison purposes. Results of the ADT comparison indicate that Segment 6 (SD50 between SD153 and SD314) is over the general lane configuration guidance in the peak summer conditions in 2035 and all conditions in 2050. Additionally, Segment 2 (SD52 between Gavin's Point Rd and SD153) and Segment 5 (SD50 between SD52 and SD153) are slightly over the guidance in 2050 summer peak conditions. All other roadway segments provide sufficient capacity to accommodate future traffic volumes.





|                                               | School-in-Sessi | SDDOT Lane<br>Configuration<br>Guidance |                 |                |
|-----------------------------------------------|-----------------|-----------------------------------------|-----------------|----------------|
| Segment No.                                   | Existing        | 2035                                    | 2050            |                |
| 1 – SD52: SD50 to Gavin's Point Rd            | 500 (800)       | 650 (1,050)                             | 860 (1,380)     | <8,000         |
| 2 – SD52: Gavin's Point Rd to SD153           | 2,900 (4,900)   | 3,790 (6,410)                           | 5,000 (8,440)   | <8,000         |
| 3 – SD52: SD153 to Deer Blvd                  | 5,400 (8,000)   | 7,060 (10,460)                          | 9,310 (13,790)  | 8,000 - 20,000 |
| 4 – SD52: Deer Blvd to West City Limits<br>Rd | 7,800 (10,500)  | 10,200 (13,730)                         | 13,440 (18,100) | 8,000 – 20,000 |
| 5 – SD50: SD52 to SD153                       | 4,350 (5,000)   | 5,690 (6,540)                           | 7,500 (8,620)   | <8,000         |
| 6 – SD50: SD153 to SD314                      | 5,580 (6,375)   | 7,300 (8,340)                           | 9,620 (10,990)  | <8,000         |
| 7 – SD153: SD52 to SD50                       | 1,460 (2,100)   | 1,910 (2,750)                           | 2,520 (3,620)   | <8,000         |
| 8 – SD314: SD50 to West City Limits Rd        | 1,640 (1,700)   | 2,140 (2,220)                           | 2,830 (2,930)   | <8,000         |

#### Table 16. Future Projected Average Daily Traffic (ADT) Volume Review

- Segment volume exceeds SDDOT Design Manual volume threshold for two-lane rural highway.

#### **Intersection Capacity Analysis**

To further understand how the existing roadway network can accommodate the future traffic forecasts, a Year 2035 and Year 2050 intersection capacity analysis was completed and summarized in Table 5. The capacity analysis was completed for the school-in-session (non-summer) weekday morning. and afternoon peak hours, as well as the summer aftenoon. peak hour at the study intersections. Note the existing conditions analysis was included in the table for comparison purposes. The study intersections were analyzed using Synchro/SimTraffic software, which is based on the *Highway Capacity Manual, 6th Edition (HCM)*. Detailed traffic operation results are provided in the Appendix.

Results of the Year 2035 and Year 2050 capacity analysis indicate all study intersections are expected to operate at an acceptable **overall** LOS A in Year 2035 during all peak periods, with the existing geometric layout and traffic controls. In Year 2050, the intersections of SD52/West City Limits Road and SD52/Deer Boulevard are expected to operate at a below-satisfactory overall LOS D during the summer PM peak hour, with side-street stop delays of two (2) minutes or greater.





#### Table 17. Future Intersection Capacity Analysis

|                                                    | Existing     | Level of Service          | e (Delay) | 2035 L                    | _evel of Service | (Delay)   | 2050 Level of Service (Delay) |           |            |
|----------------------------------------------------|--------------|---------------------------|-----------|---------------------------|------------------|-----------|-------------------------------|-----------|------------|
|                                                    | School-in-Se | School-in-Session Weekday |           | School-in-Session Weekday |                  |           | School-in-Session Weekday     |           |            |
| Intersection <sup>(1)</sup>                        | AM Peak      | AM Peak                   | Peak      | AM Peak                   | PM Peak          | Peak      | AM Peak                       | PM Peak   | Peak       |
|                                                    | Hour         | Hour                      | Summer PM | Hour                      | Hour             | Summer PM | Hour                          | Hour      | Summer PM  |
| SD52 / Gavin's Point Road                          | A/A          | A/A                       | A/A       | A/A                       | A/A              | A/A       | A/A                           | A/A       | A/A        |
|                                                    | (9 sec.)     | (9 sec.)                  | (9 sec.)  | (9 sec.)                  | (9 sec.)         | (9 sec.)  | (9 sec.)                      | (9 sec.)  | (9 sec.)   |
| SD52 / SD153                                       | A/B          | A/B                       | A/B       | A/B                       | A/B              | A/C       | A/B                           | A/B       | A/D        |
|                                                    | (10 sec.)    | (11 sec.)                 | (13 sec.) | (11 sec.)                 | (12 sec.)        | (16 sec.) | (12 sec.)                     | (14 sec.) | (27 sec.)  |
| SD52 / Toe Road                                    | A/A          | A/A                       | A/C       | A/B                       | A/B              | A/C       | A/B                           | A/B       | A/D        |
|                                                    | (10 sec.)    | (10 sec.)                 | (16 sec.) | (10 sec.)                 | (10 sec.)        | (21 sec.) | (11 sec.)                     | (11 sec.) | (32 sec.)  |
| SD52 / Deer Boulevard                              | A/B          | A/C                       | A/C       | A/B                       | A/C              | A/E       | A/B                           | A/D       | F/F        |
|                                                    | (11 sec.)    | (16 sec.)                 | (16 sec.) | (12 sec.)                 | (20 sec.)        | (39 sec.) | (14 sec.)                     | (34 sec.) | (~2.5 min) |
| SD52 / Timberland Drive                            | A/B          | A/A                       | A/B       | A/B                       | A/B              | A/D       | A/B                           | A/B       | A/F        |
|                                                    | (12 sec.)    | (10 sec.)                 | (13 sec.) | (13 sec.)                 | (11 sec.)        | (28 sec.) | (14 sec.)                     | (14 sec.) | (135 sec.) |
| SD52 / West City Limits Road $\ensuremath{^{(2)}}$ | A/E          | A/C                       | A/D       | A/D                       | A/C              | A/D       | C/F                           | A/D       | D/F        |
|                                                    | (46 sec.)    | (19 sec.)                 | (26 sec.) | (26 sec.)                 | (16 sec.)        | (28 sec.) | (~2 min)                      | (29 sec.) | (~2 min)   |
| SD50 / SD52                                        | A/B          | A/B                       | A/B       | A/B                       | A/B              | A/B       | A/B                           | A/C       | A/C        |
|                                                    | (12 sec.)    | (12 sec.)                 | (13 sec.) | (13 sec.)                 | (13 sec.)        | (15 sec.) | (15 sec.)                     | (16 sec.) | (19 sec.)  |
| SD50 / SD153                                       | A/B          | A/B                       | A/C       | A/C                       | A/C              | A/C       | A/D                           | A/D       | A/D        |
|                                                    | (15 sec.)    | (14 sec.)                 | (17 sec.) | (17 sec.)                 | (19 sec.)        | (20 sec.) | (25 sec.)                     | (28 sec.) | (33 sec.)  |
| SD50 / SD314                                       | A/B          | A/B                       | A/B       | A/B                       | A/C              | A/C       | A/B                           | A/C       | A/D        |
|                                                    | (12 sec.)    | (14 sec.)                 | (14 sec.) | (12 sec.)                 | (16 sec.)        | (16 sec.) | (14 sec.)                     | (24 sec.) | (26 sec.)  |

(1) Indicates an unsignalized intersection with side-street stop control, where the overall LOS is shown followed by the worst side-street approach LOS. The delay shown represents the worst side-street approach delay.

(2) Considered an urban intersection, which has different LOS thresholds based on SDDOT policy.



- Intersection of two state highways – LOS C on at least one approach.

- Rural intersection with LOS D on at least one approach

- Intersection with LOS E/F one at least one approach



-



## **Crash Prediction – 2050 Current Road Conditions**

Data presented in the Existing Conditions section documented the study area averaged approximately eight crashes per year over the latest five-year period. Using the historical data and the Interactive Highway Safety Design Model (IHSDM) Predictive Method (crash prediction model) a 2050 baseline condition, which assumes no change in the number of lanes or the intersection control for facilities in the study area, along the corridor. Thus, the primary factor contributing to changes in crashes would be the anticipated change in traffic. Traffic volumes within the study area are forecasted to increase by approximately two percent per year through 2050, which results in approximately a doubling of traffic.

In the crash modeling approach, there is a direct relationship between the change in volume and change in crashes. As corridor traffic volumes are anticipated to nearly double over the 30-year planning horizon, without any roadway improvements crashes would likely increase by a similar magnitude. The 2050 baseline model is the basis for comparison of the crash/safety impacts of alternate roadway improvements within the corridor.





# Mitigation Alternatives to Address Traffic Operations

Issues to be addressed in the study area were identified through a combination of technical analysis of the current and projected operations through 2050, review of the crash data and assessment of access locations relative to SDDOT guidelines as well as a review of crash experience at access locations and information gathered through the public engagement process. Development of potential solutions, or mitigation measures, for identified issues followed two tracks:

- Track 1: What location specific mitigation measures have the potential to reduce or eliminate issues (traffic operations, safety, access) at specific bottleneck or problem points in the current network? Mitigation measures along this track would include actions such as:
  - Adding additional lanes (turn or through lanes) to an existing intersection or roadway segment.
  - Changing the traffic control at an intersection, such as replacing two-way or all-way stop control with a signal.
- Track 2: What new facilities have the potential to reduce or eliminate transportation issues identified and/or are needed to support development in the study area. Mitigation measures in this track would be new streets to provide access to development areas where there are not roads today.

This section of the final report is organized into actions to address isolated location issues observed in the current or future conditions, such as an over capacity intersection or segment of road and a recommended collector/minor arterial roadway framework in the area south of SD52 and east of Crest Road. In general, for most locations the actions needed are relatively minor (such as adding a turn lane), which do not require an exhaustive alternatives development and screening process. Thus, for each of the locations where action is needed, a preferred action is presented.

### **Actions to Address Roadway Segment Needs**

#### SD50 from SD153 to West City Limits Road

By 2050, the segment of SD50 from SD153 to West City Limits Road was forecasted to be over the LOS threshold for the twolane roadway present along the segment. As this is a state highway and the focus of the Transportation Study is the county network, a limited level of mitigation review was completed. The expectation is the SDDOT would take the information from this study and integrate it into their project development process for addressing state route needs. Additionally, as the need for action along the corridor is not identified until after the 2035 period (but before 2050), there is not a need to immediately address the corridor.

Mitigation ideas suggested for future review by the SDDOT for the segment are:

Adding an additional through lane in each direction. By 2050, average daily traffic is forecasted to approach or exceed the level that can be reasonably accommodated in two-lanes and would be similar to the level of traffic presently carried on SD52 east of SD153 into/out of Yankton. While the SD52 segment between Yankton and SD153 carries more traffic to/from Lewis and Clark State Recreation Area than SD50 does or likely would and part of the reason SD52 has been widened to five-lanes is to serve recreation traffic, the operational analysis for 2050 along SD50 supports the need for some action. Expanding a two-lane route to four lanes without turn lanes where warranted is rarely done any more. Thus,



adding a through lane in each direction would likely be accompanied by adding turn lanes as either focused turn lanes at key intersections or a continuous center two-way left turn lane, as is provided along SD52.

Adding "continuous" passing zones along the segment from SD52 to West City Limits Road. As a narrower footprint
alternative to a four-lane divided or five-lane section, adding alternating passing lane would increase the capacity of the
road segments along the SD50 corridor. There are numerous cross section alternatives for a super-two lane corridor,
which the SDDOT would review as part of their assessment of needs and alternatives for the corridor. Figure 15 displays
several possible passing lane configurations that may be considered in the range of super-two concepts.

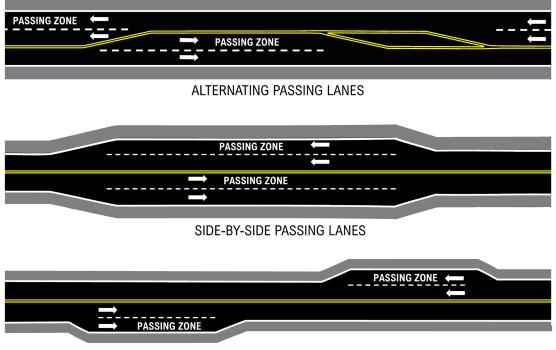



Figure 15. Examples of Super-Two Configurations

ADJOINING PASSING LANES - OUTSIDE

### **Actions to Address Intersection Operations**

Intersection geometrics necessary to provide acceptable operations through 2050 were developed by reviewing the school-insession (non-summer) weekday a.m. and p.m., and summer peak hour traffic operations relative to the respective rural and urban LOS thresholds. Considering action at specific intersections is based on the current, 2035 and 2050 period peak period traffic operations relative to the level-of-service guidelines set by the SDDOT. It is emphasized the level-of-service goals for urban and rural areas are not binary decisions where if the traffic delay exceeds the threshold action is required. SDDOT and local decision-makers have the ability to consider conditions such as the length of the period of impact, how far into the future the condition is identified, the level of growth required to occur before an operational issue is triggered and other factors. Thus, for locations where delay on minor street approaches may be slightly beyond the thresholds, improvements may not be warranted and/or have conflicts with driver expectations and safety. The following sections describe the intersection geometric improvements reviewed for each intersection.





#### SD52 / Gavin's Point Road

Current intersection geometrics are adequate to accommodate forecasted traffic through 2050.

#### SD52 / SD153

Adding a right-turn lane to the southbound side-street approach would provide adequate capacity through 2050. However, it should be noted that the side-street approach is only beyond LOS thresholds by approximately two (2) seconds during the summer p.m. peak hour under 2050 traffic conditions.

#### SD52 / Toe Road

The side-street approach only operates beyond LOS thresholds (LOS D) during the peak summer condition with forecasted 2050 traffic. There are currently left-turn lanes on all approaches (note the southbound approach is wide enough for two exiting lanes) and the intersection volumes do not meet warrants for installing a traffic signal. Therefore, no improvements are recommended at the intersection for further evaluation.

#### SD52 / Deer Boulevard

Forecasted traffic at the intersection exceed the level that can be reasonably accommodated by retaining the current crossstreet stop control or installing all-way stop control. The results of the Existing Conditions analysis included an analysis of replacing the minor street two-way stop control with a signal to address summer period peak conditions and the potential impacts of recreational vehicles or vehicle towing trailers as well as many drivers are relatively unfamiliar with the areas has they are visitors. The proposal to address reported conditions was to signalize the intersection. Adding the signal would result in LOS B operations through 2050 even during the peak summer traffic period.

Recommendation: Design and install a traffic signal. The signal would be operated year round.

#### **SD52 / Timberland Drive**

Constructing a northbound right-turn lane should be considered, however, it would still not provide enough capacity to accommodate peak summer conditions (i.e. side-street approach would still operate at LOS F (55 seconds) under 2050 summer conditions). It should be noted that the side-street approach only operates beyond LOS thresholds during the peak summer conditions. The intersection volumes likely would not meet warrants for a traffic signal until 2050.

Additionally, the forecasted traffic at the intersection does not take into account the internal collector/arterial framework network needed to support future development in the area south of SD52. The framework is discussed in more detail in the next section and would provide the opportunity for travelers to move east-west through the study area without using the intersection with SD52. With the framework in place, the amount of traffic likely getting to the Timberland Drive/SD52 intersection would likely be less than in the level forecasted for the operations analysis. Northbound left turns at SD52 would likely be the movement impacted the most as it is the movement experiencing the highest delay at the stop controlled intersection. Vehicles coming from development to the south would be able to travel on lower volume internal streets to get to the signalized intersection at Deer Boulevard, reducing the impact at Timberland Drive/SD52 and reducing the pressure to provide a signal.

It is emphasized that if the framework streets/roads are not added to the area, the level of development occurring would likely also be substantially less and the level of trips generated in the area would be lower. Again, reducing the need to signalize the intersection at SD52/Timberland Drive.



**Recommendation:** Construct a northbound right-turn lane. Monitor the intersection to determine if/when traffic volumes warrant intersection improvements.

#### SD52 / West City Limits Road

Forecasted traffic at the intersection exceed the level that can be reasonably accommodated by retaining the current crossstreet stop control or installing all-way stop control. To provide adequate traffic capacity through the 2050 horizon year, the action reviewed was adding a signal, while retaining the current intersection geometrics. The intersection is expected to warrant a signal by 2050.

The intersection is within the city limits and needs at the intersection, while studied in the West Yankton County Transportation Study actions at the intersection will be addressed by the City of Yankton.

#### SD50 / SD52

Current intersection geometrics are adequate to accommodate forecasted traffic through 2050.

#### SD50 / SD153

Providing northbound and southbound right-turn lanes could be considered, however, it would still not provide adequate capacity through 2050. Note a five-lane segment alternative was identified for evaluation for SD50 from SD153 to West City Limits Road. However, even if this configuration was extended through the SD153 intersection, it would still not provide adequate capacity for the side-street approaches through 2050. In addition, the intersection volumes would not meet warrants for installing a traffic signal.

The worst movement at the intersection would operate at LOS D, which while over the threshold, the level assumed 25 years of almost two percent per year growth in traffic. Over the current nine year period, traffic growth on SD50 has been near but under the growth rate included in the analysis.

**Recommendation:** Based on the time period until traffic volume exceeds the operations threshold, the recommendation is maintain the current geometrics and intersection control, monitor traffic change and consider alternative that add lanes and change the control as part of a future SD50 corridor study by the SDD0T.

#### SD50 / SD314

Adding a right-turn lane to the northbound side-street approach would provide adequate capacity through 2050. However, it should be noted that the side-street approach is only beyond LOS thresholds by one (1) second during the peak summer condition in year 2050. In addition, the northbound right turn movement at the intersection is minimal (i.e. 5 peak hour vehicles or less) during peak hours.

**Recommendation:** Retain current intersection lane geometrics and control, while monitoring traffic change and operations. If traffic grows at the forecasted rate, consider adding a northbound right turn lane.

### South of SD52 Collector/Arterial Framework

As outlined in the Traffic Growth – Deer Boulevard and Timberland Drive forecasting section, development in the area south of SD52 and between Toe Road and the Yankton city limits is an enhanced focus area for future development. In the last 10 years





a number of residential, commercial sales and campground developments have occurred. In general, development has been focused in areas where there is at least a gravel access road, with higher density uses such as campgrounds and commercial uses being located adjacent to SD52 and along paved routes such as Deer Boulevard and Timberland Drive. Figure 16 displays several locations in the study area where a combination of commercial, campground and residential development has occurred in the recent period since 2020.







2020

Parcels Developed 2020 to 2023

2023

In 2022, the county developed a sewer concept plan to gain an understanding of potential need if the area develops at higher densities and the cost associated with providing sewer rather than current reliance on septic systems throughout the area. This study provided the basis for a possible development concept for the area south of SD52. Completion of the sewer concept analysis reflected an assumption that continued development of the area will need to be accompanied by services more reflective of Yankton rather than the remainder of the county. These include sewer extensions and, relative to this study, extension of the roadway network to provide access to parcels that today are in agricultural use.

Through the West Yankton County Transportation Study effort the intent it to identify a core framework of road corridors that provide access and connectivity to potential development areas in the focus area, including:

- The general alignment of routes defined as either collector street or arterial streets. Both of these typologies place a greater emphasis on moving people and goods within the subarea and between the subarea and regional access routes such as SD52, rather than on direct property access.
- Identifying a typical section anticipated for the routes based on the level of traffic forecasted and anticipated function of the routes.





• Provide general assumptions regarding the density of access points along the collector/arterial network.

Foundational assumptions in this analysis are that the routes discussed would only be required to be added to the network **IF** the area continues to development and the collector/arterial network would be constructed by developers of areas adjacent to the network facilities, not the county. Connected to these assumptions is another assumption that routes would be constructed over time, likely by a number of different developers, which raises the importance of creating the framework plan route alignment and sections as early as possible. Early definition of these elements supports more uniform construction of routes and reduces the potential for developers to establish subdivision street networks that limit through traffic along key half-mile corridors.

The route concept proposed is conceptual and should be revisited annually to allow the county to remain current on the relationship between the framework status and development that is being proposed. As such, a process for revising the network will also be important to have in place to give developers the opportunity adjust alignments within a preset range of conditions set by the county.

#### **Framework Network Alignments**

The framework concept for the subarea is intended to provide a grid through the area at approximately a half-mile density. At this density level, the grid will not likely overly influence development opportunities and provide enough alternate travel routes to not need any multi-lane corridors as the area develops. Development of the framework provides:

- Alternatives to using SD52 to get from one end of the focus area south of the state route to the other. Presently, traveling from areas adjacent to North Timberland Drive to Toe Road can be accomplished only by using SD52. The primary purpose of the state route system is to support longer distance travel, not the subdivision-to-subdivision traffic across the subarea. The one-mile and half-mile routes within the focus area are intended to provide internal growth area alternate routes, reducing the need to use the state highways for many shorter trips.
- Added roadway capacity and route alternatives which support more development, by providing more route alternatives for shorter trips than currently exist.
- Multimodal corridor opportunities for travel. It is unlikely there would be adequate demand and/or funding for trails for bicycles and/or pedestrians throughout the south of SD52 focus area to complement development. An arterial and collector framework network would provide multimodal corridors available to all modes, With the density of routes needed to provide adequate access to developable property, the level of vehicle traffic on most segments would allow for shared use by bicyclists and pedestrians.

The intent of the framework concept is to identify an arterial and collector network to support the functions identified in the above bulletpoints. General design characteristics of the framework concept are:

- Future arterial roadways would be located, when appropriate, along section lines and, where possible, within land identified for transportation right-of-way.
- Future arterial routes would be located approximately one mile apart and collector roadways one-half mile.
- Existing road alignments would be maintained and incorporated into future alignments when possible.
- Profile review to address steep ground slopes. This assessment was done with a GIS visualization of existing slopes in the area and comparing the profile to design criteria. Figure 1 displays the slope/topography visualization map for the subarea.





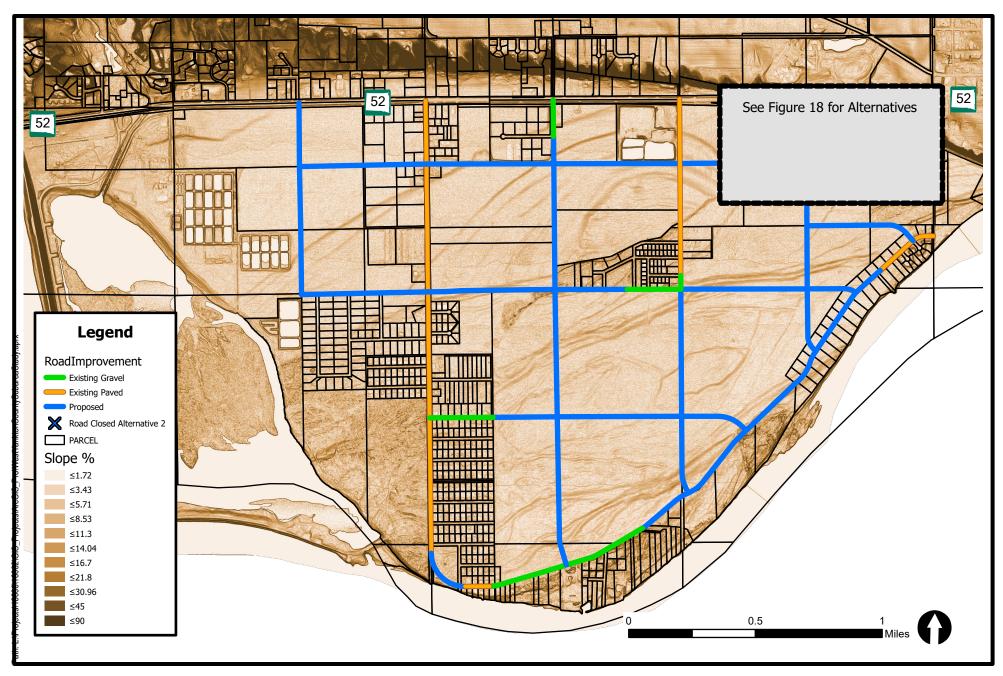
- Access points connecting local street to one-mile and/or half-mile routes would be located, as much as possible, at onequarter mile spacing.
- The framework is focused on private land. Limited or no route would be placed on federal or state-owned property.
- Maximum 700-foot radius (outside of assumed stop conditions where tighter curves are permitted) to meet urban 40 mph standards with a normal crown.

Figure 17 displays the proposed framework concept for the study focus area. As part of the internal framework roadway network conversation, the northeast area where Sister Grove Road, West City Limits Road and Chalkstone Drive interact was discussed as:

- In the current condition there are skewed intersections with limited sight distances that should be addressed to better accommodate traffic growth.
- Not all of the routes are needed to provide a reasonable level of access.

Two alternative concepts for the area were developed and are displayed in Figure 18. In Alternative 1, West City Limits Road would be terminated approximately 300 feet south of the West 8<sup>th</sup> Street (SD52) intersection and Sister Grove Road-to-Chalkstone Road would be the principal east-west connection. By continuing West City Limits Road at least 300 feet south of West 8<sup>th</sup> Street, access to the residential properties could be retained. A critical concern with this alternative is presently, Chalkstone Road can serve as an alternate corridor to SD52 if there was an incident that west of the SD52/West City Limits intersection to the SD52/Chalkstone Road intersection. Without the Chalkstone Road access from the south to the SD52/West City Limits Road intersection, the likely diversion route would be SD153 to SD50 then to West City Limits Road. A substantial distance diversion route.

Alternative 2 reverses the importance and continuity of Sisters Grove Road relative to Alternatives 1. In Alternative 2, the current connection of Chalkstone Road to West City Limits Road would be retained as the primary route. Sisters Grove Road would remain a lower-level gravel road to provide parcel access, but not be considered as a primary access connecting areas to the south and east. In both alternatives, the collector/arterial framework streets throughout the area would provide multiple routes to currently developed and future development areas to the south. Thus, reducing or removing the current one way in and out concerns of residents in the areas closer to the river.


The alternatives were discussed with the SAT, at stakeholder meetings and a public meeting. From these discussions, the preliminary recommendation is to retain Alternative 2 for consideration as the area continues to develop. Primary reasons for selecting Alternative 2 were:

- Development of the areas directly adjacent to Sisters Grove are not expected to develop as areas to the south are expected to. Thus, using Sister Grove as the higher level facility, while terminating the West City Limits Road connection, would provide an overall lower level of accessibility.
- Removing the Chalkstone Road access to the SD52/West City Limits Road intersection removes a convenient alternate route in the event of an incident on SD52.

#### **Framework Network Cross Section**

It is anticipated that framework roads would operate at acceptable levels-of-service as two-lane routes and two or four-way stop control at intersections. A range of sections representing rural (ditches for drainage) and urban (curb and gutter with storm sewer) were discussed with the SAT. Based on the cost, environment and use of the roads, it was concluded routes would be planned as rural sections. Figure 19 displays the assumed typical cross section.





Subarea Collector/Arterial Framework Concept SRF

West Yankton County Subarea Study

Figure 17

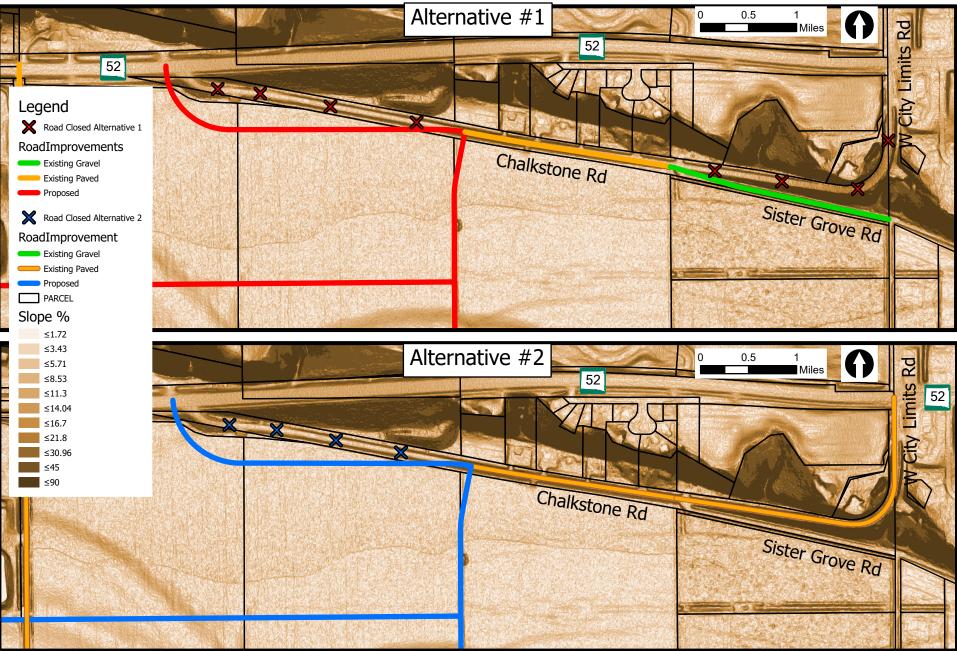
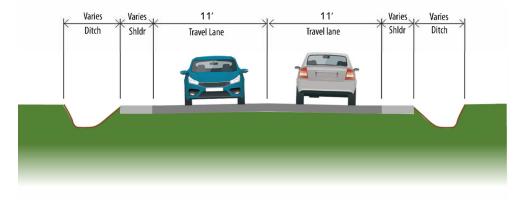






Figure 18



#### Figure 19. Collector/Arterial Framework Route Typical Section

#### Funding Collector/Arterial Framework Construction and Maintenance

The assumption at this point is the internal routes would be implemented as the area develops and would be part of other owner-provided infrastructure improvements associated with development proposals. If uses in the area do not change from their current uses, the need to provide the internal network does not exist and would not be pursued by the county. However, there is the expectation the area will develop as a combination of residential (ranging from lower to higher density) and commercial uses supporting residential and recreational activity. Thus, implementation of the concept would be timed with future development.

Maintaining framework routes was a topic of discussion at the staff, SAT and public levels. Typically, roads similar in function to those included in the framework would be included in a county's mileage and maintenance responsibilities or would be maintained through the township. Since the mid-1970s, the county has had a policy of not taking on additional mileage and currently, there is not an appetite at the county board level to revise the policy. As South Utica is an unorganized township, there Is not a township board to take on the managing maintenance. For unorganized townships, the county has the responsibility for maintaining roads in the township, which are almost exclusively gravel. To address the needs for roads in unorganized townships, the county can levy a property tax to address maintenance needs. For the South Utica township, the county has established both a base levy and an opt-out levy (an additional levied rate to support costs in addition to those that can be covered through revenue generated from the base levy). In 2017, the county formed a Township Taskforce to review the cost of maintaining unorganized township roads for the purpose of assessing whether there would be an advantage to establishing organized township. In South Dakota, organized townships have the responsibility of funding and managing maintenance of the road network under their jurisdiction. Unorganized township roads are maintained by the county through specific taxes levied for the purpose of road maintenance. Analysis of maintenance costs by township prepared for the Taskforce, revealed the cost of maintaining roads in South Utica township exceeded the funds collected through secondary road taxes. Since the 2017 analysis, the county has tracked maintenance costs by township as well as revenue generated through road taxes. For South Utica township, costs continue to exceed the level of revenue generated through secondary road taxes.

Including the collector/arterial framework roads would add approximately 20 lane miles to the area, which would substantially increase maintenance costs within the area. As adding the roadway mileage is directly tied to development of area, with construction would also come increased tax revenue for maintenance. Should the county elect to advance the recommendations in the West Yankton County Transportation Study, a revenue analysis reviewing estimated maintenance



costs to anticipated revenue at the current mill levy to estimate whether secondary road taxes are a viable option for maintain the infrastructure.

An alternative to relying on secondary road tax revenue would be development of one large or multiple road districts. Developers/landowners of parcels proposed for development can establish a road district for the purposes of constructing and/or maintaining roads outside a municipality. From the perspective of the home or business owner, the road district alternative would look similar to the use of secondary road tax in there would be an added line item to their property state statement. The road district would be different from the secondary road tax alternative in that specific corridors would be identified as target corridors for use of the revenue generated. Additionally, over time, the board tasked with overseeing expenditure of funds would migrate from one with greater representation by the developer to one operated by landowners within the district.

Assessment of how one or more districts may be established is outside the scope of this work. If the road district path is pursued, the county's access to secondary road tax funds generated today across the properties in the focus area would no longer be available as the source would be replaced with road district generated funds that would need to be used only for maintenance of the defined routes. Thus, a first next step in preparing a plan of how orderly and sustainable development of the area's infrastructure should be prepared. This plan would address items beyond the roadway network, including:

- Sanitary service
- Public safety (fire and police)
- Open space
- Road maintenance





# Public and Stakeholder Engagement

## Engagement

#### **Public Meetings**

The first public meeting was held at the Yankton Community Library on December 1, 2022. This meeting served to inform the public about the purpose of the plan and to gather initial feedback. During and after the presentation, attendees shared their questions and comments as follows:

- There is some pedestrian traffic in the study area roadways, but not as much as there would be within the recreational area. There are a small number of bicycle commuters.
- Most bikes stay on the south side of SD52. One local business owner rides his bicycle between the lake and the City of Yankton.
- There is an ice cream shop on the north side of SD52; tourists complain they can't cross easily on foot to reach this/other destinations. Similarly, people using the private campgrounds would like to be able to cross SD52 by bike.
- Agricultural vehicles and large trucks came up repeatedly as having specific problems/needs. Two to three meeting attendees are farmers. One commented that finding a gap in traffic to turn onto SD52 is more difficult with a trailer.
- Trucks have a turning radius problem at the intersection of 8<sup>th</sup> and West City Limit. SDDOT is aware of the problem and a widening project is underway.
- The subject of a summer-only signal at Deer Boulevard and SD52 came up.
- One attendee commented that the situation here is unique in South Dakota. The area is rural most of the year, but in summer the tourist presence turns it into a small city.
- There is difficulty in turning left from SD52 onto Deer Boulevard. There can be queues 10 vehicles deep in the turn lane in summer.
- Frontage access roads came up repeatedly as a proposed solution.
- A local property owner noted that he was planning to build a general store/bar/restaurant on the northwest corner of Deer Boulevard and SD52. It will have parking for 200 cars. He left his contact information for a follow-up conversation.
- One attendee asked about the possibility of a pedestrian overpass.

A meeting summary of the public meeting is included in the Appendix.

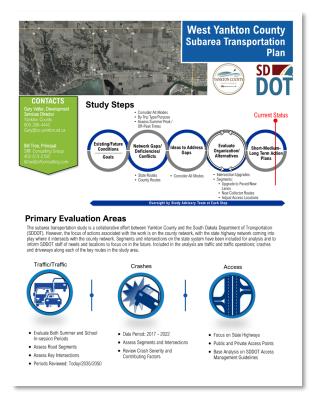
 Photo Credit: Yankton Press and Dakotan

The second and final public meeting was held on September 6, 2023 at the NFAA

Archery Center in Yankton. The focus of this meeting was the recommendations for action in the study area. The meeting included a presentation that was live streamed and an open house where county, SDDOT and consultant staff were present to answer questions or clarify work completed as part of the plan.






The presentation included a brief recap of the work completed to date as it has been approximately nine months since the first public meeting, introduction of the type of improvements evaluated and a list of roadway and intersection control improvements. Areas of question/discussion included:

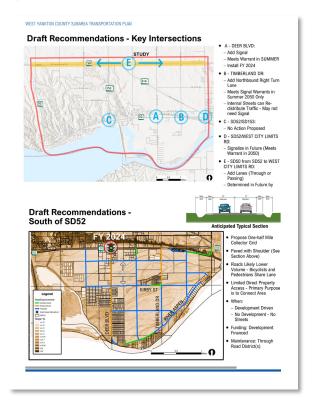

 A proactive plan for providing a secondary access to residential areas near the river is needed. The transportation plan provides for alternative paths throughout the study area, but only if the area develops. If there is no added development or development does not fill in the entire area to the north, which would provide developer constructure routes, there is not a mechanism to build the secondary access. Without a secondary access there is concern for adequate emergency access in the event of a large scale event.



Photo Credit: Yankton Press and Dakotan

- Pedestrian crossing traffic of SD52 is increasing and will continue to increase as development occurs both north and south
  of SD52. Are there alternatives? Throughout the study, pedestrian crossings have been discussed. With the exception of
  including pedestrian signals at a future Deer Boulevard/SD52 crossing, there not no other areas that warrant action based
  on pedestrian activity or where it would be appropriate to add a crossing. Adding a marked pedestrian crossing in areas
  with a speed limit of 40 MPH or more is generally not recommended (Federal Highway Administration, Selecting Safety
  Treatments). A crossing of SD52 east of Welkom Drive was identified a location where pedestrian volume is increasing.
  The question of whether an underpass would be possible was discussed, but no commitment to the concept was provided.
- Secondary Road Taxes provide an alternative to developing a road district and should be included in the range of funding alternatives. The county manages secondary road funds in unorganized townships, such as South Utica.





Public Meeting #2 Handout Material





#### Landowner Meetings

The study team gathered information directly from existing landowners in the area both at the public meetings and by holding one-on-one meetings in early March. Invitations were sent to every property owner within the growth area south of SD52; property owners up to a quarter-mile north of SD52 were included as well.

The majority of the property owners who participated in the meetings were there primarily to find out more about the study. Most held one or two residential lots for which they had no major development plans. A few recurring themes were dissatisfaction with the growing number of campgrounds, an increase in truck traffic on SD52 and SD314, and concern that future traffic patterns would alter residents' safety and quality of life.

#### **Deer Boulevard and SD52**

Several people commented that the intersection of SD52 and Deer Boulevard was difficult and/or dangerous to navigate. The reasons cited include long waits to turn onto SD52, risky bicycle and pedestrian crossings, and reckless driving and parking by customers of the bar and grill on the southeast corner.

The owner of the bar and grill in question participated in a meeting. He said that drivers often use his property as a cutthrough to access SD52 instead of turning right at the intersection. He expressed willingness to turn part of the property into a formal frontage road.

The owners of the property on the northwest corner of the intersection also met with the study team to expand on the plans they had previously shared at the December public meeting. As envisioned, the development of a new bar, event venue, and parking lot would generate enough new traffic to impact this intersection.

As detailed earlier in this report, the primary mitigation strategy – signalizing the intersection – has already been included in the State Transportation Improvement Program. Other mitigation steps could include painting clear lane markings on Deer Boulevard north of SD52; looking into creation of a south-side frontage road; and considering a safety education/enforcement campaign at this location.

#### Lewis & Clark State Recreation Area

The District Park Supervisor responsible for the Lewis & Clark State Recreation Area scheduled a meeting. He described plans to add campsites, cabins, boat slips, and jet ski slips.

| VANKTON COUNTY                                | Yankton County, with the South Dakota Department of Transportation<br>(SDDOT) are conducting a transportation study for select areas of the county<br>west of Yankton. The areas is bounded by SD 50 on the north, SD 52 on<br>west, the Missouri River on the south and West City Limits Road on the east. |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| from West City Limit                          | You are receiving this postcard as you are the listed owner of at least one<br>parcel in the primary study focus area, which is along and south of SD 52<br>s Roat to SD 153.                                                                                                                               |
| house/office hours s<br>or email to arrange f | sen sent to invite you to connect with the study team during an open<br>session on March 2, 2023 and March 3, 2023. The consultants request you call<br>or a 15-minute solut of discuss any plans you may have for your parcel(s) and<br>ns you may have about the study.                                   |
| empore@srfconsulting                          | n Moore from SRF Consulting by calling 402-513-2157 or emailing<br>in come to arrange a 15-minute slot between 9 AM to 5 PM on March 2, or 9<br>ch 3 in the Yankton County Planning and Zoning Office, 321 West 3" Street,                                                                                  |
| For More Information                          | n Contact:<br>ect Manager                                                                                                                                                                                                                                                                                   |

Landowner/Stakeholder Meeting Invitation Postcard

| 950 South 10 <sup>th</sup> Street, Suite 8<br>Omaha, NE 68102                   |  |
|---------------------------------------------------------------------------------|--|
| West Yankton County Subarea<br>Transportation Study                             |  |
| Property Owner/Stakeholder Office Hours/<br>Discussion MARCH 2-3, 2023          |  |
| Access Study Information<br>through the County Website:<br>www.co.yankton.sd.us |  |
|                                                                                 |  |
|                                                                                 |  |





# Appendix





# West Yankton County Subarea Transportation Plan Public Meeting 1 Summary

**December 1, 2022** 

**South Dakota Department of Transportation and Yankton County** 

Prepared by:



<mark>SRF No.19-95</mark>

# **Newspaper Ads**

## AFFIDAVIT OF PUBLICATION

YANKTON DAILY PRESS AND DAKOTAN

SRF CONSULTING GROUP 950 SOUTH 10TH STREET SUITE 8 OMAHA NE 68108

STATE OF SOUTH DAKOTA COUNTY OF YANKTON

e - Ali

KELLY HERTZ, BEING FIRST DULY SWORN ON OATH DEPOSES AND SAYS THAT (S)HE IS THE MANAGING EDITOR OF YANKTON MEDIA INC, A CORPORATION, THE PRINTER AND THE PUBLISHER OF THE YANKTON DAILY PRESS AND DAKOTAN, A LEGAL DAILY NEWSPAPER PUBLISHED AND CIRCULATED IN THE CITY OF YANKTON, SAID COUNTY AND STATE, AND ONE OF THE OFFICIAL NEWSPAPERS OF THE SAID COUNTY OF FACTS STATED IN THIS AFFIDAVIT; THAT THE ANNEXED SDDOT NOTICE OF PUBLIC IN

TAKEN FROM THE PAPER, IN WHICH IT WAS LAST PUBLISHED IN THE NEWSPAPER ON THE 25th DAY OF November, 2022 THAT THE FULL AMOUNT OF THE FEE CHARGED FOR THE PUBLICATION OF SAID NOTICE TO WIT \$78.88 ENSURES TO THE BENEFITS OF THE PUBLISHER OF SAID NEWSPAPER AND THAT NO AGREEMENT AND UNDERSTANDING FOR THE DIVISION THEREOF HAS BEEN MADE WITH ANY OTHER PERSON, AND THAT NO PART THEREOF HAS BEEN AGREED TO BE PAID TO ANY PERSON WHOMSOEVER.

PUBLISHED ON: 11/17/2022 11/25/2022

FILED ON: 11/25/2022

SUBSCRIBED AND SWORN TO BEFORE ME THIS 25th DAY OF November, 2022

DI

NOTARY PUBLIC, SOUTH DAKOTA MY COMMISSION EXPIRES 07/04/2026

#### SOUTH DAKOTA DEPARTMENT OF TRANSPORTATION NOTICE OF PUBLIC INFORMATION MEETING

-

West Yankton County Transportation Plan Study

Date: December 1, 2022 Time: 5:30 PM to 7:00 PM Location: Yankton Community Library 515 Walnut Street Yankton, SD 57078

The South Dakota Department of Transportation (SDDOT) with Yankton County will hold the first of two rounds of public meetings to discuss and receive input on the above project. The subarea transportation plan area is bounded by SD 50 on the north, West City Limits Road on the east, the Missouri River on the south and SD 52 on the west.

The open house style public meeting will begin with a presentation shortly after 5:30 PM, with one-on-one discussion with county, SDDOT and consultant staff following. The presentation will be broadcast live and a link to the broadcast will be on the Yankton County website.

During and after the broadcast, members of the public may submit questions or comments about the project by email to btroe@srfconsulting. com or by calling 402-513-2158 and providing verbal comments.

The county website (www.co.yankton.sd.us) will have information on the study scope, study schedule and meeting displays one week before the public meeting.

The live and recorded meeting presentation will be accessible through the county website (www.co.yankton.sd.us). Questions and comments sent during the meeting will be addressed during the live broadcast.

Notice is further given to individuals with disabilities that this meeting is being held in a physically accessible place. Any individuals with disabilities who will require a reasonable accommodation in order to participate in the public meeting should submit a request to the department's ADA Coordinator at 605-773-3540 or 1-800-877-1113 (Telecommunication Relay Services for the Deaf). Please request the accommodations no later than 2 business days prior to the meeting in order to ensure accommodations are available.

For further information regarding this project, contact Steve Gramm, Planning Squad Leader at (605) 773-3281 / email at steve.gramm@state. sd.us or Bill Troe at (402) 513-2158 / email at btroe@srfconsulting.com.

Notice published twice at the total approximate cost of \$78.88 and can be viewed free of charge at www.sdpublicnotices.com Published November 17 and November 25, 2022.

#### AFFIDAVIT OF PUBLICATION THE OBSERVER

#### SRF CONSULTING GROUP 950 SOUTH 10TH ST, SUITE 8 OMAHA, NE 68108

#### STATE OF SOUTH DAKOTA COUNTY OF YANKTON

KRISTY WYLAND BEING FIRST DULY SWORN ON OATH DEPOSES AND SAYS THAT SHE IS THE PUBLISHER OF THE YANKTON COUNTY OBSERVER, THE PRINTER AND THE PUBLISHER OF THE OBSERVER, A LEGAL WEEKLY NEWSPAPER PUBLISHED AND CIRCULATED IN THE CITY OF YANKTON, SAID COUNTY AND STATE, AND ONE OF THE OFFICIAL NEWSPAPERS OF THE SAID COUNTY OF FACTS STATED IN THIS AFFIDAVIT; THAT THE ANNEXED

#### **MEETING NOTICE PUBLISHED NOV. 18 AND 25, 2022**

TAKEN FROM THE PAPER IN, WHICH IT WAS PUBLISHED IN THE NEWSPAPER FOR THE MONTH OF

NOV. 18 & 25, 2022 THAT THE FULL AMOUNT OF THE FEE CHARGED FOR THE PUBLICATION OF

SAID PROCEEDINGS TO WIT \$280.00 ENSURES TO THE BENEFITS OF THE PUBLISHER OF SAID

NEWSPAPER AND THAT NO AGREEMENT AND UNDERSTANDING FOR THE DIVISION THEREOF HAS

BEEN MADE WITH ANY OTHER PERSON, AND THAT NO PART THEREOF HAS BEEN AGREED TO BE

PAID TO ANY PERSON WHOMSOEVER.

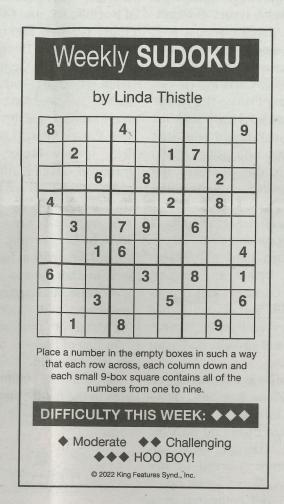
PUBLISHED IN: NOV. 18 & 25, 2022

FILED ON: NOV. 25, 2022

PUBLISHER

replicing

SUBSCRIBED AND SWORN TO BEFORE ME THIS 35 DAY OF


cath

NOTARY PUBLIC, SOUTH DAKOTA

MY COMMISSION EXPIRES 10/18/24

1 manksgiving Break

Have a Great Break, RAIDERS!!





pplies, marketing, prices, weather and a vast al in planning and administration of federal ects this data across South Dakota. Work one and conducting crop counts in the field. Work in your local area Great for building experience in the agriculture sector Also a great second income or for those semi-retired artscher (SD Field Supervisor); Since the summer of 2020, so many orca whales have launched attacks on boats off the coast of Spain and Portugal that sailors have been advised to stay in port at night.

Actor Mike Meyers originally gave the character of Shrek a thick Canadian accent but decided, after animation had begun, that a Scottish one would better suit the character. The film had to be re-animated and cost over \$4 million, or around 10% of its overall budget.

SOUTH DAKOTA DEPARTMENT OF TRANSPORTATION NOTICE OF PUBLIC INFORMATION MEETING

#### West Yankton County Transportation Plan Study

Date: December 1, 2022 Time: 5:30 PM to 7:00 PM Location: Yankton Community Library 515 Walnut Street Yankton, SD 57078

The South Dakota Department of Transportation (SDDOT) with Yankton County will hold the first of two rounds of public meetings to discuss and receive input on the above project. The subarea transportation plan area is bounded by SD 50 on the north, West City Limits Road on the east, the Missouri River on the south and SD 52 on the west.

The open house style public meeting will begin with a presentation shortly after 5:30 PM, with one-on-one discussion with county, SDDOT and consultant staff following. The presentation will be broadcast live and a link to the broadcast will be on the Yankton County website.

During and after the broadcast, members of the public may submit questions or comments about the project by email to btroe@srfconsulting.com or by calling 402-513-2158 and providing verbal comments.

The county website (<u>www.co.yankton.sd.us</u>) will have information on the study scope, study schedule and meeting displays one week before the public meeting.

The live and recorded meeting presentation will be accessible through the county website (<u>www.co.yankton.sd.us</u>). Questions and comments sent during the meeting will be addressed during the live broadcast.

Notice is further given to individuals with disabilities that this meeting is being held in a physically accessible place. Any individuals with disabilities who will require a reasonable accommodation in order to participate in the public meeting should submit a request to the department's ADA Coordinator at 605-773-3540 or 1-800-877-1113 (Telecommunication

Relay Services for the Deaf). Please request the accommodations **no later than 2 business days** prior to the meeting in order to ensure accommodations are available.

For further information regarding this project, contact Steve Gramm, Planning Squad Leader at (605) 773-3281 / email at steve.gramm@state.sd.us or Bill Troe at (402) 513-2158 / email at btroe@srfconsulting.com.

Notice published twice at the total approximate cost of \$280.00

## **Press Release**



Yankton Area Office 1306 West 31st St. Yankton, SD 57078-9662 Phone: 605-668-2929 FAX: 605-668-2927 Website: https://dot.sd.gov and https://sd511.org

For Immediate Release: Monday, Nov. 28, 2022

**Contact:** Steve Gramm, Planning Squad Leader, 605-773-3281

### SDDOT and Yankton County Seek Public Input into West Yankton County Master Transportation Plan Study

YANKTON, S.D. - The South Dakota Department of Transportation (SDDOT), in collaboration with Yankton County, will hold an open house public meeting on Thursday, Dec. 1, 2022, to gather public input for help in developing the West Yankton County Master Transportation Plan. This open house public meeting will be held at the Yankton Community Library (515 Walnut St. in Yankton) from 5:30 p.m. to 7 p.m.

The West Yankton County Master Transportation Plan study will address a full range of transportation options and issues, including pedestrian, bicycle, transit, freight, and automobile, within the area of Yankton County west of the City of Yankton and south of S.D. Highway 50. The purpose for the open house public meeting is to inform the public of the study's intent, to record any concerns the public may have on transportation within the study area, and to gather ideas to help determine the future look of roadway, bus/transit, bicycle, and pedestrian systems within the study area.

For those who cannot attend the meeting, or desire additional information on the study, information will be made available online after the meeting on the Yankton County website at <u>www.co.yankton.sd.us</u>. The presentation will begin shortly after 5:30 and will be broadcast live on the Yankton County website.

The opportunity to present written comments will be provided. Written comments will be accepted until Friday, Dec. 16, 2022.

Notice is further given to individuals with disabilities that this open house is being held in a physically accessible place. Any individuals with disabilities who will require a reasonable accommodation in order to participate in the open house should submit a request to the department's ADA Coordinator at 605-773-3540 or 1-800-877-1113 (Telecommunication Relay

Services for the Deaf). Please request the accommodations no later than two business days prior to the meeting in order to ensure accommodations are available.

For more information, contact Steve Gramm, Planning Squad Leader, at 605-773-3281 or by email at <u>steve.gramm@state.sd.us</u>.

#### About SDDOT:

The mission of the South Dakota Department of Transportation is to efficiently provide a safe and effective public transportation system.

For the latest on road and weather conditions, road closures, construction work zones, commercial vehicle restrictions, and traffic incidents, please visit <u>https://sd511.org</u> or dial 511.

Read more about the innovative work of the SDDOT at <u>https://dot.sd.gov</u>.

-30-

# Sign In Sheets

# DATE 12/1/22

# Meeting Purpose: Public Meeting #1

|   | ΝΑΜΕ                  | ADDRESS                       | EMAIL                                 |
|---|-----------------------|-------------------------------|---------------------------------------|
|   | Eavan Moore           | 950 5 10th Street 68114       | ecmoore@srfconsulting.com             |
|   | Steve Gramm           | 700 E. Broadway Ave           | Stere, grown @ State, 5d.us           |
|   | Gary Vetter           | 3 21 West Third St., #209     | gary QCD. yan utom. sd. 45            |
|   | Wade Lippert          | 3702 Kristi have Kan Kon      | Whippent@astrcindustring.com          |
|   | Mille Sellacek        | 3302 W. City Limits Rel Kulos |                                       |
| < | Dan Klimisch -        |                               | Jank@ co. Yankton. Stry               |
|   | John Marg undt        | 2809 W city Lipits RA         | john manargtrans. com                 |
|   | Mile Healy            | 18/1 Cedar 3-1                | MITAOVYN, MIDEO.NET                   |
|   | Rodney Wiece          | 4410 W8th ST                  | robspibleshop @gmail, com             |
|   | 10m Noecker           | 3703 W 8 th                   | Abackers hartel. Net                  |
|   | Rob Nielsen           | 304 Greenview Dr. #6          | Vob. nielsen Qgankten met             |
|   | Andy Bryan-           | 3711 Kristi Lane              | rockytrax@gmail.com                   |
|   | JOHN & NANCY COUGHRAN | 155 CRESTVIEW DR              | nckran 30 gmail, COM                  |
|   | Kelly Hertz           | 807 West St.#                 | - Can Kton Press Fitty. New Sanktming |
|   | Tom & Beth Kaltsulas  | 188 Marina Dell Avenue        | te6532@qmail.com                      |
|   |                       |                               | $\checkmark$                          |

| PHONE           | Email<br>Updates<br>(Yes Only) |
|-----------------|--------------------------------|
|                 | $\checkmark$                   |
|                 | V                              |
|                 | 4                              |
|                 |                                |
| 605-260-44173   |                                |
|                 | U                              |
| 605-660-3030    |                                |
|                 | L                              |
| ~               |                                |
| 402- \$41- 7475 |                                |
|                 | V                              |
| 605-660-0157    | $\checkmark$                   |
|                 | $\checkmark$                   |
|                 |                                |
|                 | ~                              |

# DATE 12/1/22 Meeting Purpose: Public Meeting #1

| NAME              | ADDRESS                       | EMAIL                          | PHONE                              | Email<br>Updates<br>(Yes Only) |
|-------------------|-------------------------------|--------------------------------|------------------------------------|--------------------------------|
| DENNIS MALY       | ISOI RIVER ASPEN ROAD-YANKION | dmaly@outlook,com              | 402-675-7200                       | YES                            |
| Delight Paulson   | 505 Cedar - ykta              | detight janda Og Mail. con     | 605 260 0832                       | Yes                            |
| Pon Kattering     | 4201 W 11 th 54               | dpketning egmail.              |                                    | 3 YXA                          |
| Nancy Wenande     | 1205 Peyton Lane              | Nanchar yanktonsd. com         | 605 660 0438                       |                                |
| Jerry Oster       | 1203 E 44                     | Justinewnax. Com               | 607-668-1178                       | Yes                            |
| Ryan Heine        | 4700 Alphonse Rd.             | ryan. m. heine @ gmail. Com    | 6057609084                         | Yes                            |
| Greg Rothschadl   | 1306 W. 315t St               | greg. rothschadlestate. sd. us | 605-668-2929                       | Yes                            |
| Joseph Sestak     | 1306 W 31 5t St               | Joseph. Sestake State. Sd. us  | 605-668-2929                       | SATEMAD                        |
| Richard Kloycela  | 42479-298th5t Scotlan LSD     |                                | 605 -661-4305                      |                                |
| Ward Youngblom    | 43197 SD Hay 52               | young blom w 6 gmail, com      | 605-237-2190                       | Yes                            |
| Cathidlen Darcy.  | Haggaso Hwy 52 VanktonSD      | redar ay 660 g mail-com        | 605-661-6059(c).<br>605-665-693(c) |                                |
| Darlene Kurde.    | ABRIG BIOTH ST YRN.           | dikurde 38@ grail.com          | 605-665-9245                       |                                |
| Wande Howey - Fox | Yanktu                        | Wh fox law @ mideo. net        | 665-1001                           | you                            |
| Cam McAllister    | 3804 W8 FIRE                  | fireandices de gmail. cua      | 605-760-4546                       | Tes -                          |
| +1                |                               |                                |                                    |                                |

# **Public Meeting Presentation**



# Western Yankton County Subarea Study PUBLIC MEETING 1

December 1, 2022



# Yankton County Subarea Study ISRF

# Agenda

- 1. Team Introductions
- 2. Purpose of the First Public Meeting
- 3. Overview of the Study:
  - Location
  - Study Approach
- 4. Current Conditions
- 5. Mitigation Toolbox

5. Schedule6. Open Discussion/Questions7. Wrap-up

SRF



Yankton County Subarea Study

## Key Areas Evaluated to Understand Needs

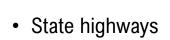
**Traffic Operations** 



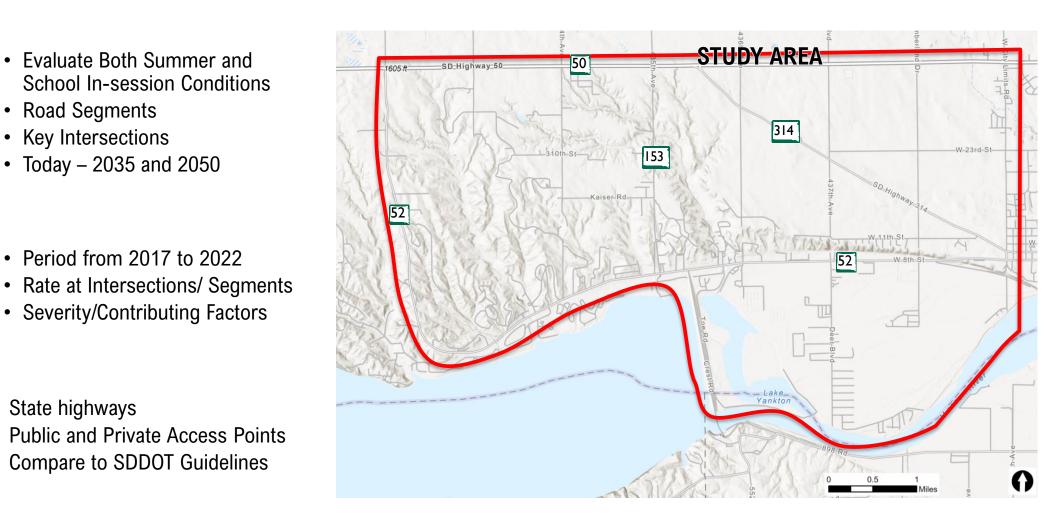
#### Evaluate Both Summer and School In-session Conditions

- Road Segments
- Key Intersections
- Today 2035 and 2050 •

• Period from 2017 to 2022


Severity/Contributing Factors

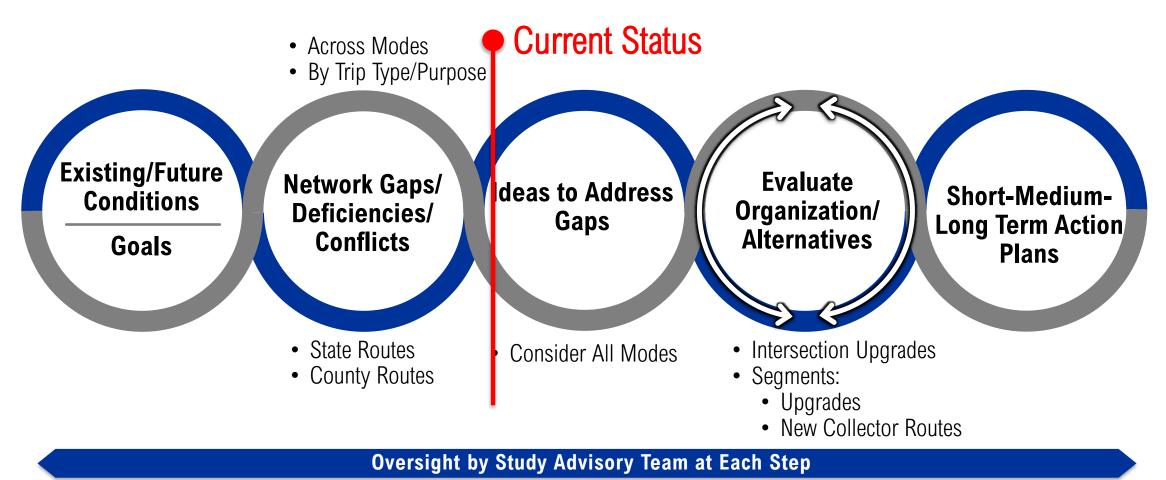
#### Crashes




Access






- Public and Private Access Points
- Compare to SDDOT Guidelines







## Applying Our Approach – Work Plan



Public Engagement In Each Step

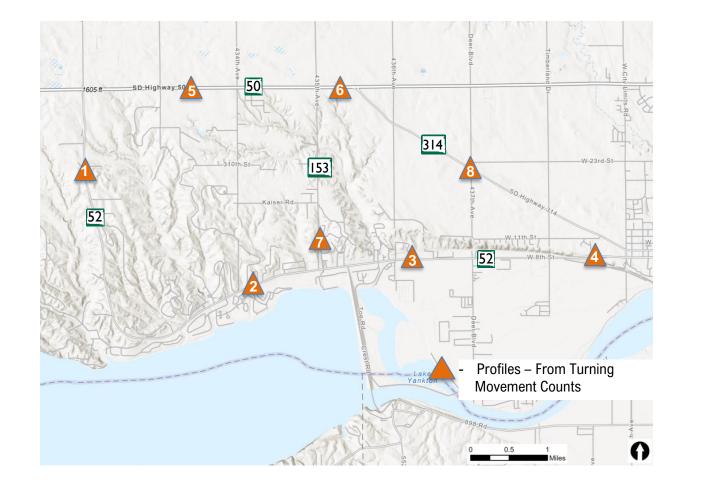


#### Yankton County Subarea Study

4

LSRF

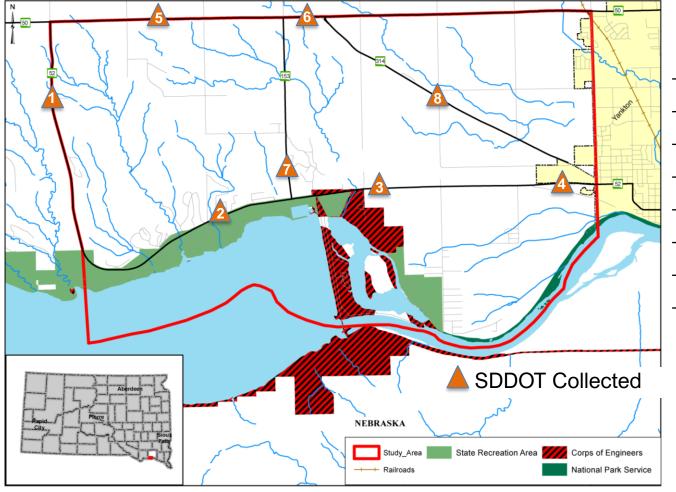



#### **Traffic Data and Operations**


December 1, 2022






## **Route Segment Count Locations**



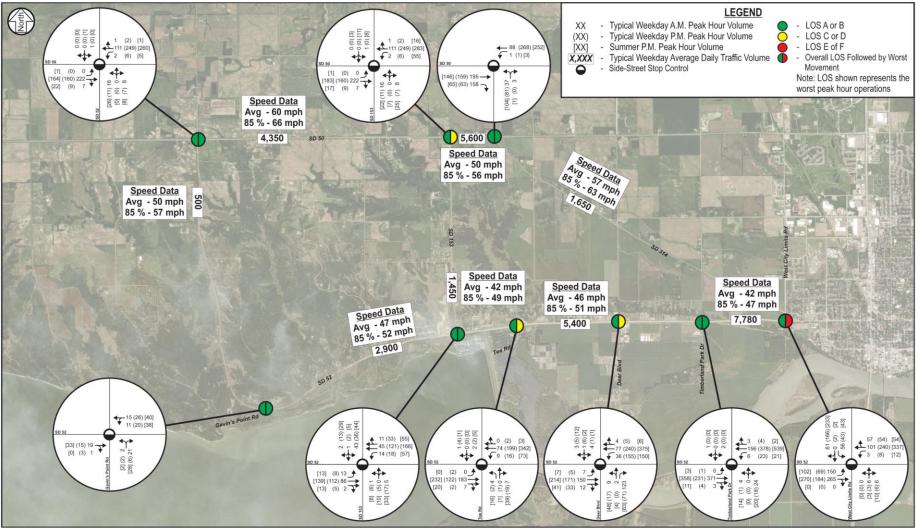




#### **Route Segment Count Locations**



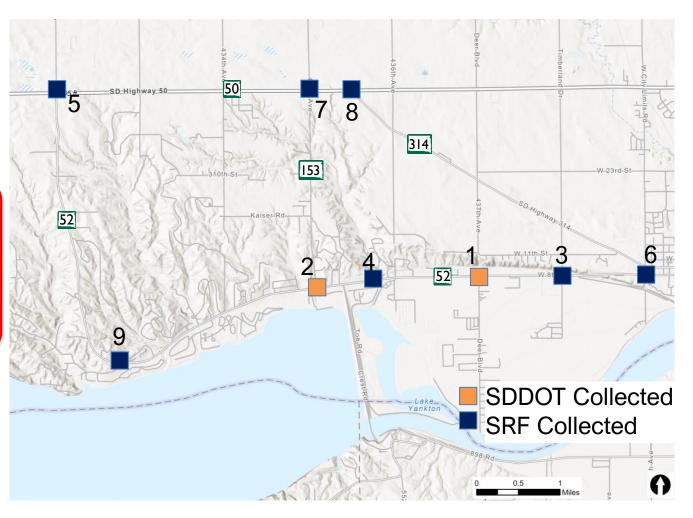
|                   | Percent                               |                                         |                                          |                |
|-------------------|---------------------------------------|-----------------------------------------|------------------------------------------|----------------|
| Segment<br>Number | Passenger<br>Car/Pickups<br>(#1 - #3) | Bus/Single-<br>Unit Trucks<br>(#4 - #7) | Double/Multi-<br>Unit Trucks<br>(#8-#13) | Weekday<br>ADT |
| 1 (SD 52)         | 482 (95%)                             | 10 (2%)                                 | 14 (3%)                                  | 506            |
| 2 (SD 52)         | 2,814 (97%)                           | 28 (1%)                                 | 60 (2%)                                  | 2902           |
| 3 (SD 52)         | 5,133 (95%)                           | 54 (1%)                                 | 207 (4%)                                 | 5,394          |
| 4 (SD 52)         | 7,432 (96%)                           | 81 (1%)                                 | 266 (3%)                                 | 7,779          |
| 5 (SD 50)         | 3,810 (88%)                           | 101 (2%)                                | 439 (10%)                                | 4,350          |
| 6 (SD 50)         | 4,983 (89%)                           | 128 (2%)                                | 471 (9%)                                 | 5,582          |
| 7 (SD 153)        | 1,370 (94%)                           | 38 (2%)                                 | 54 (4%)                                  | 1,462          |
| 8 (SD 314)        | 1,487 (91%)                           | 65 (4%)                                 | 88 (5%)                                  | 1,640          |


#### PEDESTRIAN AND BICYCLE COUNTS

Count Periods – Few/If Any In Peak Hours Ask Meeting Participants – Consistent with Your Experience






## **Existing Condition – Intersection Operations Summary**





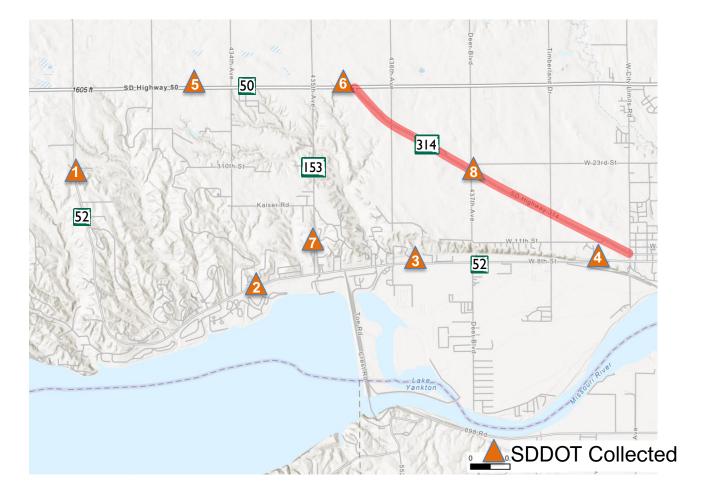
## **Intersection Count Locations Operations Summary**

|                               | Level of Service (Del |                 | lay)              |  |  |
|-------------------------------|-----------------------|-----------------|-------------------|--|--|
|                               | School-in-Ses         |                 |                   |  |  |
| Intersection <sup>(1)</sup>   | AM Peak<br>Hour       | PM Peak<br>Hour | Peak Summer<br>PM |  |  |
| SD 52 / Gavin's Point Road    | A/A (9 sec.)          | A/A (9 sec.)    | A/A (9 sec.)      |  |  |
| SD 52 / SD 153                | A/B (10 sec.)         | A/B (11 sec.)   | A/B (13 sec.)     |  |  |
| SD 52 / Toe Road              | A/A (10 sec.)         | A/A (10 sec.)   | A/C (16 sec.)     |  |  |
| SD 52 / Deer Boulevard        | A/B (11 sec.)         | A/C (16 sec.)   | A/C (16 sec.)     |  |  |
| SD 52 / Timberland Park Road  | A/B (12 sec.)         | A/A (10 sec.)   | A/B (13 sec.)     |  |  |
| SD 52 / West City Limits Road | A/E (46 sec.)         | A/C (19 sec.)   | A/D (26 sec.)     |  |  |
| SD 50 / SD 52                 | AYD (12 Sec.)         | A/ B (12 Sec.)  | A/B (13 sec.)     |  |  |
| SD 50 / SD 153                | A/B (15 sec.)         | A/B (14 sec.)   | A/C (17 sec.)     |  |  |
| SD 50 / SD 314                | A/B (12 sec.)         | A/B (14 sec.)   | A/R (14 sec)      |  |  |








#### **Speed Assessment**

December 1, 2022





## **Route Segment Operating Speed Review**



|   | Segment<br>Number | Posted Speed<br>Limit (MPH) | Average<br>Speed (MPH) | 85th<br>Percentile<br>Speed (MPH) |
|---|-------------------|-----------------------------|------------------------|-----------------------------------|
| _ | 1 (SD 52)         | 55                          | 50                     | 57                                |
|   | 2 (SD 52)         | 50                          | 47                     | 52                                |
|   | 3 (SD 52)         | 50                          | 46                     | 51                                |
|   | 4 (SD 52)         | 40/50 (1)                   | 42                     | 47                                |
|   | 5 (SD 50)         | 65                          | 60                     | 66                                |
|   | 6 (SD 50)         | 65                          | 50                     | 56                                |
|   | 7 (SD 153)        | 45/55 <sup>(2)</sup>        | 42                     | 49                                |
| _ | 8 (SD 314)        | 55                          | 57                     | 63                                |

Т

(1) Speed limit is 40-mph immediately west of West City Limits Road and transitions to 50-mph approximately  $\frac{1}{4}$  mile west of the West City Limits Road.

(2) Speed limit is 45-mph south and 55-mph north of Horeshoe Hollow Drive.







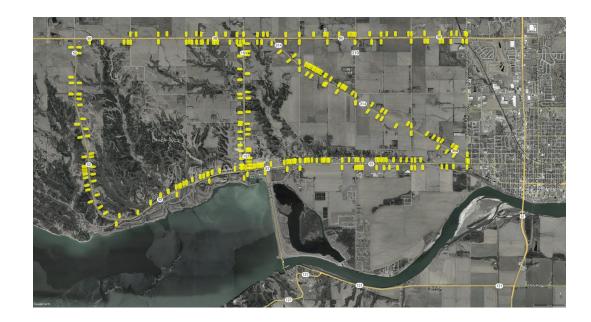
#### **Access Point Review**

December 1, 2022



#### **ISRF** 12 Yankton County Subarea Study




#### **Access Locations – State Routes**





## **Access Point Assessment**

| Segment                                     | Side of<br>Roadway | Access<br>Points | Segment<br>Length<br>(miles) | Access<br>Density<br>(points/mile) |
|---------------------------------------------|--------------------|------------------|------------------------------|------------------------------------|
| 1 - SD 52: SD 50 to Gavin's Point Rd        | North              | 19               | 3.5                          | 6                                  |
| 1 - 30 32. 30 30 to davin 31 ont rd         | South              | 18               | 5.5                          | 5                                  |
| 2 - SD 52: Gavin's Point Rd to SD 153       | North              | 20               | 2.6                          | 8                                  |
| 2 - 30 32. Gavin's Foint No to 30 133       | South              | 4                | 2.0                          | 2                                  |
| 3 - SD 52: SD 153 to Deer Blvd              | North              | 29               | 1.9                          | 15                                 |
| 3 - 3D 32. 3D 133 to beer bivo              | South              | 5                | 1.9                          | 3                                  |
| 4 SD 52: Door Plud to Woot City Limits Pd   | North              | 16               | 2.0                          | 8                                  |
| 4 – SD 52: Deer Blvd to West City Limits Rd | South              | 14               | 2.0                          | 7                                  |
| 5 – SD 50: SD 52 to SD 153                  | North              | 14               | 3.0                          | 5                                  |
| 5 - 30 50. 30 52 (0 30 155                  | South              | 21               | 5.0                          | 7                                  |
| 6 - SD 50: SD 153 to SD 314                 | North              | 4                | 0.5                          | 8                                  |
| 0 - 30 30. 30 133 (0 30 314                 | South              | 3                | 0.5                          | 6                                  |
| 7 00 162:00 62 to 00 60                     | East               | 15               | 2.4                          | 6                                  |
| 7 – SD 153: SD 52 to SD 50                  | West               | 16               | ∠.4                          | 7                                  |
| 9 CD 214 CD EQ to Woot City Limita Dd       | North              | 37               | 4.2                          | 9                                  |
| 8 – SD 314: SD 50 to West City Limits Rd    | South              | 21               | 4.2                          | 5                                  |



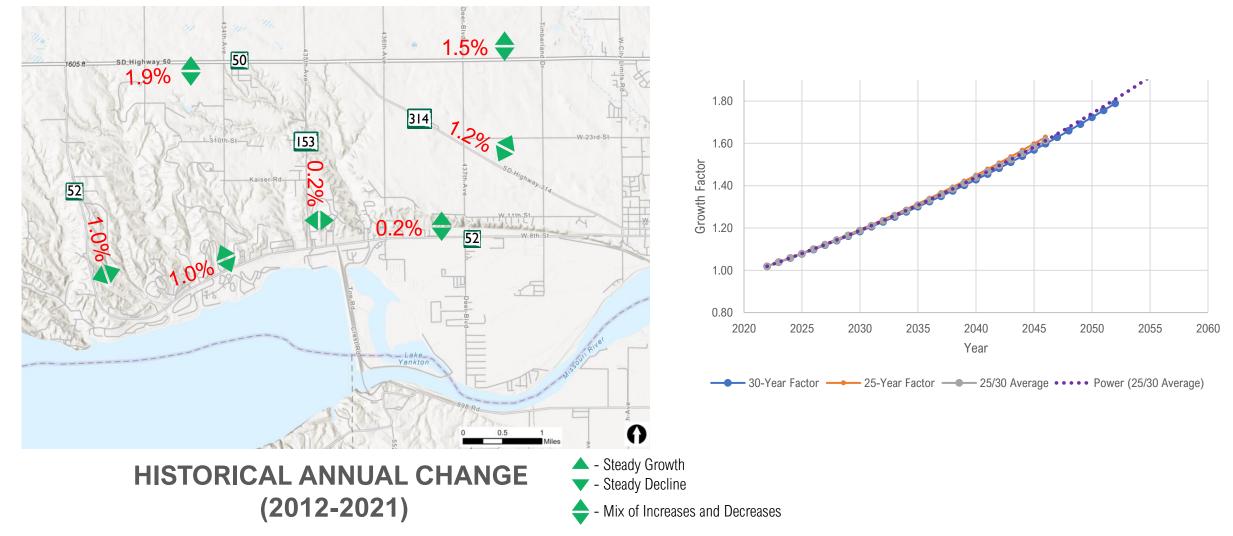
#### **Mitigation Options**

- Consolidate Driveways:
  - Multiple per Parcel
  - Adjacent Properties
- Frontage/Backage Roads
- Eliminate Drives

#### Yankton County Subarea Study



SPE




#### **Traffic Growth Rates**

December 1, 2022



## Historic and Proposed Traffic Growth By Route

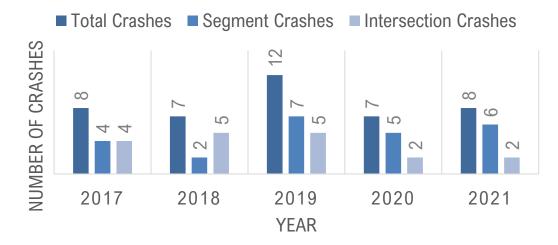




#### Yankton County Subarea Study



.SRF




#### **Crash Data Assessment**

November 21, 2022

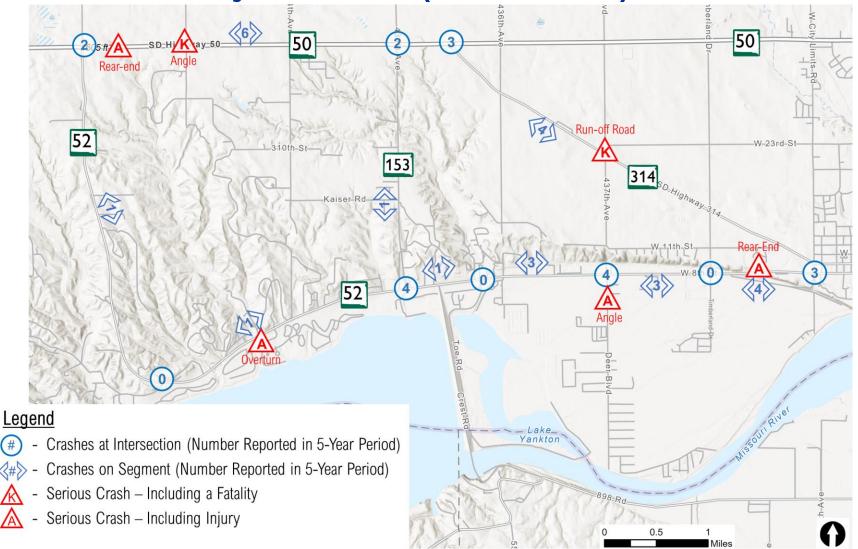


#### **Crash Assessment**



**CRASH FREQUENCY BY YEAR (1)** 

|                                  | Single Vehicle<br>Crashes |                 | Multiple<br>Cras |          |       |
|----------------------------------|---------------------------|-----------------|------------------|----------|-------|
|                                  | Animal                    | Ran off<br>Road | Angle            | Rear End | Total |
| SD 52 / Gavin's Point Road       | -                         | -               | -                | -        | 0     |
| SD 52 / SD 153                   | 1                         | 2               | 2                | -        | 5     |
| SD 52 / Toe Road                 | 3                         | -               | -                | -        | 3     |
| SD 52 / Deer Boulevard           | 1                         | -               | 2                | 2        | 5     |
| SD 52 / Timberland Drive         | 1                         | -               | -                | -        | 1     |
| SD 52 / West City Limits<br>Road | 3                         | 1               | 2                | -        | 6     |
| SD 50 / SD 52                    | 2                         | 1               | 1                | -        | 4     |
| SD 50 & SD 153                   | 3                         | -               | 1                | 1        | 5     |
| SD 50 & SD 314                   | 3                         | 1               | 2                | _        | 6     |
| Intersection Totals              | 17                        | 5               | 10               | 3        | 35    |




## Yankton County Subarea Study

18

CC

## Crashes by Location (2017-2022)



#### <u>Findings</u>

- No Intersections display elevated numbers/ rates
- No segments display elevated numbers/rates
- Injury crashes No pattern of location or type of crash



## Mitigation

December 1, 2022



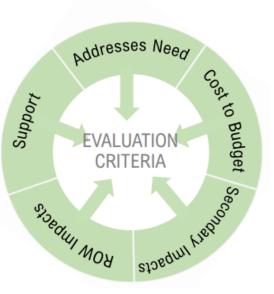


## Mitigation Toolbox



- Add Local Road Network
- Add Frontage/Backage Roads
- Add Turn Lanes
- Intersection Control:
  - Four-way Stop
  - Signalize
- Modify Access Locations

Correctable Crashes




- Shoulder Improvements
- Modify Access Locations
- Enhanced Ped Xing
- Speed Reductions
- Add Rumble Strips
- Pavement Edge Treatment
- Design Changes:
  - Extend Sight Distance
- Lengthen Curves
- Curve Delineators
- Modify Ditch Slopes
- Improve Lighting





- Add Frontage/Backage Roads
- Relocate Access to Cross
   Route/ Frontage/Backage Road
- Consolidate Drives
- Reduce Drives
- Assess Median on SD 52 5-Lane Section

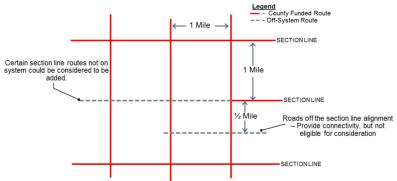



All Mitigation Concepts Reviewed Relative to a Consistent Set of Criteria





## **Concerns and Mitigation Considerations**




#### In Your Daily Travel:

- Are there locations where you encounter daily congestion?
- Are there areas you are more cautious?
- Are there gaps in the MULTIMODAL network to fill?
- What should we know that you know?

SRF

(Based on 2015 Transportation Plan Concept for County Routes)







#### Schedule

December 1, 2022





#### Schedule

|                                                                 |             |                   |                 |                  | Perio            | d of Perfor     | mance            |            |               |          |           |
|-----------------------------------------------------------------|-------------|-------------------|-----------------|------------------|------------------|-----------------|------------------|------------|---------------|----------|-----------|
| Task                                                            | August 2022 | September<br>2022 | October<br>2022 | November<br>2022 | December<br>2022 | January<br>2023 | February<br>2023 | March 2023 | April 2023    | May 2023 | June 2023 |
| Project Management                                              |             |                   |                 |                  | 2022             | 2020            | 2020             | 1111112020 |               | may 2020 | June 2020 |
| Kick-Off                                                        | 藩           |                   |                 |                  |                  |                 |                  |            |               |          |           |
| Collect Data                                                    |             |                   |                 |                  |                  |                 |                  |            |               |          |           |
| Evaluate Existing Conditions (Traffic/Safety/Access<br>/Design) |             |                   |                 | _                |                  |                 |                  |            |               |          |           |
| Future Traffic and Operations                                   |             |                   |                 |                  |                  |                 |                  |            |               |          |           |
| Identify/Evaluate Mitigation Options                            |             |                   |                 |                  |                  |                 |                  |            |               |          |           |
| Develop Major Road Plan                                         |             |                   |                 |                  |                  |                 |                  |            |               |          |           |
| Recommendations and Timing                                      |             |                   |                 |                  |                  |                 |                  |            |               |          |           |
| Prepare Documentation                                           |             |                   |                 |                  |                  |                 |                  |            | 0             |          | <u> </u>  |
| Public Involvement                                              |             |                   |                 |                  |                  |                 |                  |            | Draft         |          | Final     |
| Study Advisory Committee Meetings/Workshop                      |             |                   |                 |                  |                  |                 |                  |            |               |          |           |
| Public Meetings/Stakeholder Meetings                            |             |                   |                 | -                | PM Existing      | s<br>ns         | -                | P          | M Technically | /<br>5.  |           |
| County Commission Briefing Materials                            |             |                   |                 | 0                | (                | >               | 0                |            |               |          |           |
| Website/Social Media Postings at Milestones                     |             |                   |                 |                  |                  |                 |                  |            |               |          |           |
|                                                                 |             |                   |                 |                  |                  |                 |                  |            |               |          |           |



## Wrap Up

- Open Discussion Anyone Have Questions?
- Next Steps

Bill Troe, Principal Project Manager 402-513-2158 <u>btroe@srfconsulting.com</u>

Brent Clark, PE Senior Traffic Engineer 763-267-6618 <u>bclark@srfconsulting.com</u> Eavan Moore Planner 402-513-2157 <u>ecmoore@srfconsulting.com</u>



Yankton County Subarea Study



CD



#### THANKS FOR ATTENDING! PLEASE SIGN IN IF YOU DID NOT EARLIER

December 1, 2022





#### **Comments**

#### Subarea Transportation Planning Study

Western Yankton County
Transportation Study

#### **Public Meeting Comments**

#### December 1, 2022

Please record your comments, questions or thoughts regarding the information presented and/or discussed at the public meeting. Please return your completed form to sign-in table or to one of the consultant staff.

You may also send your comments in an email to BTroe@SRFConsulting.com

Please provide your name and email address in the space provided below. Name Email Address City State **Comments, Needs & Concerns**  $(\mathbb{D})$ Duth SI Ked 5 D00 in la 0 41 back or attach additional sheets 6 Maintaine ai

You can e-mail the study team through BTroe@SRFConsulting.com

#### Subarea Transportation Planning Study

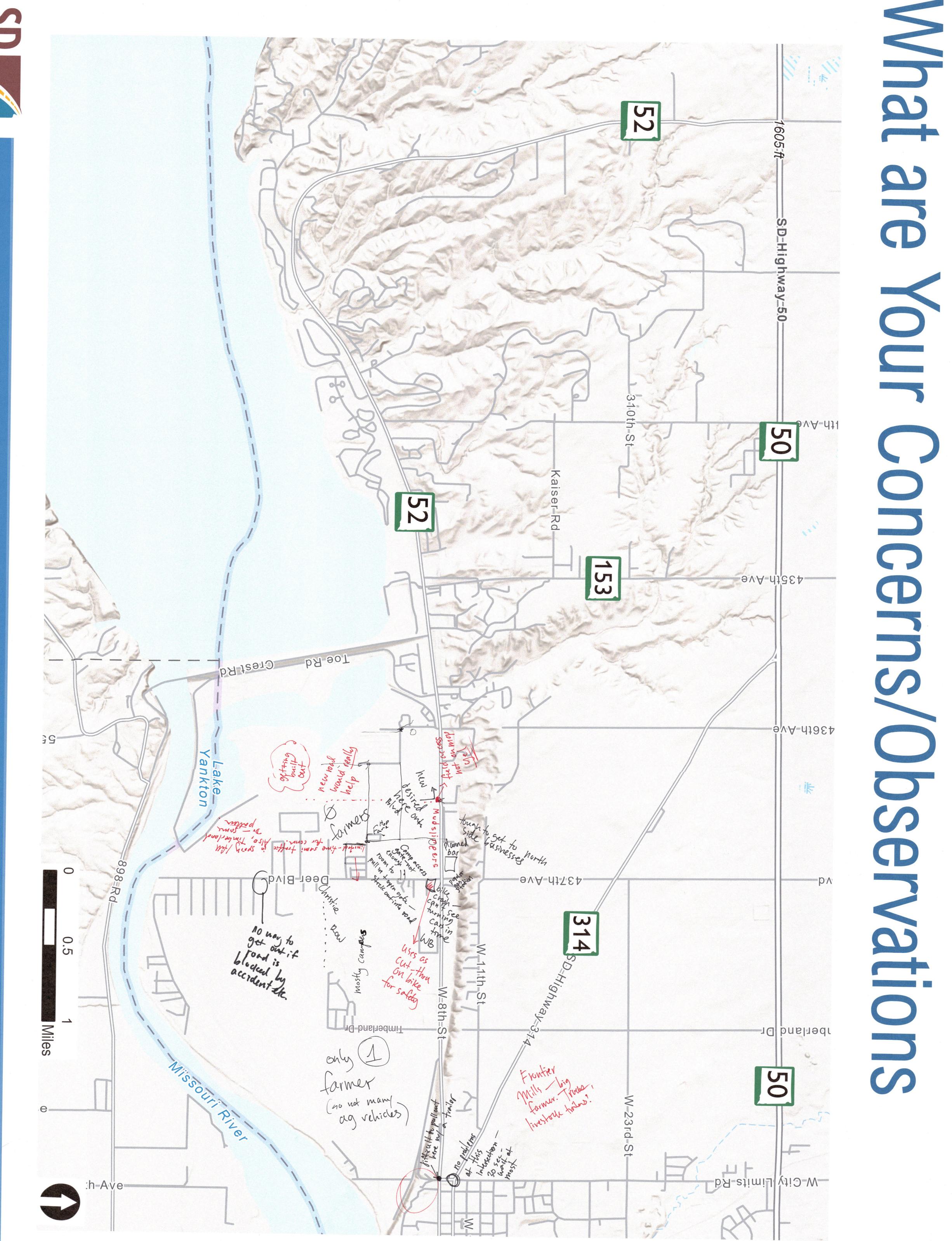
Western Yankton County
Transportation Study

#### **Public Meeting Comments**

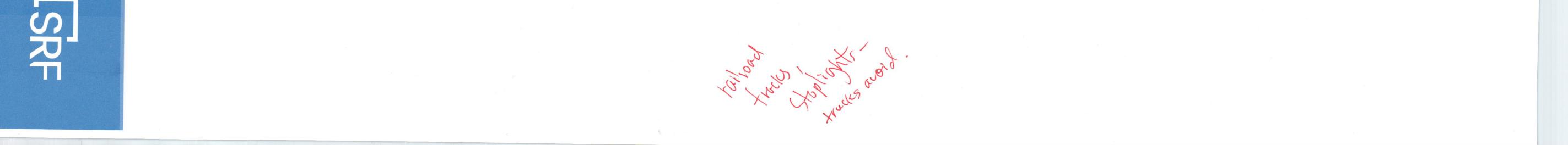
#### December 1, 2022

Please record your comments, questions or thoughts regarding the information presented and/or discussed at the public meeting. Please return your completed form to sign-in table or to one of the consultant staff.

You may also send your comments in an email to BTroe@SRFConsulting.com


Please provide your name and email address in the space provided below.

| Cam McAllister fireandicesdegmail.com                                                                  |
|--------------------------------------------------------------------------------------------------------|
| Name Email Address City State                                                                          |
| Yankfon SD                                                                                             |
| Comments, Needs & Concerns                                                                             |
| OWN THE PROPERTY ON N.W. CORNER OF                                                                     |
| 52 + DEEF BLUD. FIRE AND ICE - GINFRAL STORE                                                           |
| Customers have difficulty turning left (east)<br>on 52 when leaving store.                             |
| Desperate need for traffic light at intersection<br>WITH A NORTH - SOUTH Pedestrian crossing<br>LIGHT. |
| WE HAVE CAMERAS ON SIGN Showing intersection.                                                          |
| CAM - 605-760-4546 Fire and Ice                                                                        |
| THANK YOU for your consideration.                                                                      |
| 3804 W 8TH ST.                                                                                         |
|                                                                                                        |
| > Continue on the back or attach additional sheets                                                     |










# S



#### Summary of Q&A and Open Discussion Comments

During and after the presentation, attendees shared their questions and comments as follows:

- There is some pedestrian traffic in the study area roadways, but not as much as there would be within the recreational area. There are a small number of bicycle commuters.
- Most bikes stay on the south side of SD 52. One local business owner rides his bicycle between the lake and the City of Yankton.
- There is an ice cream shop on the north side of SD 52; tourists complain they can't cross easily on foot to reach this/other destinations. Similarly, people using the private campgrounds would like to be able to cross SD 52 by bike.
- Agricultural vehicles and large trucks came up repeatedly as having specific problems/needs. Two to three meeting attendees are farmers. One commented that finding a gap in traffic to turn onto SD 52 is more difficult with a trailer.
- Trucks have a turning radius problem at the intersection of 8<sup>th</sup> and West City Limit. SDDOT is aware of the problem and a widening project is underway.
- The subject of a summer-only signal at Deer Boulevard and SD 52 came up.
  - Steve Gramm responded that there are a few of those in Sturgis. The poles are up yearround, but the signals are only there for 3 weeks out of the year.
  - The concern in Yankton would be making sure locals know. There would need to be a media blitz every year for the first few years until people get used to it.
  - It would likely continue to be a surprise for visitors, as it is rare for rural areas to have stoplights.
- One attendee commented that the situation here is unique in South Dakota. The area is rural most of the year, but in summer the tourist presence turns it into a small city.
- There is difficulty in turning left from SD 52 onto Deer Boulevard. There can be queues 10 vehicles deep in the turn lane in summer.
- Frontage access roads came up repeatedly as a proposed solution.
- A local property owner noted that he was planning to build a general store/bar/restaurant on the northwest corner of Deer Boulevard and SD 52. It will have parking for 200 cars. He left his contact information for a follow-up conversation.
- One attendee asked about the possibility of a pedestrian overpass.

From: Tom's Electric <<u>te6532@gmail.com</u>> Sent: Friday, December 2, 2022 6:23 PM To: Bill Troe <<u>BTroe@srfconsulting.com</u>> Subject: Western Yankton County Transportation Study

Thank you for opening this study up for public input. Your presentation was complete and informational.

My husband and I live in the Marina Dell Avenue area just off of Highway 153. We've lived there for 26 years. We also own a business on Deer Boulevard NORTH of Highway 52; that business has been in operation since 2003. So, we know this target area very well.

Here are some things to consider:

One of our concerns is the West City Limits/Highway 52 intersection. As we drive east on Highway 52 to Yankton, the right MERGE lane has been very dangerous because people fail to merge until the last minute. We have witnessed many near misses at this place. If the left turn lane could start farther west coming into that intersection from the west, it would ease the bottleneck there. Many locals are moving into the median before the merge on the right to prevent collision or bottleneck. There is a lot of truck traffic at that intersection and that really slows the traffic flow. Maybe a traffic signal would be beneficial there. The intersection is in the city limits and it would slow the speeding traffic to/from the lake area. If you examine the curbs there, you'll see how trucks jump the curbs.

Another thing to think about is the large amount of ATV traffic from May-October. Many of these motorists fail to follow traffic rules and drive anywhere they want. The north frontage road on Highway 52 (running along campgrounds, Shell, Meat Locker, Yankton Motorsports) is a high-speed thoroughfare during these months. We've personally had trespassing and vandalism due to these drivers at our business on Deer Boulevard.

Again, thank you for requesting public input. We look forward to the spring meeting. Feel free to contact us if you have questions.

Beth and Tom Kaltsulas 188 Marina Dell Avenue Yankton, SD

Tom's Electric 3800 South View Road 809 Deer Boulevard Yankton, SD

--

Beth Kaltsulas Tom's Electric Yankton, SD 57078

#### West Yankton County Subarea Transportation Plan Public Meeting 2 Summary

September 6, 2023

South Dakota Department of Transportation and Yankton County

Prepared by:



SRF No.16002.00

#### **Newspaper Ads**

and Verlinda's Uratts. They enjoyed craft shows making new friends with other vendors. A favorite activity was bus tours usually with Alfred and Leona Schaeffer. Many trips were taken visiting their daughters and families always bringing along a bag of candy. They loved playing games Calvin and Verlinda spent their final years at MOCC. She ties including playing piano for events. Following a long illness, Verlinda entered into the presence of her Lord and Savior on Friday, August 11, 2023. She is very loved by Verlinda is survived by her daughters, Di (Scott) Keller, LaVon Herrboldt, and Cindy dren; her sister, Leona Schaeffer and sister-in-law, Ruth Roesler; along with a host of She was preceded in death Calvin; her brothers, Wilfred son-in-law, became involved with activiher family and will be greatly (Ted) Boese; 14 grandchildren and 18 great-grandchilby her parents, Reinhold and Anna Schempp; her husband, and Vernon; a sister, Gerwith their grandchildren. PSAHL-KOSTEL FUNBAL HOME & CREMATORYAL nieces and nephews. trude; and her Bruce Herrboldt. ry minute someone missed nan, Cal-Rempne eye of ning his d to her fixing e Menno irm near of three hl-Kostel l Onsite dolences N.opsahl-/erlinda's hristmas 1932, on in, SD to a (Mehlattended school 4, 1951. lvin was country y moved til Calvin at which his disthey be-LaVon, da loved eir dressn how to -ge of arome.com. /rememid at htt-1 ï

es the world behind,

wait in line, make moments Don't put off anything. ke small things big. are all in "the line" ke someone smile.

NOTICE OF PUBLIC INFORMATION MEETING SOUTH DAKOTA DEPARTMENT OF TRANSPORTATION

## West Yankton County Transportation Plan Study

Location: NFAA Easton Yankton Archery Center Time: 5:30 PM to 7:00 PM Date: September 6, 2023 Yankton, SD 57078 800 Archery Lane

West City Limits Road on the east, the Missouri River on the with Yankton County will hold the second of two rounds of The South Dakota Department of Transportation (SDDOT) transportation plan area is bounded by SD 50 on the north, Yankton County Transportation Plan Study. The subarea public meetings to discuss and receive input on the West south and SD 52 on the west.

following. The presentation will be broadcast live and a link to The open house style public meeting will begin with a discussion with county, SDDOT and consultant staff the broadcast will be on the Yankton County website. presentation shortly after 5:30 PM, with one-on-one

submit questions or comments about the project by email to During and after the broadcast, members of the public may btroe@srfconsulting.com or by calling 402-513-2158 and providing verbal comments.

information on the study recommendations and meeting The county website (www.co.yankton.sd.us) will have displays one week before the public meeting. The live and recorded meeting presentation will be accessible Questions and comments sent during the meeting will be through the county website (www.co.yankton.sd.us) addressed during the live broadcast.

Notice is further given to individuals with disabilities that this should submit a request to the department's ADA Coordinator meeting is being held in a physically accessible place. Any individuals with disabilities who will require a reasonable accommodation in order to participate in the public meeting at 605-773-3540 or 1-800-877-1113 (Telecommunication Relay Services for the Deaf). Please request the

accommodations no later than 2 business days prior to the meeting in order to ensure accommodations are available.

ithout knowing it.

For further information regarding this project, contact Steve Gramm, Planning Squad Leader at 605-773-3281 / email at steve.gramm@state.sd.us or Bill Troe at 402-513-2158 / email at btroe@srfconsulting.com.

Notice published twice at the total approximate cost of \$280.00.

"I love you" often.

ell the poverty orms. He often all he and his nad for spendies. Finding a rs pop bottle e-cents. Coaxo more would

Don's world came crashing down one cold December day in 2000 when he came down

license in September of 1961

sion. After two admissions to Human Service Center and one to Avera Hospital in Sioux

Falls, and thanks to the help of wonderful doctors, nurses, and staff, he began to get better. He remembered Jesus's word in scripture: "Ask and ye shall receive" when he spent

with severe clinical depres-

great part of he inherited ar and older nce. He took from Sister Marty College ork for wedirals. He also ed Heart and oir for many Vi Ranney's

every waking moment pleading for help. His prayer was

answered some five years

later when he experienced

the depression leaving his body up over his head while

> nment by his r, Joe, when ofessional piassion when would teach for free! Afours of dual ally, passed

ever!

Father Marbach's, house. The

"black monster" was gone for-

washing dishes at his brother,

For fun, Don enjoyed bow hunting in his younger days with four buddies Don Musil,

#### ause

Monday, August 21, 2023 at Avera Sacred pattle with cancer.

iday, September 8 at Wintz & Ray Funeral ds two hours prior to the service from 4-6 nily burial will be in the Garden of Memo-

15, 1956. He grew up in Winfred, SD and He then moved to Yankton where he met ed in marriage in Luverne, MN at St. Cathoney Company with his brother, Gordon, o sons, Tom and Greg. He enjoyed visiting Keith's grandchildren were his greatest ig with them and telling them stories. ation in Fordyce, NE visiting and playing d always willing to lend a helping hand. 'ankton; his three children: Tom (Sheri)

ise visit www.wintzrayfuneralhome.com.

ton, and Melissa (Jordan) Cornay of Elknd Jax Gause, Kate and Kyle Cornay, and

NOTICE OF PUBLIC INFORMATION MEETING

his written exam and flight test and received his pilot's

## West Yankton County Transportation Plan Study

Date: September 6, 2023 Time: 5:30 PM to 7:00 PM Location: NFAA Easton Yankton Archery Center 800 Archery Lane Yankton, SD 57078 The South Dakota Department of Transportation (SDDOT) with Yankton County will hold the second of two rounds of public meetings to discuss and receive input on the West Yankton County Transportation Plan Study. The subarca transportation plan area is bounded by SD 50 on the north, West City Limits Road on the east, the Missouri River on the south and SD 52 on the west.

The open house style public meeting will begin with a presentation shortly after 5:30 PM, with one-on-one discussion with county, SDDOT and consultant staff following. The presentation will be broadcast live and a link to the broadcast will be on the Yankton County website.

During and after the broadcast, members of the public may submit questions or comments about the project by email to btroe@srfconsulting.com or by calling 402-513-2158 and providing verbal comments.

The county website (www.co.yankton.sd.us) will have information on the study recommendations and meeting displays one week before the public meeting. The live and recorded meeting presentation will be accessible through the county website (www.co.yankton.sd.us). Questions and comments sent during the meeting will be addressed during the live broadcast. Notice is further given to individuals with disabilities that this meeting is being held in a physically accessible place. Any individuals with disabilities who will require a reasonable accommodation in order to participate in the public meeting should submit a request to the department's ADA Coordinator at 605-773-3540 or 1-800-877-1113 (Telecommunication Relay Services for the Deaf). Please request the accommodations **no later than 2 business days prior** to the meeting in order to ensure accommodations are available.

For further information regarding this project, contact Steve Gramm, Planning Squad Leader at 605-773-3281 / email at steve.gramm@state.sd.us or Bill Troe at 402-513-2158 / email at btroe@srfconsulting.com.

Notice published twice at the total approximate cost of \$280.00.

#### **Press Release**



CONTACTS

Q SEARCH

## PUBLIC MEETING OPEN HOUSE SCHEDULED FOR WEST YANKTON COUNTY MASTER TRANSPORTATION PLAN STUDY

For Immediate Release: Friday, Sept. 1, 2023

Contact: Steve Gramm, Planning Squad Leader, 605-773-3281

YANKTON, S.D. - The South Dakota Department of Transportation (SDDOT), in collaboration with Yankton County, will hold a public meeting open house on Wednesday, Sept, 6, 2023, to gather public input on the recommendations of the West Yankton County Master Transportation Plan. This public meeting open house will be held at the NFAA Easton Yankton Archery Center located at 800 Archery Ln. in Yankton. The public meeting open house will be held from 5:30 to 7 p.m.

The West Yankton County Master Transportation Plan study will address a full range of transportation options and issues, including pedestrian, bicycle, transit, freight, and automobile, within the area of Yankton County west of the City of Yankton and south of S.D. Highway 50. The purpose for the public meeting open house is to inform the public of the study's recommendations and to record any concerns or questions the public may have about those recommendations.

For those who cannot attend the public meeting in person but wish to participate, the public meeting will be available online at <a href="https://srfconsulting.zoom.us/j/93183013662?">https://srfconsulting.zoom.us/j/93183013662?</a> pwd=Mmpjd2k1VDhmbUNvcG90bzhISWJSZz09. The presentation will begin shortly after 5:30 and will be broadcast live on the Yankton County website.

For those who cannot attend the public meeting or desire additional information on the study, information will be made available online after the meeting on the Yankton County website (<u>https://www.co.yankton.sd.us</u>).

The opportunity to present written comments will be provided at the meeting or online. Written comments will be accepted through Monday, Sept. 18, 2023.

Notice is further given to individuals with disabilities that this open house is being held in a physically accessible place. Any individuals with disabilities who will require a reasonable accommodation in order to participate in the open house should submit a request to the department's ADA Coordinator at 605-773-3540 or 1-800-877-1113 (Telecommunication Relay Services for the Deaf). Please request the accommodations no later than 2 business days prior to the meeting in order to ensure accommodations are available.

For more information, contact Steve Gramm, Planning Squad Leader, at (605) 773-3281 or by email at steve.gramm@state.sd.us.

#### About SDDOT:

The mission of the South Dakota Department of Transportation is to efficiently provide a safe and effective public transportation system.

For the latest on road and weather conditions, road closures, construction work zones, commercial vehicle restrictions, and traffic incidents, please visit <a href="https://sd511.org">https://sd511.org</a> or dial 511.

Read more about the innovative work of the SDDOT at https://dot.sd.gov.

#### Sign In Sheets

#### DATE: SEPTEMBER 6, 2023 **PUBLIC MEETING #2**

Email Updates PHONE (Yes Only) NAME ADDRESS EMAIL 700 E. Broadway Ave Steve Gramm Steve. gramm @state. Sd. us 605-773-3281 Yes Pierre 700 E. Broadway AVD rebucka. Halling for 2 @ State. Sd. WD 605-773-3268 Ves Keberka Walling Ford 709 E. Broadway Lie. Kultin Brethberd @ istate. 22, US Yes 605-7773-6011 Katsina Burckhard Piare, 57 57501 321 W. 3rd St Gary Vetter gary@co.yankton.sd.us 605-260-4445 Yankton, 50 570,8 43196 310 51 Xe S Verlene Kisnda Strade TS & Anni Com 105-165-9245 15 2300 Western Ave Yarkton SD Yes Samuel Humel 605-660-8476 Samhummed 71 @gmail.com NO ora Van, Olsan core vanolson agmail, com 605-655-4426 801 maplest. LIKE WELSH NO 7122024488 114 QUARRY PINES DR MUELSHIJO D GMAIL. COM 510 Chalkstone hd, 4Kt Van Derhale , vanderhule Qusq. net 605 665 2532 Zique 437 Ave utica L)an Klinigch 605-611-1254 Janko W. yenklen 50. VS Mille Spellacek mikes & co-yandtorn sol, us 3302 W. City Limits Rel Youldon 605-260-4473 402-675-7200 X DENNIS MALX 1501 RIVER ASPER ROAD XANKTON dmaly @OUTLOOK-COM Scott Bormann 104 5. Finotti Ave, Mission Hill, SD Scotty bormanne 4561@gmail.com 605-653-0913 Ken Carda KCarda Objetie tric 605-661-4025 POBOX 158 Tobor, SD SZUCI3 Kelly Lertz@ Yay Rton Net 605-661-0249 807 West St. # M Kelly Hertz

#### DATE: SEPTEMBER 6, 2023 **PUBLIC MEETING #2**

Ø

NAME **ADDRESS** EMAIL Kyan Heine 4200 Alphonse Kd Syan. m. heiling smail.com 2501 Dorian Dr Many Bauder Kubacedele Yakoo-com Greg Rothschad 1306 W 3lst St; Yonktu Creg. Kothschadlestate. sd.us Gade Vogt 143 Juka RD galejvogt@gmail.com Milei Auch julie. aucha sol legislature. gov Lesterville SA 2809 W City Fint RD John Marg und john m@margtrans.com CURTIS Obvier dahling@midconetwork.com 194 OAK HULLS DR YANKTON Chris Frick 44154 306 Mankon C frickeeketair.net Nonda Howey - Tox Far Douglar # lol Gankton whter Q hotmail con Cheri Loest Mithe Healy 1811 Cedar MEDIM THE VYN, MIDCONET 661-6661

YANKTON COUNTY SUBAREA TRANSPORTATION STUDY

Email Updates PHONE (Yes Only) 6057603033 1/ 605-660-0328 605-668-2929 402-750-6892 605-665-8659 ~ 605 660-3030 605-660-21EM 661-854 665-8032 665 4478

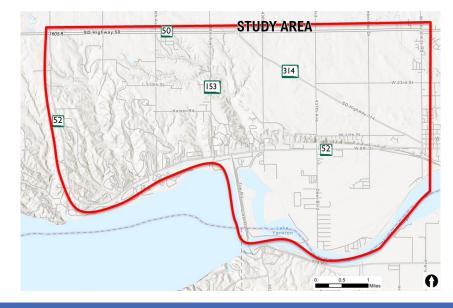
tare 2010

#### **Public Meeting Presentation**



#### Western Yankton County Subarea Study PUBLIC MEETING 2

SEPTEMBER 6, 2023




# Agenda

- 1. Welcome:
  - Introductions
  - Meeting is being Recorded/Broadcast
  - Please Sign In/Take a Comment Form
- 2. Purpose of the Second Public Meeting
- 3. Overview of the Study:
  - Location
  - Status of Work

#### 4. Proposed Network Improvements:

- Current Network Upgrades
- New Roadways
- 5. Open Discussion/Questions
- 6. Wrap-up





# Yankton County Subarea Study



CDE

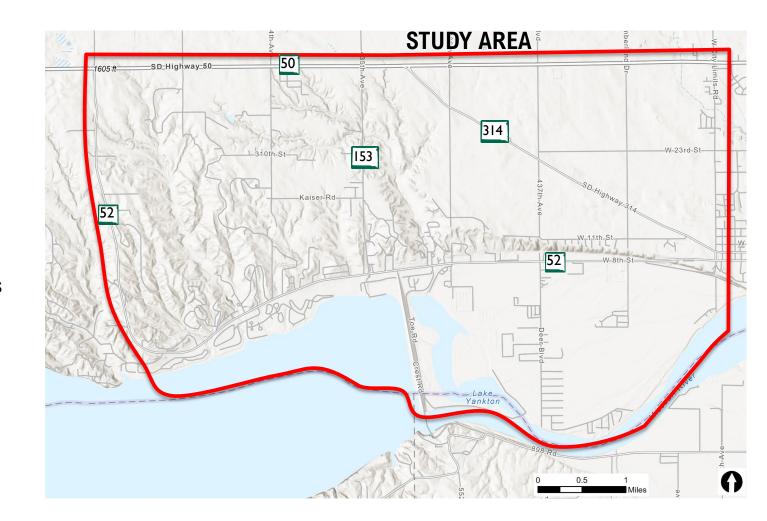
# Key Areas Evaluated to Understand Needs

**Traffic Operations** 



#### Evaluate Both Summer and School In-session Conditions

- Road Segments
- Today 2035 and 2050 •


#### Crashes



Access

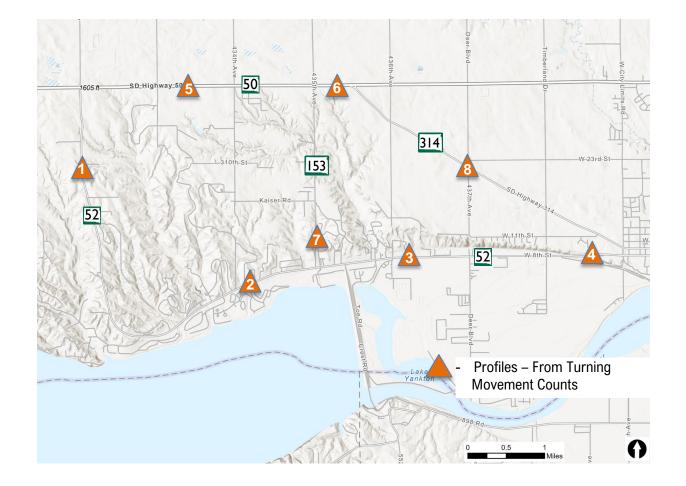


- Key Intersections
- Period from 2017 to 2022
- Rate at Intersections/ Segments
- Severity/Contributing Factors
- State highways
- Public and Private Access Points
- Compare to SDDOT Guidelines



#### SRF Yankton County Subarea Study






### **Traffic Data and Operations**

SEPTEMBER 6, 2023



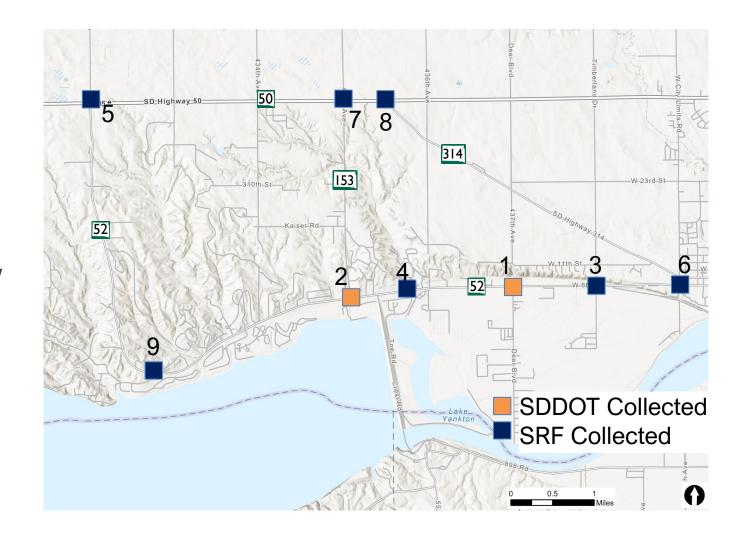
# **Route Segment Count Locations**



# Recap of Work

- Collected Traffic Data for Two Periods;
  - Summer/Peak Traffic (Including Weekends)
  - School in Session
- Road Segments
- Intersections




Yankton County Subarea Study

SPF

## **Intersection Count Locations Operations Summary**

# Recap of Work

- Operations in Summer Generally Worse than Other Months
- Deer Boulevard/SD52 Only Intersection of Concern:
  - Peak Period Operations below Threshold
  - Meets Signal Warrant



#### YANKTON COUNTY SUTTE GARGE



#### **Access Point Review**

SEPTEMBER 6, 2023



### **Access Locations – State Routes**





## **Access Point Assessment**

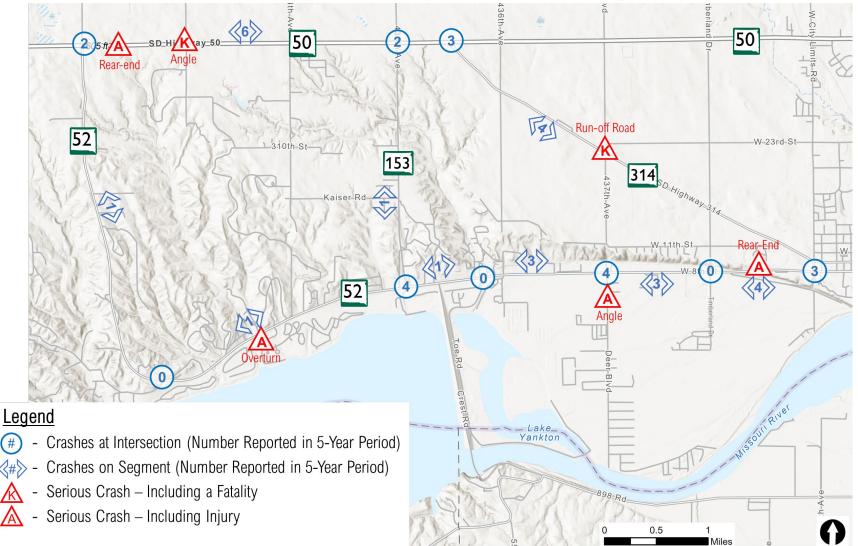
# Recap of Work

- Every Route in Study Area has MORE Access Points than Policy Supports
- Not seeing Crash Issues
- Not Recommending Action to Consolidate/Remove
- Going Forward Review All Development Proposals:
  - Apply/Review Access Guidelines-Conditions at Location



| Segment                                     | Side of<br>Roadway | Access<br>Points | Segment<br>Length<br>(miles) | Access<br>Density<br>(points/mile) |
|---------------------------------------------|--------------------|------------------|------------------------------|------------------------------------|
| 1 – SD 52: SD 50 to Gavin's Point Rd        | North              | 19               | 3.5                          | 6                                  |
| I - 3D 32. 3D 30 to davin's Point Ru        | South              | 18               | 5.5                          | 5                                  |
| 2 - SD 52: Gavin's Point Rd to SD 153       | North              | 20               | 2.6                          | 8                                  |
| 2 - 3D 52. Gavin's Point Ru to 3D 155       | South              | 4                | 2.0                          | 2                                  |
| 3 - SD 52: SD 153 to Deer Blvd              | North              | 29               | 1.9                          | 15                                 |
| 5 - 5D 52. 5D 155 to Deel Bivu              | South              | 5                | 1.9                          | 3                                  |
| 4 CD F2: Door Plud to Woot City Limits Dd   | North              | 16               | 2.0                          | 8                                  |
| 4 – SD 52: Deer Blvd to West City Limits Rd | South              | 14               | 2.0                          | 7                                  |
| 5 - SD 50: SD 52 to SD 153                  | North              | 14               | 3.0                          | 5                                  |
| 5 - 50 50. 50 52 (0 50 155                  | South              | 21               | 5.0                          | 7                                  |
| 6 - SD 50: SD 153 to SD 314                 | North              | 4                | 0.5                          | 8                                  |
| 6 - 5D 50. 5D 155 (0 5D 514                 | South              | 3                | 0.5                          | 6                                  |
| 7 CD 152: CD 52 to CD 50                    | East               | 15               | 2.4                          | 6                                  |
| 7 – SD 153: SD 52 to SD 50                  | West               | 16               | 2.4                          | 7                                  |
|                                             | North              | 37               | 4.0                          | 9                                  |
| 8 – SD 314: SD 50 to West City Limits Rd    | South              | 21               | 4.2                          | 5                                  |






#### **Crash Data Assessment**

SEPTEMBER 6, 2023



## Crashes by Location (2017-2022)



#### **Findings**

- No Intersections display elevated numbers/ rates
- No segments display elevated numbers/rates
- Injury crashes No pattern of location or type of crash



### **Mitigation – Recommended Actions**

SEPTEMBER 6, 2023



# Mitigation Toolbox

Traffic Operations



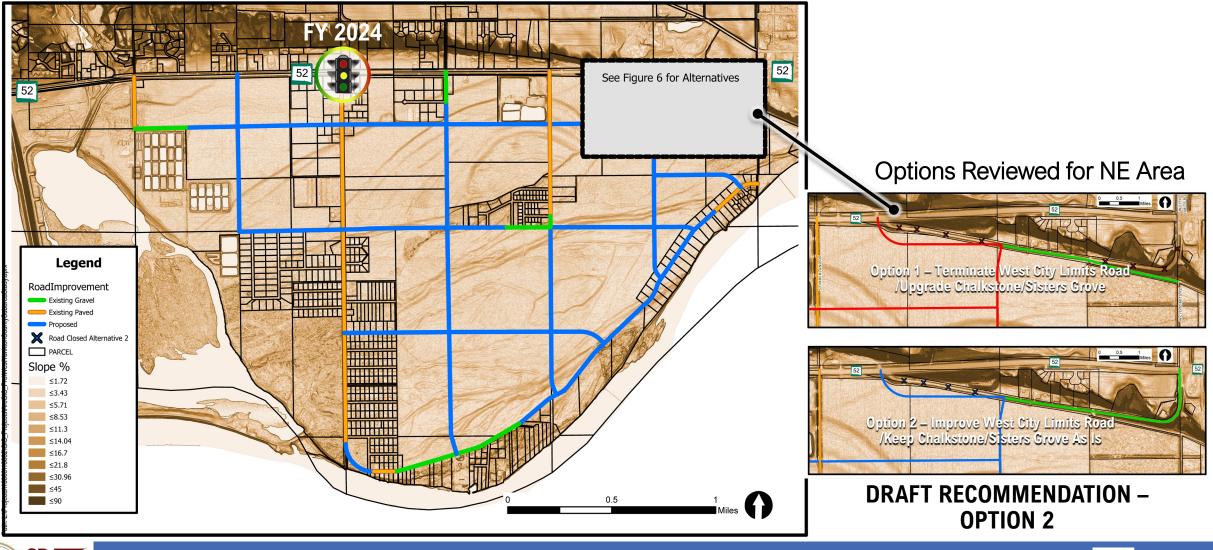
- Add Local Road Network
- Add Frontage/Backage Roads
- Add Turn Lanes
- Intersection Control:
- Four-way Stop
- Signalize
- Modify Access Locations



- Shoulder Improvements
- Modify Access Locations
- Enhanced Ped Xing
- Speed Reductions
- Add Rumble Strips
- Pavement Edge Treatment
- Design Changes:
  - Extend Sight Distance
  - Lengthen Curves
- Curve Delineators
- Modify Ditch Slopes
- Improve Lighting

Access Management

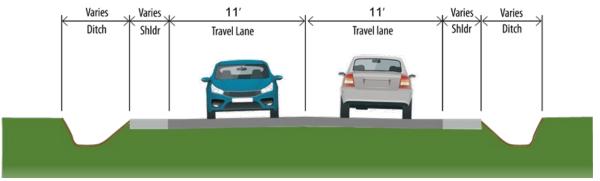



- Add Frontage/Backage Roads
- Relocate Access to Cross Route/ Frontage/Backage Road
- Consolidate Drives
- Reduce Drives
- Assess Median on SD 52 5-Lane Section



### Yankton County Subarea Study

13


### **Arterial/Collector Network**



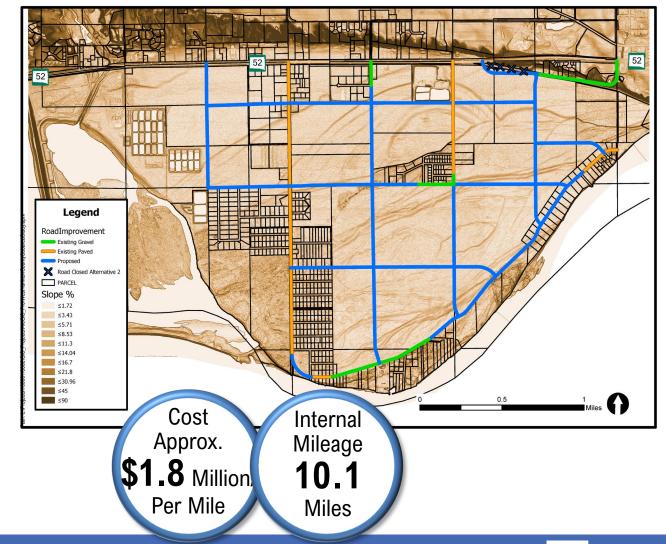


## Internal Framework Roads – Section/Lanes

- All Routes Assumed to be 2 Lanes No **INTERNAL NETWORK Turn Lanes**
- Section Representative of Deer Boulevard (But, No Multi-use Path):
  - Limited Direct Property Access
  - ±2 Foot Shoulder



#### **Anticipated Typical Section**




#### **Deer Boulevard**



# Arterial/Collector Improvement Timing/Cost Responsibility

- Timing:
  - Improvements are DEVELOPMENT
     DRIVEN No Development, No
     New/Improved Segments
- Cost Assumptions:
  - Construction:
    - Developer is Responsible
    - Establishing a Plan is Important So All Know Alignment and Lanes Concept
  - Maintenance Next Slide

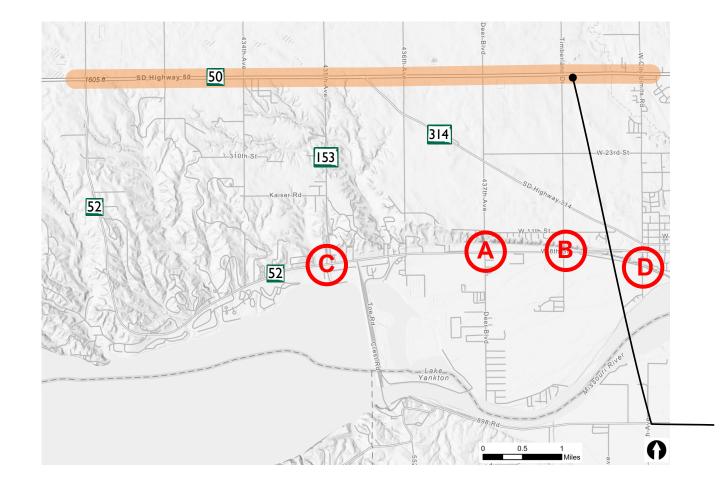




### Yankton County Subarea Study

CD

# Arterial/Collector Improvement - Maintenance


- Cost Assumptions:
  - Construction:
    - Developer is Responsible
    - Plan is Important So All Know Alignment and Lanes Concept
  - Maintenance:
    - Reviewed Options

Option

Option

- New/Improved become County Roads:
  - Requires Ordinance Change
  - Is this Feasible? Warranted?
- Create Road Improvement District(s):
  - Is a single district with phased rate and responsibility feasible?
    - How to establish benefit-cost responsibility?
  - If a series of districts:
    - Boundaries?
    - Triggers?
    - District inter-dependencies?
  - How to establish benefit-cost responsibility?

## Intersection/Segment Operations Mitigation



- A: Deer Blvd
  - Add signal provides mitigation
  - Meets warrants in SUMMER Not in other times
  - Install in FY 2024
- B: Timberland Dr
  - Add NB right turn lane
  - Meets warrants in SUMMER in 2050 Not other times
  - Internal framework streets can re-distribute traffic
- C: SD52 / SD153
  - No action proposed at this time
- D: SD52/West City Limits:
  - Signalize
  - Meets warrants by 2050
- E: SD50 from SD52 to West City Limits Road:
- Add Lanes Turn lanes or through lane?
- Determined in Future by SDDOT



# Wrap Up

- Open Discussion Anyone Have Questions?
- Finalizing the Study

Bill Troe, Principal Project Manager 402-513-2158 <u>btroe@srfconsulting.com</u>

Brent Clark, PE Traffic Studies Lead 763-267-6618 bclark@srfconsulting.com Eavan Moore Planner 402-513-2157 <u>ecmoore@srfconsulting.com</u>

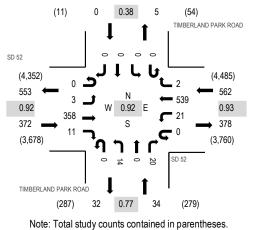


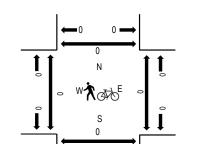
Yankton County Subarea Study

CD



### THANKS FOR ATTENDING! PLEASE SIGN IN IF YOU DID NOT EARLIER


SEPTEMBER 6, 2023






Location: 1 TIMBERLAND PARK ROAD & SD 52 AM Date: Friday, July 29, 2022 Peak Hour: 04:30 PM - 05:30 PM Peak 15-Minutes: 04:30 PM - 04:45 PM

#### **Peak Hour - All Vehicles**



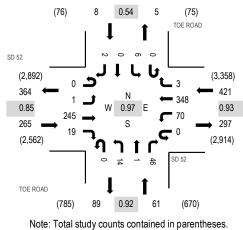


0

0

Peak Hour - Pedestrians/Bicycles on Crosswalk

#### Traffic Counts


|                        |        | SD            |     |       |        | SD 5  |                    | TIMBE  |                |   | ROAD  | TIMBE  |                |   | ROAD  |       |                 | _           |   |                    |   |
|------------------------|--------|---------------|-----|-------|--------|-------|--------------------|--------|----------------|---|-------|--------|----------------|---|-------|-------|-----------------|-------------|---|--------------------|---|
| Interval<br>Start Time | U-Turn | Eastb<br>Left |     | Right | U-Turn | Westb | ound<br>Thru Right | U-Turn | Northk<br>Left |   | Diaht | U-Turn | South!<br>Left |   | Right | Total | Rolling<br>Hour | Pec<br>West |   | n Crossir<br>South | - |
| 7:00 AM                | 0-1011 | 0             | 46  | 0     | 0-1011 | 1     | 20 (               |        | 1              | 0 |       | 0-1011 | 0              | 0 | 0     | 73    | 394             | 0           | 0 | 0                  | 0 |
| 7:15 AM                | 0      | 0             | 40  | 0     | 0      | 1     | 21 (               |        | 0              | 0 | 4     | 0      | 0              | 0 | 0     | 66    | 440             | 0           | 0 | 0                  | 0 |
| 7:30 AM                | 0      | 1             | 80  | 0     | 0      | 2     | 24 (               |        | 0              | 0 |       | 0      | 0              | 0 | 0     | 110   | 465             | 0           | 0 | 0                  | 0 |
| 7:45 AM                | 0      | 0             | 100 | 2     | 1      | 2     | 34 (               |        | 2              | 0 |       | 0      | 0              | 0 | 0     | 145   | 495             | 0           | 0 | 0                  | 0 |
| 8:00 AM                | 0      | 0             | 66  | 2     | 0      | 3     | 40 (               |        | 3              | 0 |       | 0      | 1              | 0 | 0     | 119   | 471             | 0           | 0 | 0                  | 0 |
| 8:15 AM                | 0      | 1             | 52  | - 1   | 0      | 1     | 27                 |        | 0              | 0 |       | 0      | 2              | 0 | 0     | 91    | 477             | 0           | 0 | 0                  | 0 |
| 8:30 AM                | 0      | 0             | 80  | 0     | 0      | 1     | 56 (               |        | 1              | 0 |       | 0      | 0              | 0 | 0     | 140   | 521             | 0           | 0 | 0                  | 0 |
| 8:45 AM                | 0      | 0             | 50  | 2     | 0      | 4     | 57 (               |        | 3              | 0 |       | 0      | 0              | 0 | 0     | 121   | 506             | 0           | 0 | 0                  | 0 |
| 9:00 AM                | 0      | 0             | 72  | 1     | 0      | 1     | 48 (               |        | 0              | 0 |       | 0      | 0              | 0 | 0     | 125   | 520             | 0           | 0 | 1                  | 0 |
| 9:15 AM                | 0      | 1             | 63  | 1     | 0      | 5     | 58 (               |        | 3              | 0 |       | 0      | 0              | 0 | 0     | 135   | 551             | 0           | 0 | 0                  | 0 |
| 9:30 AM                | 0      | 0             | 71  | 0     | 0      | 5     | 44 (               |        | 4              | 0 | 1     | 0      | 0              | 0 | 0     | 125   | 576             | 0           | 0 | 0                  | 0 |
| 9:45 AM                | 0      | 0             | 66  | 0     | 0      | 4     | 60                 | 0      | 1              | 0 | 3     | 0      | 0              | 0 | 0     | 135   | 623             | 0           | 0 | 0                  | 0 |
| 10:00 AM               | 0      | 0             | 75  | 2     | 0      | 4     | 67 (               | ) 0    | 4              | 0 |       | 0      | 0              | 0 | 0     | 156   | 665             | 0           | 0 | 0                  | 0 |
| 10:15 AM               | 1      | 0             | 70  | 0     | 0      | 4     | 75 <i>ŕ</i>        | 0      | 3              | 0 | 5     | 0      | 0              | 1 | 0     | 160   | 680             | 0           | 0 | 0                  | 0 |
| 10:30 AM               | 0      | 0             | 88  | 3     | 0      | 6     | 66 (               | ) 0    | 4              | 0 | 5     | 0      | 0              | 0 | 0     | 172   | 683             | 0           | 0 | 0                  | 0 |
| 10:45 AM               | 0      | 0             | 83  | 1     | 0      | 5     | 76 (               | ) 0    | 6              | 0 | 6     | 0      | 0              | 0 | 0     | 177   | 684             | 0           | 0 | 0                  | 0 |
| 11:00 AM               | 0      | 0             | 75  | 1     | 0      | 4     | 88 (               | ) 0    | 2              | 0 | 0     | 0      | 1              | 0 | 0     | 171   | 695             | 0           | 0 | 0                  | 0 |
| 11:15 AM               | 0      | 0             | 67  | 1     | 0      | 4     | 89 (               | ) 0    | 0              | 0 | 2     | 0      | 0              | 0 | 0     | 163   | 733             | 0           | 0 | 0                  | 0 |
| 11:30 AM               | 0      | 0             | 77  | 1     | 0      | 3     | 82 2               | 2 0    | 5              | 0 | 3     | 0      | 0              | 0 | 0     | 173   | 755             | 0           | 0 | 0                  | 0 |
| 11:45 AM               | 0      | 0             | 94  | 3     | 0      | 4     | 82                 | 0      | 0              | 0 | 4     | 0      | 0              | 0 | 0     | 188   | 768             | 0           | 0 | 0                  | 0 |
| 12:00 PM               | 0      | 0             | 82  | 1     | 0      | 2     | 118 2              | 2 0    | 0              | 0 | 4     | 0      | 0              | 0 | 0     | 209   | 789             | 0           | 0 | 0                  | 0 |
| 12:15 PM               | 0      | 1             | 96  | 1     | 0      | 4     | 76 (               | ) 0    | 3              | 0 | 4     | 0      | 0              | 0 | 0     | 185   | 763             | 0           | 0 | 0                  | 0 |
| 12:30 PM               | 0      | 2             | 71  | 6     | 0      | 7     | 94 (               | ) 0    | 2              | 0 | 3     | 0      | 0              | 0 | 1     | 186   | 748             | 0           | 0 | 0                  | 0 |
| 12:45 PM               | 0      | 1             | 99  | 4     | 0      | 6     | 86 (               | ) 0    | 2              | 0 | 11    | 0      | 0              | 0 | 0     | 209   | 732             | 0           | 0 | 0                  | 0 |
| 1:00 PM                | 0      | 1             | 67  | 2     | 0      | 2     | 102 ^              | 0      | 3              | 0 | 5     | 0      | 0              | 0 | 0     | 183   | 679             | 0           | 0 | 0                  | 0 |
| 1:15 PM                | 0      | 0             | 67  | 3     | 0      | 5     | 91 <i>*</i>        | I 0    | 2              | 0 | 1     | 0      | 0              | 0 | 0     | 170   | 677             | 0           | 0 | 0                  | 0 |
| 1:30 PM                | 0      | 1             | 61  | 2     | 0      | 4     | 94 2               | 2 0    | 1              | 0 | 5     | 0      | 0              | 0 | 0     | 170   | 707             | 0           | 0 | 0                  | 0 |
| 1:45 PM                | 0      | 0             | 58  | 1     | 0      | 5     | 86 (               | ) 0    | 0              | 0 | 6     | 0      | 0              | 0 | 0     | 156   | 726             | 0           | 0 | 0                  | 0 |
| 2:00 PM                | 0      | 0             | 75  | 0     | 0      | 1     | 98                 | I 0    | 3              | 0 | 3     | 0      | 0              | 0 | 0     | 181   | 740             | 0           | 0 | 0                  | 0 |
| 2:15 PM                | 0      | 0             | 77  | 3     | 0      | 6     | 108 (              | ) 0    | 3              | 0 | 3     | 0      | 0              | 0 | 0     | 200   | 758             | 0           | 0 | 0                  | 0 |
| 2:30 PM                | 0      | 0             | 72  | 2     | 0      | 4     | 109 ^              | I 0    | 0              | 0 | 1     | 0      | 0              | 0 | 0     | 189   | 745             | 0           | 0 | 0                  | 0 |
| 2:45 PM                | 0      | 0             | 62  | 4     | 0      | 6     | 93                 | I 0    | 1              | 0 | 3     | 0      | 0              | 0 | 0     | 170   | 791             | 0           | 0 | 0                  | 0 |
| 3:00 PM                | 0      | 0             | 67  | 1     | 0      | 6     | 121 (              | ) 0    | 2              | 0 | 1     | 0      | 0              | 0 | 1     | 199   | 815             | 0           | 0 | 0                  | 0 |
| 3:15 PM                | 0      | 0             | 87  | 1     | 0      | 2     | 91 (               | ) 0    | 4              | 0 | 2     | 0      | 0              | 0 | 0     | 187   | 840             | 0           | 0 | 0                  | 0 |
| 3:30 PM                | 0      | 0             | 86  | 3     | 0      | 6     | 138 (              | ) 0    | 0              | 0 | 2     | 0      | 0              | 0 | 0     | 235   | 859             | 0           | 0 | 0                  | 0 |

|             | • |    | ~~    |    |   |     |       |    |   |     | ~ |     | • | • | • |   | 10.1  | ~~- | ~ | ~ |   |   |
|-------------|---|----|-------|----|---|-----|-------|----|---|-----|---|-----|---|---|---|---|-------|-----|---|---|---|---|
| 3:45 PM     | 0 | 1  | 66    | 2  | 0 | 4   | 114   | 0  | 0 | 3   | 0 | 4   | 0 | 0 | 0 | 0 | 194   | 887 | 0 | 0 | 0 | 0 |
| 4:00 PM     | 0 | 0  | 72    | 4  | 0 | 5   | 132   | 3  | 0 | 4   | 0 | 4   | 0 | 0 | 0 | 0 | 224   | 918 | 0 | 0 | 0 | 0 |
| 4:15 PM     | 0 | 0  | 64    | 1  | 0 | 7   | 128   | 1  | 0 | 2   | 0 | 3   | 0 | 0 | 0 | 0 | 206   | 948 | 0 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 1  | 98    | 2  | 0 | 5   | 148   | 1  | 0 | 4   | 0 | 4   | 0 | 0 | 0 | 0 | 263   | 968 | 0 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 1  | 83    | 4  | 0 | 8   | 118   | 0  | 0 | 3   | 0 | 8   | 0 | 0 | 0 | 0 | 225   | 910 | 0 | 0 | 0 | C |
| 5:00 PM     | 0 | 0  | 91    | 3  | 0 | 4   | 149   | 1  | 0 | 3   | 0 | 3   | 0 | 0 | 0 | 0 | 254   | 904 | 0 | 0 | 0 | C |
| 5:15 PM     | 0 | 1  | 86    | 2  | 0 | 4   | 124   | 0  | 0 | 4   | 0 | 5   | 0 | 0 | 0 | 0 | 226   | 886 | 0 | 0 | 0 | C |
| 5:30 PM     | 0 | 1  | 64    | 2  | 0 | 6   | 126   | 2  | 0 | 0   | 0 | 3   | 0 | 1 | 0 | 0 | 205   | 878 | 0 | 0 | 0 | C |
| 5:45 PM     | 0 | 1  | 84    | 2  | 0 | 6   | 123   | 1  | 0 | 0   | 0 | 2   | 0 | 0 | 0 | 0 | 219   | 865 | 0 | 0 | 0 | ( |
| 6:00 PM     | 0 | 3  | 80    | 1  | 0 | 7   | 134   | 4  | 0 | 2   | 0 | 4   | 0 | 0 | 0 | 1 | 236   | 863 | 0 | 0 | 0 | ( |
| 6:15 PM     | 0 | 0  | 92    | 3  | 0 | 8   | 107   | 2  | 0 | 0   | 0 | 5   | 0 | 0 | 0 | 1 | 218   |     | 0 | 0 | 0 | ( |
| 6:30 PM     | 0 | 1  | 70    | 0  | 0 | 3   | 109   | 1  | 0 | 6   | 0 | 2   | 0 | 0 | 0 | 0 | 192   |     | 0 | 0 | 0 | ( |
| 6:45 PM     | 0 | 0  | 83    | 2  | 0 | 6   | 115   | 4  | 0 | 1   | 0 | 5   | 0 | 0 | 0 | 1 | 217   |     | 0 | 0 | 0 | ( |
| Count Total | 1 | 19 | 3,575 | 83 | 1 | 203 | 4,246 | 35 | 0 | 100 | 0 | 179 | 0 | 5 | 1 | 5 | 8,453 |     | 0 | 0 | 1 | ( |
| Peak Hour   | 0 | 3  | 358   | 11 | 0 | 21  | 539   | 2  | 0 | 14  | 0 | 20  | 0 | 0 | 0 | 0 | 968   |     | 0 | 0 | 0 | ( |

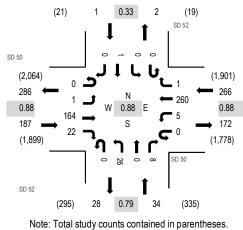


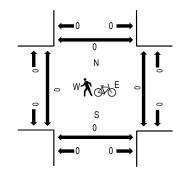
Location: 2 TOE ROAD & SD 52 AM Date: Friday, July 29, 2022 Peak Hour: 04:15 PM - 05:15 PM Peak 15-Minutes: 04:45 PM - 05:00 PM

#### **Peak Hour - All Vehicles**



Peak Hour - Pedestrians/Bicycles on Crosswalk


| Traffic Counts         |        |       |      |       |        |       |        |   |        |        |      |    |        |       |      |          |       |                 |      |   |           |   |
|------------------------|--------|-------|------|-------|--------|-------|--------|---|--------|--------|------|----|--------|-------|------|----------|-------|-----------------|------|---|-----------|---|
|                        |        | SD    |      |       |        | SD 5  |        |   |        | TOE R  |      |    |        | TOE F |      |          |       |                 |      |   |           |   |
| Interval<br>Start Time |        | Eastb |      |       |        | Westb |        |   |        | Northb |      |    |        | South |      | <b>D</b> |       | Rolling<br>Hour |      |   | n Crossir | - |
|                        | U-Turn | Left  | Thru | Right | U-Turn |       | Thru F |   | U-Turn | Left   | Thru | 0  | U-Turn | Left  | Thru | Right    | Total |                 | West |   | South     |   |
| 7:00 AM                | 0      | 1     | 37   | 0     | 0      | 3     | 17     | 0 | 0      | 1      | 0    | 4  | 0      | 0     | 0    | 1        | 64    | 264             | 0    | 0 | 0         | 0 |
| 7:15 AM                | 0      | 0     | 33   | 1     | 0      | 0     | 10     | 0 | 0      | 1      | 0    | 5  | 0      | 0     | 0    | 1        | 51    | 279             | 0    | 0 | 0         | 0 |
| 7:30 AM                | 0      | 0     | 45   | 0     | 0      | 5     | 11     | 0 | 0      | 2      | 0    | 3  | 0      | 1     | 0    | 1        | 68    | 295             |      | 0 | 0         | 0 |
| 7:45 AM                | 0      | 1     | 47   | 1     | 0      | 3     | 20     | 0 | 0      | 2      | 0    | 3  | 0      | 2     | 0    | 2        | 81    | 321             | 0    | 0 | 0         | 0 |
| 8:00 AM                | 0      | 0     | 45   | 1     | 0      | 4     | 18     | 0 | 0      | 5      | 0    | 5  | 0      | 0     | 0    | 1        | 79    | 327             | 0    | 0 | 0         | 0 |
| 8:15 AM                | 0      | 0     | 37   | 2     | 0      | 3     | 18     | 1 | 0      | 2      | 0    | 3  | 0      | 1     | 0    | 0        | 67    | 354             | 0    | 0 | 0         | 0 |
| 8:30 AM                | 0      | 1     | 39   | 1     | 0      | 14    | 33     | 0 | 0      | 0      | 0    | 5  | 0      | 0     | 0    | 1        | 94    | 383             | 0    | 0 | 0         | 0 |
| 8:45 AM                | 0      | 1     | 39   | 2     | 0      | 6     | 29     | 0 | 0      | 1      | 0    | 7  | 0      | 1     | 0    | 1        | 87    | 386             | 0    | 0 | 0         | 0 |
| 9:00 AM                | 0      | 1     | 42   | 9     | 0      | 9     | 36     | 0 | 0      | 1      | 0    | 6  | 0      | 1     | 0    | 1        | 106   | 394             | 1    | 1 | 0         | 0 |
| 9:15 AM                | 0      | 0     | 41   | 1     | 0      | 8     | 34     | 1 | 0      | 2      | 0    | 8  | 0      | 0     | 0    | 1        | 96    | 405             | 0    | 0 | 0         | 0 |
| 9:30 AM                | 0      | 0     | 39   | 1     | 0      | 4     | 36     | 1 | 0      | 3      | 0    | 11 | 0      | 1     | 0    | 1        | 97    | 442             | 0    | 0 | 0         | 0 |
| 9:45 AM                | 0      | 2     | 49   | 2     | 0      | 10    | 25     | 0 | 0      | 0      | 0    | 6  | 0      | 1     | 0    | 0        | 95    | 498             | 1    | 0 | 0         | 0 |
| 10:00 AM               | 0      | 0     | 42   | 3     | 0      | 9     | 51     | 0 | 0      | 1      | 0    | 10 | 0      | 0     | 0    | 1        | 117   | 537             | 0    | 1 | 0         | 0 |
| 10:15 AM               | 0      | 1     | 48   | 1     | 0      | 9     | 53     | 3 | 0      | 1      | 0    | 15 | 0      | 2     | 0    | 0        | 133   | 570             | 0    | 0 | 0         | 0 |
| 10:30 AM               | 0      | 2     | 62   | 2     | 0      | 10    | 57     | 2 | 0      | 1      | 0    | 13 | 0      | 2     | 0    | 2        | 153   | 569             | 0    | 0 | 0         | 0 |
| 10:45 AM               | 0      | 1     | 57   | 1     | 0      | 13    | 44     | 1 | 0      | 1      | 0    | 13 | 0      | 2     | 0    | 1        | 134   | 555             | 0    | 0 | 0         | 0 |
| 11:00 AM               | 0      | 0     | 54   | 1     | 0      | 13    | 66     | 1 | 0      | 2      | 0    | 13 | 0      | 0     | 0    | 0        | 150   | 576             | 0    | 0 | 0         | 0 |
| 11:15 AM               | 0      | 0     | 53   | 3     | 0      | 10    | 48     | 1 | 0      | 2      | 0    | 13 | 0      | 0     | 0    | 2        | 132   | 599             | 0    | 0 | 0         | 0 |
| 11:30 AM               | 0      | 1     | 48   | 3     | 0      | 11    | 57     | 3 | 0      | 4      | 0    | 9  | 0      | 3     | 0    | 0        | 139   | 634             | 0    | 0 | 0         | 0 |
| 11:45 AM               | 0      | 1     | 60   | 7     | 0      | 12    | 51     | 1 | 1      | 2      | 0    | 17 | 0      | 3     | 0    | 0        | 155   | 643             | 0    | 0 | 0         | 0 |
| 12:00 PM               | 0      | 0     | 55   | 4     | 0      | 14    | 76     | 3 | 0      | 1      | 0    | 18 | 0      | 2     | 0    | 0        | 173   | 661             | 0    | 0 | 0         | 0 |
| 12:15 PM               | 0      | 1     | 61   | 8     | 0      | 10    | 62     | 0 | 0      | 4      | 0    | 18 | 0      | 1     | 1    | 1        | 167   | 646             | 0    | 0 | 0         | 0 |
| 12:30 PM               | 0      | 0     | 45   | 4     | 0      | 12    | 66     | 0 | 0      | 7      | 0    | 13 | 0      | 1     | 0    | 0        | 148   | 610             | 0    | 0 | 0         | 0 |
| 12:45 PM               | 0      | 0     | 60   | 6     | 0      | 14    | 74     | 2 | 0      | 6      | 0    | 11 | 0      | 0     | 0    | 0        | 173   | 594             | 0    | 0 | 0         | 0 |
| 1:00 PM                | 1      | 0     | 52   | 2     | 0      | 15    | 70     | 2 | 1      | 3      | 0    | 12 | 0      | 0     | 0    | 0        | 158   | 569             | 0    | 0 | 0         | 0 |
| 1:15 PM                | 0      | 0     | 44   | 4     | 0      | 10    | 55     | 0 | 0      | 6      | 0    | 10 | 0      | 1     | 0    | 1        | 131   | 564             | 0    | 0 | 0         | 0 |
| 1:30 PM                | 0      | 0     | 29   | 6     | 0      | 20    | 53     | 2 | 0      | 5      | 0    | 15 | 0      | 2     | 0    | 0        | 132   | 552             | 0    | 0 | 0         | 0 |
| 1:45 PM                | 0      | 1     | 51   | 4     | 0      | 12    | 58     | 1 | 0      | 4      | 0    | 11 | 0      | 2     | 0    | 4        | 148   | 574             | 0    | 0 | 0         | 0 |
| 2:00 PM                | 0      | 0     | 49   | 5     | 0      | 10    | 65     | 1 | 0      | 3      | 0    | 17 | 0      | 1     | 1    | 1        | 153   | 585             | 0    | 0 | 0         | 0 |
| 2:15 PM                | 0      | 0     | 39   | 1     | 0      | 9     | 55     | 1 | 0      | 0      | 0    | 12 | 0      | 1     | 0    | 1        | 119   | 595             | 0    | 0 | 0         | 0 |
| 2:30 PM                | 0      | 1     | 39   | 5     | 0      | 17    | 73     | 1 | 0      | 4      | 1    | 13 | 0      | 0     | 0    | 0        | 154   | 640             | 0    | 0 | 0         | 0 |
| 2:45 PM                | 0      | 1     | 49   | 5     | 0      | 14    | 66     | 1 | 0      | 8      | 0    | 13 | 0      | 2     | 0    | 0        | 159   | 641             | 0    | 0 | 0         | 0 |
| 3:00 PM                | 0      | 1     | 46   | 5     | 0      | 18    | 78     | 0 | 0      | 2      | 0    | 13 | 0      | 0     | 0    | 0        | 163   | 636             | 0    | 0 | 0         | 0 |
| 3:15 PM                | 0      | 2     | 53   | 3     | 0      | 17    | 67     | 3 | 0      | 5      | 0    | 12 | 0      | 1     | 0    | 1        | 164   | 655             | 0    | 0 | 0         | 0 |
| 3:30 PM                | 0      | 0     | 42   | 3     | 0      | 17    | 78     | 1 | 0      | 3      | 0    | 10 | 0      | 1     | 0    | 0        | 155   | 680             | 0    | 0 | 0         | 0 |


| 3:45 PM       | 0 | 1  | 47    | 9   | 0 | 15  | 64    | 1  | 0 | 2   | 0 | 14  | 0 | 0  | 0 | 1  | 154   | 707 | 0 | 0 | 0 | 0 |
|---------------|---|----|-------|-----|---|-----|-------|----|---|-----|---|-----|---|----|---|----|-------|-----|---|---|---|---|
|               |   | 1  |       |     | - |     |       | 1  |   | 2   | 0 |     |   | -  |   |    |       |     |   |   |   |   |
| <br>4:00 PM   | 0 | 2  | 55    | 6   | 0 | 19  | 81    | 0  | 0 | 7   | 0 | 11  | 0 | 0  | 0 | 1  | 182   | 747 | 0 | 0 | 0 | 0 |
| 4:15 PM       | 0 | 1  | 60    | 3   | 0 | 21  | 86    | 1  | 0 | 4   | 0 | 11  | 0 | 1  | 0 | 1  | 189   | 755 | 0 | 0 | 0 | 0 |
| 4:30 PM       | 0 | 0  | 63    | 1   | 0 | 20  | 81    | 0  | 0 | 2   | 0 | 13  | 0 | 1  | 0 | 1  | 182   | 732 | 0 | 0 | 0 | 0 |
| 4:45 PM       | 0 | 0  | 52    | 7   | 0 | 14  | 98    | 1  | 0 | 7   | 0 | 13  | 0 | 2  | 0 | 0  | 194   | 705 | 0 | 0 | 0 | 0 |
| 5:00 PM       | 0 | 0  | 70    | 8   | 0 | 15  | 83    | 1  | 0 | 1   | 1 | 9   | 0 | 2  | 0 | 0  | 190   | 685 | 0 | 0 | 0 | 0 |
| 5:15 PM       | 0 | 0  | 47    | 4   | 0 | 24  | 80    | 1  | 0 | 6   | 0 | 4   | 0 | 0  | 0 | 0  | 166   | 667 | 0 | 0 | 0 | 0 |
| 5:30 PM       | 0 | 0  | 47    | 5   | 0 | 13  | 77    | 1  | 0 | 6   | 0 | 6   | 0 | 0  | 0 | 0  | 155   | 678 | 0 | 0 | 0 | 0 |
| 5:45 PM       | 0 | 0  | 68    | 8   | 0 | 13  | 71    | 2  | 0 | 4   | 0 | 7   | 0 | 1  | 0 | 0  | 174   | 680 | 0 | 0 | 0 | 0 |
| 6:00 PM       | 0 | 3  | 51    | 4   | 0 | 25  | 73    | 1  | 0 | 2   | 0 | 12  | 0 | 1  | 0 | 0  | 172   | 685 | 0 | 0 | 0 | 0 |
| 6:15 PM       | 0 | 0  | 61    | 3   | 0 | 16  | 75    | 2  | 0 | 2   | 0 | 18  | 0 | 0  | 0 | 0  | 177   |     | 0 | 0 | 0 | 0 |
| 6:30 PM       | 0 | 0  | 49    | 3   | 0 | 18  | 65    | 1  | 0 | 7   | 0 | 13  | 0 | 1  | 0 | 0  | 157   |     | 0 | 0 | 0 | 0 |
| 6:45 PM       | 0 | 0  | 58    | 7   | 0 | 28  | 62    | 1  | 0 | 10  | 0 | 13  | 0 | 0  | 0 | 0  | 179   |     | 0 | 0 | 0 | 0 |
| Count Total   | 1 | 27 | 2,359 | 175 | 0 | 606 | 2,706 | 46 | 2 | 155 | 2 | 511 | 0 | 44 | 2 | 30 | 6,666 |     | 2 | 2 | 0 | 0 |
| <br>Peak Hour | 0 | 1  | 245   | 19  | 0 | 70  | 348   | 3  | 0 | 14  | 1 | 46  | 0 | 6  | 0 | 2  | 755   |     | 0 | 0 | 0 | 0 |



Location: 3 SD 52 & SD 50 AM Date: Friday, July 29, 2022 Peak Hour: 04:45 PM - 05:45 PM Peak 15-Minutes: 05:00 PM - 05:15 PM

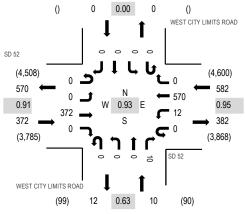
#### **Peak Hour - All Vehicles**

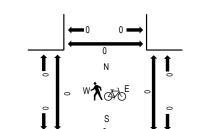




#### Traffic Counts

| Interval   |        | SD             | 50 |       |        |       |                    |        |                |   |            |        |                |   |            |       |                 |      |   |                  |   |
|------------|--------|----------------|----|-------|--------|-------|--------------------|--------|----------------|---|------------|--------|----------------|---|------------|-------|-----------------|------|---|------------------|---|
| Inton/ol   |        |                |    |       |        | SD 5  |                    |        | SD             |   |            |        | SD             |   |            |       |                 |      |   | <b>.</b>         |   |
| Start Time | U-Turn | Eastbo<br>Left |    | Right | U-Turn | Westb | ound<br>Thru Right | U-Turn | Northb<br>Left |   | Pight      | U-Turn | Southt<br>Left |   | Right      | Total | Rolling<br>Hour | West |   | Crossir<br>South | - |
| 7:00 AM    | 0-1011 | Len<br>0       | 28 | 4     | 0-1411 | 1     |                    | 0-1011 | 2              | 0 | Night<br>0 | 0-1411 | Leit<br>0      | 1 | Night<br>0 | 48    | 279             | 0    | 0 | 0                | 0 |
| 7:15 AM    | 0      | 0              | 34 | 4     | 0      | 1     |                    | 0 0    | 4              | 0 | 2          | 0      | 0              | 0 | 0          | 70    | 301             | 0    | 0 | 0                | 0 |
| 7:30 AM    | 0      | 0              | 55 | 2     | 0      | 1     |                    | 0 0    | 5              | 0 | 2          | 0      | 0              | 0 | 0          | 87    | 300             | 0    | 0 | 0                | 0 |
| 7:45 AM    | 0      | 0              | 46 | 2     | 0      | 0     |                    | 0 0    | 4              | 0 | 2          | 0      | 0              | 0 | 0          | 74    | 270             | 0    | 0 | 0                | 0 |
| 8:00 AM    | 0      | 0              | 36 | 0     | 0      | 1     |                    | 0 0    | 2              | 0 | 3          | 0      | 0              | 0 | 0          | 70    | 265             | 0    | 0 | 0                | 0 |
| 8:15 AM    | 0      | 0              | 34 | 3     | 0      | 0     |                    | 1 0    | 2              | 0 | 2          | 0      | 1              | 0 | 0          | 69    | 264             | 0    | 0 | 0                | 0 |
| 8:30 AM    | 0      | 0              | 28 | 0     | 0      | 1     |                    | 0 0    | 4              | 0 | 2          | 0      | 0              | 0 | 0          | 57    | 263             | 0    | 0 | 0                | 0 |
| 8:45 AM    | 0      | 0              | 32 | 2     | 0      | 0     |                    | 1 0    | 4              | 0 | 2          | 0      | 2              | 1 | 0          | 69    | 203             | 0    | 0 | 0                | 0 |
| 9:00 AM    | 0      | 0              | 28 | 3     | 0      | 2     |                    | 0 0    | 4              | 0 | 2          | 0      | 0              | 0 | 0          | 69    | 263             | 0    | 0 | 0                | 0 |
| 9:15 AM    | 0      | 0              | 29 | 2     | 0      | 1     |                    | 0 0    | 6              | 1 | 5          | 0      | 0              | 0 | 0          | 68    | 203             | 0    | 0 | 0                | 0 |
| 9:30 AM    | 0      | 0              | 29 | 1     | 0      | 1     |                    | 0 0    | 3              | 0 | 4          | 0      | 0              | 0 | 0          | 65    | 277             | 0    | 0 | 0                | 0 |
| 9:45 AM    | 0      | 0              | 34 | 6     | 0      | 1     | 17                 |        | 1              | 0 | 0          | 0      | 1              | 0 | 0          | 61    | 282             | 0    | 0 | 0                | 0 |
| 10:00 AM   | 0      | 0              | 33 | 3     | 0      | 2     |                    | 1 0    | 9              | 1 | 1          | 0      | 2              | 0 | 0          | 87    | 295             | 0    | 0 | 0                | 0 |
| 10:15 AM   | 0      | 0              | 30 | 2     | 0      | 2     |                    | 0 0    | 2              | 0 | 1          | 0      | 0              | 0 | 0          | 64    | 283             | 0    | 0 | 0                | 0 |
| 10:30 AM   | 0      | 0              | 29 | 2     | 0      | 5     |                    | 0 0    | 6              | 0 | 2          | 0      | 0              | 0 | 0          | 70    | 301             | 0    | 0 | 0                | 0 |
| 10:45 AM   | 0      | 0              | 41 | 8     | 0      | 0     |                    | 0 0    | 4              | 0 | 0          | 0      | 1              | 0 | 0          | 74    | 299             | 0    | 0 | 0                | 0 |
| 11:00 AM   | 0      | 0              | 43 | 2     | 0      | 3     |                    | 0 0    | 5              | 0 | 1          | 0      | 1              | 0 | 0          | 75    | 309             | 0    | 0 | 0                | 0 |
| 11:15 AM   | 0      | 0              | 34 | 5     | 0      | 0     |                    | 1 0    | 4              | 0 | 0          | 0      | 0              | 0 | 0          | 82    | 313             | 0    | 0 | 0                | 0 |
| 11:30 AM   | 0      | 0              | 35 | 4     | 0      | 0     |                    | 0 0    | 4              | 0 | 3          | 0      | 0              | 0 | 0          | 68    | 306             | 0    | 0 | 0                | 0 |
| 11:45 AM   | 0      | 0              | 41 | 5     | 0      | 1     |                    | 0 0    | 2              | 0 | 0          | 0      | 0              | 0 | 0          | 84    | 325             | 0    | 0 | 0                | 0 |
| 12:00 PM   | 0      | 0              | 47 | 2     | 0      | 1     | 24                 | 0 0    | 4              | 0 | 1          | 0      | 0              | 0 | 0          | 79    | 335             | 0    | 0 | 0                | 0 |
| 12:15 PM   | 0      | 0              | 30 | 4     | 0      | 2     | 33                 | 1 0    | 3              | 0 | 1          | 0      | 1              | 0 | 0          | 75    | 347             | 0    | 0 | 0                | 0 |
| 12:30 PM   | 0      | 0              | 32 | 2     | 0      | 4     | 37                 | 0 0    | 10             | 0 | 2          | 0      | 0              | 0 | 0          | 87    | 358             | 0    | 0 | 0                | 0 |
| 12:45 PM   | 0      | 0              | 42 | 2     | 0      | 2     | 36                 | 0 0    | 7              | 1 | 2          | 0      | 2              | 0 | 0          | 94    | 348             | 0    | 0 | 0                | 0 |
| 1:00 PM    | 0      | 0              | 33 | 5     | 0      | 4     | 43                 | 0 0    | 4              | 0 | 2          | 0      | 0              | 0 | 0          | 91    | 326             | 0    | 0 | 0                | 0 |
| 1:15 PM    | 0      | 0              | 37 | 6     | 0      | 3     | 33                 | 0 0    | 5              | 0 | 2          | 0      | 0              | 0 | 0          | 86    | 338             | 0    | 0 | 0                | 0 |
| 1:30 PM    | 0      | 0              | 35 | 4     | 0      | 0     | 29                 | 1 0    | 6              | 0 | 2          | 0      | 0              | 0 | 0          | 77    | 355             | 0    | 0 | 0                | 0 |
| 1:45 PM    | 0      | 1              | 28 | 2     | 0      | 1     | 32                 | 0 0    | 7              | 0 | 0          | 0      | 1              | 0 | 0          | 72    | 375             | 0    | 0 | 0                | 0 |
| 2:00 PM    | 0      | 0              | 34 | 8     | 0      | 6     | 49                 | 0 0    | 5              | 0 | 0          | 0      | 1              | 0 | 0          | 103   | 393             | 0    | 0 | 0                | 0 |
| 2:15 PM    | 0      | 0              | 34 | 6     | 0      | 0     | 50                 | 0 0    | 10             | 0 | 3          | 0      | 0              | 0 | 0          | 103   | 385             | 0    | 0 | 0                | 0 |
| 2:30 PM    | 0      | 0              | 44 | 3     | 0      | 1     | 43                 | 1 0    | 3              | 1 | 1          | 0      | 0              | 0 | 0          | 97    | 396             | 0    | 0 | 0                | 0 |
| 2:45 PM    | 0      | 0              | 30 | 7     | 0      | 0     | 43                 | 0 0    | 7              | 0 | 3          | 0      | 0              | 0 | 0          | 90    | 403             | 0    | 0 | 0                | 0 |
| 3:00 PM    | 0      | 2              | 26 | 4     | 0      | 3     | 52                 | 0 0    | 6              | 0 | 1          | 0      | 1              | 0 | 0          | 95    | 408             | 0    | 0 | 0                | 0 |
| 3:15 PM    | 0      | 0              | 36 | 11    | 0      | 2     | 58                 | 0 0    | 6              | 0 | 1          | 0      | 0              | 0 | 0          | 114   | 417             | 0    | 0 | 0                | 0 |
| 3:30 PM    | 0      | 0              | 40 | 5     | 0      | 5     | 44                 | 0 0    | 8              | 0 | 2          | 0      | 0              | 0 | 0          | 104   | 414             | 0    | 0 | 0                | 0 |


#### Peak Hour - Pedestrians/Bicycles on Crosswalk


| 3:45 PM     | 0 | 0 | 31    | 5   | 0 | 2  | 51    | 0  | 0 | 5   | 0 | 1  | 0 | 0  | 0 | 0 | 95    | 415 | 0 | 0 | 0 |  |
|-------------|---|---|-------|-----|---|----|-------|----|---|-----|---|----|---|----|---|---|-------|-----|---|---|---|--|
| 4:00 PM     | 0 | 0 | 33    | 2   | 0 | 4  | 56    | 0  | 0 | 9   | 0 | 0  | 0 | 0  | 0 | 0 | 104   | 440 | 0 | 0 | 0 |  |
| 4:15 PM     | 0 | 0 | 36    | 8   | 0 | 2  | 54    | 0  | 0 | 9   | 0 | 2  | 0 | 0  | 0 | 0 | 111   | 474 | 0 | 0 | 0 |  |
| 4:30 PM     | 0 | 0 | 35    | 9   | 0 | 0  | 47    | 0  | 0 | 11  | 0 | 2  | 0 | 0  | 0 | 1 | 105   | 469 | 0 | 0 | 0 |  |
| 4:45 PM     | 0 | 0 | 48    | 9   | 0 | 0  | 53    | 1  | 0 | 5   | 0 | 3  | 0 | 0  | 1 | 0 | 120   | 488 | 0 | 0 | 0 |  |
| 5:00 PM     | 0 | 0 | 53    | 5   | 0 | 3  | 71    | 0  | 0 | 5   | 0 | 1  | 0 | 0  | 0 | 0 | 138   | 484 | 0 | 0 | 0 |  |
| 5:15 PM     | 0 | 0 | 29    | 6   | 0 | 0  | 61    | 0  | 0 | 8   | 0 | 2  | 0 | 0  | 0 | 0 | 106   | 431 | 0 | 0 | 0 |  |
| 5:30 PM     | 0 | 1 | 34    | 2   | 0 | 2  | 75    | 0  | 0 | 8   | 0 | 2  | 0 | 0  | 0 | 0 | 124   | 424 | 0 | 0 | 0 |  |
| 5:45 PM     | 0 | 0 | 43    | 5   | 0 | 2  | 57    | 0  | 0 | 6   | 1 | 0  | 0 | 0  | 1 | 1 | 116   | 407 | 0 | 0 | 0 |  |
| 6:00 PM     | 0 | 0 | 33    | 5   | 0 | 1  | 39    | 0  | 0 | 6   | 0 | 1  | 0 | 0  | 0 | 0 | 85    | 359 | 0 | 0 | 0 |  |
| 6:15 PM     | 0 | 0 | 32    | 6   | 1 | 6  | 44    | 0  | 0 | 9   | 0 | 1  | 0 | 0  | 0 | 0 | 99    |     | 0 | 0 | 0 |  |
| 6:30 PM     | 0 | 0 | 35    | 8   | 0 | 2  | 57    | 1  | 0 | 2   | 0 | 2  | 0 | 0  | 0 | 0 | 107   |     | 0 | 0 | 0 |  |
| 6:45 PM     | 0 | 0 | 19    | 6   | 0 | 3  | 33    | 0  | 0 | 4   | 0 | 2  | 0 | 1  | 0 | 0 | 68    |     | 0 | 0 | 0 |  |
| Count Total | 0 | 4 | 1,688 | 207 | 1 | 84 | 1,806 | 10 | 0 | 256 | 5 | 74 | 0 | 15 | 4 | 2 | 4,156 |     | 0 | 0 | 0 |  |
| Peak Hour   | 0 | 1 | 164   | 22  | 0 | 5  | 260   | 1  | 0 | 26  | 0 | 8  | 0 | 0  | 1 | 0 | 488   |     | 0 | 0 | 0 |  |



Location: 4 WEST CITY LIMITS ROAD & SD 52 AM Date: Friday, July 29, 2022 Peak Hour: 04:30 PM - 05:30 PM Peak 15-Minutes: 04:30 PM - 04:45 PM

#### **Peak Hour - All Vehicles**





0

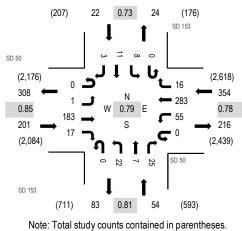
0

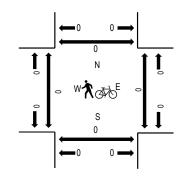
0

Peak Hour - Pedestrians/Bicycles on Crosswalk

#### Note: Total study counts contained in parentheses.

#### **Traffic Counts**


|                |        | SD    | 52   |       |        | SD 5  | 52         | WEST   | CITY L | IMITS F | ROAD  | WEST   | CITY L | IMITS | ROAD  |       |         |      |          |           |       |
|----------------|--------|-------|------|-------|--------|-------|------------|--------|--------|---------|-------|--------|--------|-------|-------|-------|---------|------|----------|-----------|-------|
| Interval       |        | Eastb | ound |       |        | Westb | ound       |        | Northb | ound    |       |        | South  | bound |       |       | Rolling | Ped  | lestriar | n Crossir | ıgs   |
| <br>Start Time | U-Turn | Left  | Thru | Right | U-Turn | Left  | Thru Right | U-Turn | Left   | Thru    | Right | U-Turn | Left   | Thru  | Right | Total | Hour    | West | East     | South     | North |
| 7:00 AM        | 0      | 0     | 47   | 0     | 0      | 0     | 23 0       | 0      | 0      | 0       | 0     | 0      | 0      | 0     | 0     | 70    | 394     | 0    | 0        | 0         | 0     |
| 7:15 AM        | 0      | 0     | 45   | 0     | 0      | 1     | 24 C       | 0      | 1      | 0       | 1     | 0      | 0      | 0     | 0     | 72    | 437     | 0    | 0        | 0         | 0     |
| 7:30 AM        | 0      | 0     | 78   | 0     | 0      | 0     | 27 0       | 0      | 0      | 0       | 3     | 0      | 0      | 0     | 0     | 108   | 466     | 0    | 0        | 0         | 0     |
| 7:45 AM        | 0      | 0     | 108  | 0     | 0      | 1     | 35 C       | 0      | 0      | 0       | 0     | 0      | 0      | 0     | 0     | 144   | 488     | 0    | 0        | 0         | 0     |
| 8:00 AM        | 0      | 0     | 75   | 0     | 0      | 0     | 37 0       | 0      | 0      | 0       | 1     | 0      | 0      | 0     | 0     | 113   | 460     | 0    | 0        | 0         | 0     |
| 8:15 AM        | 0      | 0     | 61   | 0     | 0      | 2     | 37 0       | 0      | 0      | 0       | 1     | 0      | 0      | 0     | 0     | 101   | 472     | 0    | 0        | 0         | 0     |
| 8:30 AM        | 0      | 0     | 77   | 0     | 0      | 2     | 50 C       | 0      | 0      | 0       | 1     | 0      | 0      | 0     | 0     | 130   | 493     | 0    | 0        | 0         | 0     |
| 8:45 AM        | 0      | 0     | 56   | 0     | 1      | 3     | 53 C       | 0      | 1      | 0       | 2     | 0      | 0      | 0     | 0     | 116   | 497     | 0    | 0        | 0         | 0     |
| 9:00 AM        | 0      | 0     | 75   | 2     | 0      | 0     | 45 C       | 0      | 0      | 0       | 3     | 0      | 0      | 0     | 0     | 125   | 527     | 0    | 0        | 0         | 0     |
| 9:15 AM        | 0      | 0     | 64   | 0     | 0      | 0     | 56 C       | 0      | 0      | 0       | 2     | 0      | 0      | 0     | 0     | 122   | 544     | 0    | 0        | 0         | 0     |
| 9:30 AM        | 0      | 0     | 77   | 0     | 0      | 2     | 53 C       | 0      | 0      | 0       | 2     | 0      | 0      | 0     | 0     | 134   | 583     | 0    | 0        | 0         | 0     |
| 9:45 AM        | 0      | 0     | 69   | 0     | 0      | 1     | 75 C       | 0      | 0      | 0       | 1     | 0      | 0      | 0     | 0     | 146   | 619     | 0    | 0        | 0         | 0     |
| 10:00 AM       | 0      | 0     | 77   | 0     | 0      | 1     | 64 C       | 0      | 0      | 0       | 0     | 0      | 0      | 0     | 0     | 142   | 656     | 0    | 0        | 0         | 0     |
| 10:15 AM       | 0      | 0     | 72   | 0     | 0      | 2     | 85 C       | 0      | 1      | 0       | 1     | 0      | 0      | 0     | 0     | 161   | 676     | 0    | 0        | 0         | 0     |
| 10:30 AM       | 0      | 0     | 95   | 0     | 1      | 2     | 72 0       | 0      | 0      | 0       | 0     | 0      | 0      | 0     | 0     | 170   | 693     | 0    | 0        | 0         | 0     |
| 10:45 AM       | 0      | 0     | 95   | 0     | 0      | 1     | 85 C       | 0      | 1      | 0       | 1     | 0      | 0      | 0     | 0     | 183   | 689     | 0    | 0        | 0         | 0     |
| 11:00 AM       | 0      | 0     | 72   | 0     | 0      | 1     | 87 C       | 0      | 0      | 0       | 2     | 0      | 0      | 0     | 0     | 162   | 705     | 0    | 0        | 1         | 0     |
| 11:15 AM       | 0      | 0     | 75   | 0     | 0      | 1     | 99 C       | 0      | 1      | 0       | 2     | 0      | 0      | 0     | 0     | 178   | 746     | 0    | 0        | 0         | 0     |
| 11:30 AM       | 0      | 0     | 76   | 0     | 0      | 1     | 87 C       | 0      | 0      | 0       | 2     | 0      | 0      | 0     | 0     | 166   | 756     | 0    | 0        | 0         | 0     |
| 11:45 AM       | 0      | 0     | 106  | 0     | 0      | 2     | 91 C       | 0      | 0      | 0       | 0     | 0      | 0      | 0     | 0     | 199   | 767     | 0    | 0        | 1         | 0     |
| 12:00 PM       | 0      | 0     | 84   | 0     | 0      | 1     | 117 C      | 0      | 0      | 0       | 1     | 0      | 0      | 0     | 0     | 203   | 772     | 0    | 0        | 0         | 0     |
| 12:15 PM       | 0      | 0     | 103  | 0     | 0      | 2     | 81 C       | 0      | 0      | 0       | 2     | 0      | 0      | 0     | 0     | 188   | 752     | 0    | 0        | 0         | 0     |
| 12:30 PM       | 0      | 0     | 76   | 0     | 0      | 1     | 99 C       | 0      | 0      | 0       | 1     | 0      | 0      | 0     | 0     | 177   | 749     | 0    | 0        | 0         | 0     |
| 12:45 PM       | 0      | 0     | 103  | 0     | 0      | 2     | 97 C       | 0      | 0      | 0       | 2     | 0      | 0      | 0     | 0     | 204   | 740     | 0    | 0        | 0         | 0     |
| 1:00 PM        | 0      | 0     | 77   | 0     | 0      | 3     | 97 C       | 0      | 0      | 0       | 6     | 0      | 0      | 0     | 0     | 183   | 700     | 0    | 0        | 0         | 0     |
| 1:15 PM        | 0      | 0     | 76   | 0     | 0      | 4     | 101 C      | 0      | 0      | 0       | 4     | 0      | 0      | 0     | 0     | 185   | 705     | 0    | 0        | 0         | 0     |
| 1:30 PM        | 0      | 0     | 66   | 1     | 0      | 2     | 96 C       | 0      | 0      | 0       | 3     | 0      | 0      | 0     | 0     | 168   | 724     | 0    | 0        | 0         | 0     |
| 1:45 PM        | 0      | 0     | 66   | 0     | 0      | 3     | 93 C       | 0      | 0      | 0       | 2     | 0      | 0      | 0     | 0     | 164   | 736     | 0    | 0        | 0         | 0     |
| 2:00 PM        | 0      | 0     | 80   | 0     | 0      | 2     | 105 C      | 0      | 0      | 0       | 1     | 0      | 0      | 0     | 0     | 188   | 740     | 0    | 0        | 0         | 0     |
| 2:15 PM        | 0      | 0     | 80   | 0     | 0      | 2     | 118 C      | 0      | 0      | 0       | 4     | 0      | 0      | 0     | 0     | 204   | 754     | 0    | 0        | 0         | 0     |
| 2:30 PM        | 0      | 0     | 71   | 0     | 0      | 1     | 107 C      | 0      | 0      | 0       | 1     | 0      | 0      | 0     | 0     | 180   | 740     | 0    | 0        | 0         | 0     |
| 2:45 PM        | 0      | 0     | 62   | 1     | 0      | 2     | 99 C       | 0      | 0      | 0       | 4     | 0      | 0      | 0     | 0     | 168   | 786     | 0    | 0        | 0         | 0     |
| 3:00 PM        | 0      | 0     | 66   | 0     | 0      | 3     | 131 C      | 0      | 0      | 0       | 2     | 0      | 0      | 0     | 0     | 202   | 817     | 0    | 0        | 0         | 0     |
| 3:15 PM        | 0      | 0     | 94   | 0     | 0      | 2     | 94 C       | 0      | 0      | 0       | 0     | 0      | 0      | 0     | 0     | 190   | 847     | 0    | 1        | 0         | 0     |
| 3:30 PM        | 0      | 0     | 85   | 0     | 0      | 2     | 138 C      | 0      | 0      | 0       | 1     | 0      | 0      | 0     | 0     | 226   | 866     | 0    | 1        | 0         | 0     |
|                |        |       |      |       |        |       |            |        |        |         |       |        |        |       |       |       |         |      |          |           |       |


| 3:45 PM     | 0 | 0 | 72    | 0 | 0 | 5  | 119   | 0 | 0 | 0 | 0 | 3  | 0 | 0 | 0 | 0 | 199   | 898 | 0 | 0 | 0 | 0 |
|-------------|---|---|-------|---|---|----|-------|---|---|---|---|----|---|---|---|---|-------|-----|---|---|---|---|
| 4:00 PM     | 0 | - | 78    | 0 | 0 | 3  | 149   | 0 | 0 |   | 0 | 0  | 0 | 0 | 0 | 0 | 232   | 923 | 0 | - | 0 | 0 |
|             | 0 | 0 |       | 0 | 0 |    |       |   |   | 0 |   | Z  | 0 | 0 |   |   |       |     |   | 0 |   |   |
| 4:15 PM     | 0 | 0 | 69    | 0 | 1 | 6  | 133   | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0 | 0 | 209   | 939 | 0 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 0 | 100   | 0 | 0 | 2  | 152   | 0 | 0 | 0 | 0 | 4  | 0 | 0 | 0 | 0 | 258   | 964 | 0 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 0 | 81    | 0 | 0 | 2  | 140   | 0 | 0 | 0 | 0 | 1  | 0 | 0 | 0 | 0 | 224   | 911 | 0 | 0 | 0 | 0 |
| 5:00 PM     | 0 | 0 | 102   | 0 | 0 | 6  | 139   | 0 | 0 | 0 | 0 | 1  | 0 | 0 | 0 | 0 | 248   | 908 | 0 | 0 | 0 | 0 |
| 5:15 PM     | 0 | 0 | 89    | 0 | 0 | 2  | 139   | 0 | 0 | 0 | 0 | 4  | 0 | 0 | 0 | 0 | 234   | 894 | 0 | 0 | 0 | 0 |
| 5:30 PM     | 0 | 0 | 66    | 0 | 0 | 2  | 134   | 0 | 0 | 0 | 0 | 3  | 0 | 0 | 0 | 0 | 205   | 881 | 0 | 0 | 0 | 0 |
| 5:45 PM     | 0 | 0 | 89    | 0 | 0 | 4  | 128   | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0 | 0 | 221   | 881 | 0 | 0 | 0 | 0 |
| 6:00 PM     | 0 | 0 | 94    | 0 | 0 | 2  | 137   | 0 | 0 | 0 | 0 | 1  | 0 | 0 | 0 | 0 | 234   | 873 | 0 | 0 | 0 | 0 |
| 6:15 PM     | 0 | 0 | 92    | 1 | 0 | 1  | 126   | 0 | 0 | 0 | 0 | 1  | 0 | 0 | 0 | 0 | 221   |     | 0 | 0 | 0 | 0 |
| 6:30 PM     | 0 | 0 | 70    | 0 | 0 | 1  | 132   | 0 | 0 | 0 | 0 | 2  | 0 | 0 | 0 | 0 | 205   |     | 0 | 0 | 0 | 0 |
| 6:45 PM     | 0 | 0 | 89    | 0 | 0 | 3  | 117   | 0 | 0 | 0 | 0 | 4  | 0 | 0 | 0 | 0 | 213   |     | 0 | 0 | 0 | 0 |
| Count Total | 0 | 0 | 3,780 | 5 | 3 | 94 | 4,503 | 0 | 0 | 5 | 0 | 85 | 0 | 0 | 0 | 0 | 8,475 |     | 0 | 2 | 2 | 0 |
| Peak Hour   | 0 | 0 | 372   | 0 | 0 | 12 | 570   | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 964   |     | 0 | 0 | 0 | C |



Location: 5 SD 153 & SD 50 AM Date: Friday, July 29, 2022 Peak Hour: 04:45 PM - 05:45 PM Peak 15-Minutes: 05:00 PM - 05:15 PM

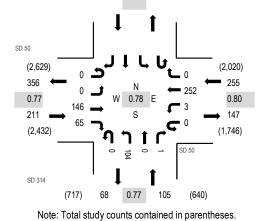
#### **Peak Hour - All Vehicles**

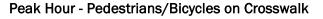


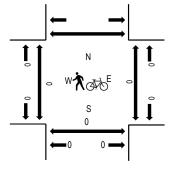


Peak Hour - Pedestrians/Bicycles on Crosswalk

#### Traffic Counts


|                        |        | SD    |    |       |        | SD 5  |            |     | SD 1   |   |       |        | SD 1  |   |       |          |                 |      |   |           |   |
|------------------------|--------|-------|----|-------|--------|-------|------------|-----|--------|---|-------|--------|-------|---|-------|----------|-----------------|------|---|-----------|---|
| Interval<br>Start Time |        | Eastb |    | D: 11 |        | Westb |            |     | Northb |   | D: 11 |        | South |   | D: 14 | <b>-</b> | Rolling<br>Hour |      |   | n Crossir | - |
|                        | U-Turn |       |    | Right | U-Turn |       | Thru Right |     |        |   | -     | U-Turn | Left  |   | Right | Total    |                 | West |   | South     |   |
| 7:00 AM                | 0      | 0     | 31 | 0     | 0      | 3     | 15 0       |     | 4      | 0 | 3     | 0      | 2     | 2 | 0     | 60       | 390             | 0    | 0 | 0         | 0 |
| 7:15 AM                | 0      | 0     | 42 | 5     | 0      | 2     | 23 0       |     | 0      | 0 | 9     | 0      | 3     | 2 | 1     | 87       | 421             | 0    | 0 | 0         | 0 |
| 7:30 AM                | 0      | 0     | 60 | 2     | 0      | 4     | 22 1       |     | 2      | 0 | 9     | 0      | 8     | 2 | 0     | 110      | 430             | 0    | 0 | 0         | 0 |
| 7:45 AM                | 0      | 1     | 66 | 0     | 0      | 8     | 31 0       |     | 4      | 0 | 14    | 0      | 9     | 0 | 0     | 133      | 392             | 0    | 0 | 0         | 0 |
| 8:00 AM                | 0      | 1     | 41 | 2     | 0      | 3     | 27 1       | •   | 4      | 0 | 8     | 0      | 3     | 1 | 0     | 91       | 366             | 0    | 0 | 0         | 0 |
| 8:15 AM                | 0      | 1     | 51 | 2     | 0      | 3     | 29 1       | Ũ   | 2      | 1 | 5     | 0      | 1     | 0 | 0     | 96       | 362             | 0    | 0 | 0         | 0 |
| 8:30 AM                | 0      | 0     | 32 | 0     | 0      | 4     | 21 2       |     | 3      | 1 | 8     | 0      | 1     | 0 | 0     | 72       | 348             | 0    | 0 | 0         | 0 |
| 8:45 AM                | 0      | 0     | 47 | 0     | 0      | 3     | 31 4       | 0   | 2      | 0 | 14    | 0      | 4     | 1 | 1     | 107      | 366             | 0    | 0 | 0         | 0 |
| 9:00 AM                | 0      | 1     | 29 | 1     | 0      | 5     | 31 C       | 0   | 5      | 0 | 8     | 0      | 4     | 3 | 0     | 87       | 352             | 0    | 0 | 0         | 0 |
| 9:15 AM                | 0      | 1     | 36 | 3     | 0      | 2     | 27 2       | 2 0 | 0      | 1 | 6     | 0      | 4     | 0 | 0     | 82       | 376             | 0    | 0 | 0         | 0 |
| 9:30 AM                | 0      | 0     | 42 | 2     | 0      | 10    | 27 0       | 0   | 3      | 0 | 5     | 0      | 1     | 0 | 0     | 90       | 388             | 0    | 0 | 0         | 0 |
| 9:45 AM                | 0      | 0     | 37 | 4     | 0      | 9     | 24 2       | 2 0 | 0      | 1 | 11    | 0      | 3     | 2 | 0     | 93       | 393             | 0    | 0 | 0         | 0 |
| 10:00 AM               | 0      | 0     | 39 | 3     | 0      | 14    | 40 1       | 0   | 2      | 0 | 9     | 0      | 2     | 1 | 0     | 111      | 397             | 0    | 0 | 0         | 0 |
| 10:15 AM               | 0      | 0     | 38 | 2     | 0      | 9     | 31 1       | 0   | 3      | 1 | 6     | 0      | 2     | 1 | 0     | 94       | 392             | 0    | 0 | 0         | 0 |
| 10:30 AM               | 0      | 0     | 33 | 4     | 0      | 9     | 33 C       | 0   | 1      | 0 | 9     | 0      | 3     | 3 | 0     | 95       | 389             | 0    | 0 | 0         | 0 |
| 10:45 AM               | 0      | 0     | 47 | 4     | 0      | 7     | 19 1       | 0   | 6      | 2 | 5     | 0      | 4     | 2 | 0     | 97       | 389             | 0    | 0 | 0         | 0 |
| 11:00 AM               | 0      | 0     | 46 | 3     | 0      | 11    | 31 C       | 0   | 1      | 0 | 12    | 0      | 0     | 1 | 1     | 106      | 401             | 0    | 0 | 0         | 0 |
| 11:15 AM               | 0      | 0     | 32 | 1     | 0      | 10    | 39 1       | 0   | 0      | 1 | 5     | 0      | 2     | 0 | 0     | 91       | 427             | 0    | 0 | 0         | 0 |
| 11:30 AM               | 0      | 0     | 42 | 2     | 0      | 11    | 28 2       | . 0 | 1      | 2 | 4     | 0      | 0     | 3 | 0     | 95       | 433             | 0    | 0 | 0         | 0 |
| 11:45 AM               | 0      | 0     | 44 | 2     | 0      | 9     | 36 3       | 0   | 5      | 0 | 7     | 0      | 2     | 1 | 0     | 109      | 451             | 0    | 0 | 0         | 0 |
| 12:00 PM               | 0      | 0     | 48 | 8     | 0      | 20    | 36 2       | . 0 | 3      | 0 | 12    | 0      | 2     | 0 | 1     | 132      | 471             | 0    | 0 | 0         | 0 |
| 12:15 PM               | 0      | 1     | 32 | 2     | 1      | 11    | 38 2       | . 0 | 1      | 1 | 5     | 0      | 2     | 1 | 0     | 97       | 470             | 0    | 0 | 0         | 0 |
| 12:30 PM               | 0      | 0     | 32 | 4     | 0      | 18    | 39 2       | 0   | 5      | 0 | 11    | 0      | 2     | 0 | 0     | 113      | 485             | 0    | 0 | 0         | 0 |
| 12:45 PM               | 0      | 0     | 53 | 1     | 0      | 14    | 39 3       | 0   | 2      | 0 | 15    | 0      | 2     | 0 | 0     | 129      | 475             | 0    | 0 | 0         | 0 |
| 1:00 PM                | 0      | 1     | 44 | 4     | 0      | 10    | 55 2       | . 0 | 4      | 1 | 9     | 0      | 1     | 0 | 0     | 131      | 441             | 0    | 0 | 0         | 0 |
| 1:15 PM                | 0      | 0     | 44 | 3     | 0      | 11    | 34 2       | . 0 | 4      | 1 | 10    | 0      | 1     | 2 | 0     | 112      | 446             | 0    | 0 | 0         | 0 |
| 1:30 PM                | 0      | 0     | 42 | 5     | 0      | 9     | 35 C       | 0   | 1      | 0 | 8     | 0      | 2     | 1 | 0     | 103      | 465             | 0    | 0 | 0         | 0 |
| 1:45 PM                | 0      | 0     | 32 | 1     | 0      | 8     | 35 2       | . 0 | 0      | 1 | 11    | 0      | 3     | 2 | 0     | 95       | 488             | 0    | 0 | 0         | 0 |
| 2:00 PM                | 0      | 0     | 41 | 2     | 0      | 14    | 53 4       | 0   | 4      | 1 | 12    | 0      | 2     | 3 | 0     | 136      | 518             | 0    | 0 | 0         | 0 |
| 2:15 PM                | 0      | 1     | 35 | 3     | 0      | 14    | 58 5       | 0   | 2      | 1 | 8     | 0      | 2     | 2 | 0     | 131      | 502             | 0    | 0 | 0         | 0 |
| 2:30 PM                | 0      | 0     | 46 | 2     | 0      | 11    | 39 5       |     | 6      | 4 | 8     | 0      | 3     | 1 | 1     | 126      | 504             | 0    | 0 | 0         | 0 |
| 2:45 PM                | 0      | 0     | 33 | 3     | 0      | 12    | 60 2       |     | 3      | 1 | 7     | 0      | 2     | 1 | 1     | 125      | 519             | 0    | 0 | 0         | 0 |
| 3:00 PM                | 0      | 1     | 31 | 2     | 0      | 17    | 52 3       |     | 2      | 1 | 7     | 0      | 4     | 0 | 0     | 120      | 524             | 0    | 0 | 0         | 0 |
| 3:15 PM                | 0      | 1     | 38 | 1     | 0      | 9     | 58 4       |     | 2      | 3 | 11    | 0      | 3     | 2 | 1     | 133      | 540             | 0    | 0 | 0         | 0 |
| 3:30 PM                | 0      | 1     | 36 | 2     | 0      | 14    | 64 1       |     | 3      | 5 | 10    | 0      | 2     | 3 | 0     | 141      | 549             | 0    | 0 | 0         | 0 |


| 3:45 PM     | 0 | 0  | 35    | 5   | 0 | 14  | 56    | 4   | 0 | 3   | 2  | 7   | 0 | 1   | 3  | 0  | 130   | 546 | 0 | 0 | 0 | 0 |
|-------------|---|----|-------|-----|---|-----|-------|-----|---|-----|----|-----|---|-----|----|----|-------|-----|---|---|---|---|
| 4:00 PM     | 0 | 0  | 31    | 3   | 0 | 15  | 68    | 4   | 0 | 3   | 2  | 6   | 0 | 2   | 2  | 0  | 136   | 555 | 0 | 0 | 0 | 0 |
| 4:15 PM     | 0 | 1  | 44    | 3   | 1 | 12  | 58    | 4   | 0 | 2   | 2  | 10  | 0 | 0   | 3  | 2  | 142   | 619 | 0 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 0  | 38    | 5   | 0 | 17  | 52    | 4   | 0 | 5   | 2  | 9   | 0 | 4   | 2  | 0  | 138   | 617 | 0 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 0  | 46    | 3   | 0 | 14  | 55    | 3   | 0 | 4   | 2  | 6   | 0 | 2   | 3  | 1  | 139   | 631 | 0 | 0 | 0 | 0 |
| 5:00 PM     | 0 | 0  | 63    | 7   | 0 | 19  | 86    | 8   | 0 | 5   | 2  | 8   | 0 | 0   | 2  | 0  | 200   | 620 | 0 | 0 | 0 | 0 |
| 5:15 PM     | 0 | 1  | 36    | 4   | 0 | 11  | 65    | 2   | 0 | 6   | 2  | 7   | 0 | 2   | 3  | 1  | 140   | 540 | 0 | 0 | 0 | 0 |
| 5:30 PM     | 0 | 0  | 38    | 3   | 0 | 11  | 77    | 3   | 0 | 7   | 1  | 4   | 0 | 4   | 3  | 1  | 152   | 519 | 0 | 0 | 0 | 0 |
| 5:45 PM     | 0 | 1  | 39    | 3   | 0 | 15  | 44    | 1   | 0 | 4   | 4  | 12  | 0 | 1   | 3  | 1  | 128   | 494 | 0 | 0 | 0 | 0 |
| 6:00 PM     | 0 | 1  | 37    | 6   | 0 | 13  | 41    | 0   | 0 | 9   | 2  | 7   | 0 | 3   | 1  | 0  | 120   | 467 | 0 | 0 | 0 | 0 |
| 6:15 PM     | 0 | 0  | 33    | 1   | 0 | 9   | 53    | 3   | 0 | 3   | 3  | 5   | 0 | 3   | 2  | 4  | 119   |     | 0 | 0 | 0 | 0 |
| 6:30 PM     | 0 | 1  | 38    | 6   | 0 | 11  | 57    | 6   | 0 | 2   | 0  | 4   | 0 | 1   | 0  | 1  | 127   |     | 0 | 0 | 0 | 0 |
| 6:45 PM     | 0 | 0  | 30    | 4   | 0 | 11  | 40    | 1   | 0 | 2   | 2  | 6   | 0 | 1   | 3  | 1  | 101   |     | 0 | 0 | 0 | 0 |
| Count Total | 0 | 16 | 1,930 | 138 | 2 | 500 | 2,012 | 104 | 0 | 145 | 56 | 392 | 0 | 115 | 73 | 19 | 5,502 |     | 0 | 0 | 0 | 0 |
| Peak Hour   | 0 | 1  | 183   | 17  | 0 | 55  | 283   | 16  | 0 | 22  | 7  | 25  | 0 | 8   | 11 | 3  | 631   |     | 0 | 0 | 0 | 0 |




Location: 6 SD 314 & SD 50 AM Date: Friday, July 29, 2022 Peak Hour: 04:45 PM - 05:45 PM Peak 15-Minutes: 05:00 PM - 05:15 PM

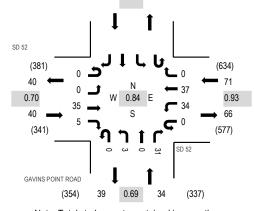
#### **Peak Hour - All Vehicles**

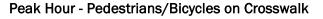


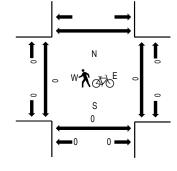




#### ···· ··· **,** ··· · · · · · · ·


| Traffic Counts         |                                    |    |    |    |        |       |      |       |        |        |      |       |           |       |       |          |                 |      |   |             |
|------------------------|------------------------------------|----|----|----|--------|-------|------|-------|--------|--------|------|-------|-----------|-------|-------|----------|-----------------|------|---|-------------|
|                        |                                    | SD |    |    |        | SD 5  |      |       |        | SD 3   |      |       |           |       |       |          |                 |      |   |             |
| Interval<br>Start Time | Eastbound<br>U-Turn Left Thru Righ |    |    |    |        | Westb |      | D: 11 |        | Northb |      | D: 14 | <br>South |       | D: 11 | <b>-</b> | Rolling<br>Hour |      |   | Crossings   |
|                        |                                    |    |    | 0  | U-Turn |       | Thru | -     | U-Turn | Left   | Thru | 0     | Left      | l hru | Right | Total    |                 | West |   | South North |
| 7:00 AM                | 0                                  | 0  | 28 | 9  | 0      | 0     | 12   | 0     | 0      | 8      | 0    | 0     |           |       |       | 57       | 371             | 0    | 0 | 0           |
| 7:15 AM                | 0                                  | 0  | 37 | 18 | 0      | 0     | 18   | 0     | 0      | 6      | 0    | 0     |           |       |       | 79       | 399             | 0    | 0 | 0           |
| 7:30 AM                | 0                                  | 0  | 51 | 26 | 0      | 0     | 20   | 0     | 0      | 7      | 0    | 1     |           |       |       | 105      | 411             | 0    | 0 | 0           |
| 7:45 AM                | 0                                  | 0  | 46 | 44 | 0      | 0     | 32   | 0     | 0      | 7      | 0    | 1     |           |       |       | 130      | 375             | 0    | 0 | 0           |
| 8:00 AM                | 0                                  | 0  | 37 | 17 | 0      | 0     | 26   | 0     | 0      | 5      | 0    | 0     |           |       |       | 85       | 347             | 0    | 0 | 0           |
| 8:15 AM                | 0                                  | 0  | 32 | 24 | 0      | 0     | 28   | 0     | 0      | 7      | 0    | 0     |           |       |       | 91       | 338             | 0    | 0 | 0           |
| 8:30 AM                | 0                                  | 0  | 26 | 15 | 0      | 0     | 25   | 0     | 0      | 3      | 0    | 0     |           |       |       | 69       | 327             | 0    | 0 | 0           |
| 8:45 AM                | 0                                  | 0  | 53 | 12 | 0      | 0     | 29   | 0     | 0      | 8      | 0    | 0     |           |       |       | 102      | 344             | 0    | 0 | 0           |
| 9:00 AM                | 0                                  | 0  | 29 | 11 | 0      | 0     | 27   | 0     | 0      | 8      | 0    | 1     |           |       |       | 76       | 330             | 0    | 0 | 0           |
| 9:15 AM                | 0                                  | 0  | 25 | 20 | 0      | 0     | 28   | 0     | 0      | 7      | 0    | 0     |           |       |       | 80       | 355             | 0    | 0 | 0           |
| 9:30 AM                | 0                                  | 0  | 31 | 18 | 0      | 0     | 30   | 0     | 0      | 7      | 0    | 0     |           |       |       | 86       | 364             | 0    | 0 | 0           |
| 9:45 AM                | 0                                  | 0  | 37 | 14 | 0      | 0     | 24   | 0     | 0      | 13     | 0    | 0     |           |       |       | 88       | 363             | 0    | 0 | 0           |
| 10:00 AM               | 0                                  | 0  | 40 | 8  | 0      | 0     | 46   | 0     | 0      | 7      | 0    | 0     |           |       |       | 101      | 356             | 0    | 0 | 0           |
| 10:15 AM               | 0                                  | 0  | 38 | 11 | 0      | 0     | 27   | 0     | 0      | 13     | 0    | 0     |           |       |       | 89       | 361             | 0    | 0 | 0           |
| 10:30 AM               | 0                                  | 0  | 39 | 6  | 0      | 0     | 33   | 0     | 0      | 7      | 0    | 0     |           |       |       | 85       | 358             | 0    | 0 | 0           |
| 10:45 AM               | 0                                  | 0  | 41 | 13 | 0      | 0     | 26   | 0     | 0      | 1      | 0    | 0     |           |       |       | 81       | 362             | 0    | 0 | 0           |
| 11:00 AM               | 0                                  | 0  | 33 | 27 | 0      | 0     | 34   | 0     | 0      | 12     | 0    | 0     |           |       |       | 106      | 385             | 0    | 0 | 0           |
| 11:15 AM               | 0                                  | 0  | 31 | 8  | 0      | 1     | 34   | 0     | 0      | 12     | 0    | 0     |           |       |       | 86       | 401             | 0    | 0 | 0           |
| 11:30 AM               | 0                                  | 0  | 37 | 10 | 0      | 1     | 34   | 0     | 0      | 7      | 0    | 0     |           |       |       | 89       | 406             | 0    | 0 | 0           |
| 11:45 AM               | 0                                  | 0  | 35 | 16 | 0      | 0     | 42   | 0     | 0      | 11     | 0    | 0     |           |       |       | 104      | 423             | 0    | 0 | 0           |
| 12:00 PM               | 0                                  | 0  | 45 | 19 | 0      | 1     | 45   | 0     | 1      | 11     | 0    | 0     |           |       |       | 122      | 445             | 0    | 0 | 0           |
| 12:15 PM               | 0                                  | 0  | 34 | 6  | 0      | 0     | 38   | 0     | 0      | 13     | 0    | 0     |           |       |       | 91       | 442             | 0    | 0 | 0           |
| 12:30 PM               | 0                                  | 0  | 39 | 5  | 0      | 1     | 51   | 0     | 0      | 10     | 0    | 0     |           |       |       | 106      | 453             | 0    | 0 | 0           |
| 12:45 PM               | 0                                  | 0  | 54 | 14 | 0      | 0     | 40   | 0     | 0      | 18     | 0    | 0     |           |       |       | 126      | 444             | 0    | 0 | 0           |
| 1:00 PM                | 0                                  | 0  | 37 | 18 | 0      | 0     | 53   | 0     | 0      | 11     | 0    | 0     |           |       |       | 119      | 414             | 0    | 0 | 0           |
| 1:15 PM                | 0                                  | 0  | 43 | 12 | 0      | 0     | 36   | 0     | 0      | 10     | 0    | 1     |           |       |       | 102      | 415             | 0    | 0 | 0           |
| 1:30 PM                | 0                                  | 0  | 34 | 19 | 0      | 0     | 32   | 0     | 0      | 12     | 0    | 0     |           |       |       | 97       | 441             | 0    | 0 | 0           |
| 1:45 PM                | 0                                  | 0  | 35 | 12 | 0      | 1     | 37   | 0     | 0      | 11     | 0    | 0     |           |       |       | 96       | 454             | 0    | 0 | 0           |
| 2:00 PM                | 0                                  | 0  | 41 | 12 | 0      | 0     | 55   | 0     | 0      | 12     | 0    | 0     |           |       |       | 120      | 475             | 0    | 0 | 0           |
| 2:15 PM                | 0                                  | 0  | 34 | 12 | 0      | 0     | 66   | 0     | 0      | 16     | 0    | 0     |           |       |       | 128      | 473             | 0    | 0 | 0           |
| 2:30 PM                | 0                                  | 0  | 46 | 12 | 0      | 0     | 44   | 0     | 0      | 7      | 0    | 1     |           |       |       | 110      | 463             | 0    | 0 | 0           |
| 2:45 PM                | 0                                  | 0  | 31 | 10 | 0      | 2     | 51   | 0     | 0      | 23     | 0    | 0     |           |       |       | 117      | 488             | 0    | 0 | 0           |
| 3:00 PM                | 0                                  | 0  | 28 | 13 | 0      | 1     | 63   | 0     | 0      | 13     | 0    | 0     |           |       |       | 118      | 483             | 0    | 0 | 0           |
| 3:15 PM                | 0                                  | 0  | 37 | 15 | 0      | 0     | 53   | 0     | 0      | 13     | 0    | 0     |           |       |       | 118      | 496             | 0    | 0 | 0           |
| 3:30 PM                | 0                                  | 0  | 36 | 14 | 0      | 3     | 65   | 0     | 0      | 16     | 0    | 1     |           |       |       | 135      | 498             | 0    | 0 | 0           |


| 3:45 PM     | 0 | 0 | 32    | 9   | 0 | 1  | 49    | 0 | 0 | 21  | 0 | 0  | 112  | 492 | 0 | 0 | 0 |
|-------------|---|---|-------|-----|---|----|-------|---|---|-----|---|----|------|-----|---|---|---|
| 4:00 PM     | 0 | 0 | 22    | 17  | 0 | 0  | 65    | 0 | 0 | 25  | 0 | 2  | 131  | 505 | 0 | 0 | 0 |
| 4:15 PM     | 0 | 0 | 32    | 13  | 0 | 0  | 58    | 0 | 0 | 14  | 0 | 3  | 120  | 557 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 0 | 41    | 10  | 0 | 0  | 59    | 0 | 0 | 19  | 0 | 0  | 129  | 561 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 0 | 35    | 18  | 0 | 0  | 56    | 0 | 0 | 16  | 0 | 0  | 125  | 571 | 0 | 0 | 0 |
| 5:00 PM     | 0 | 0 | 50    | 19  | 0 | 1  | 79    | 0 | 0 | 34  | 0 | 0  | 183  | 566 | 0 | 0 | 0 |
| 5:15 PM     | 0 | 0 | 26    | 20  | 0 | 1  | 54    | 0 | 0 | 22  | 0 | 1  | 124  | 489 | 0 | 0 | 0 |
| 5:30 PM     | 0 | 0 | 35    | 8   | 0 | 1  | 63    | 0 | 0 | 32  | 0 | 0  | 139  | 467 | 0 | 0 | 0 |
| 5:45 PM     | 0 | 0 | 43    | 16  | 0 | 1  | 46    | 0 | 0 | 14  | 0 | 0  | 120  | 447 | 0 | 0 | 0 |
| 6:00 PM     | 0 | 0 | 32    | 14  | 0 | 1  | 39    | 0 | 0 | 20  | 0 | 0  | 106  | 415 | 0 | 0 | 0 |
| 6:15 PM     | 0 | 0 | 28    | 12  | 0 | 0  | 43    | 0 | 0 | 19  | 0 | 0  | 102  |     | 0 | 0 | 0 |
| 6:30 PM     | 0 | 0 | 31    | 12  | 0 | 0  | 49    | 0 | 0 | 27  | 0 | 0  | 119  |     | 0 | 0 | 0 |
| 6:45 PM     | 0 | 0 | 27    | 10  | 0 | 1  | 38    | 0 | 0 | 12  | 0 | 0  | 88   |     | 0 | 0 | 0 |
| Count Total | 0 | 0 | 1,734 | 698 | 0 | 18 | 2,002 | 0 | 1 | 627 | 0 | 12 | 5,09 | >   | 0 | 0 | 0 |
| Peak Hour   | 0 | 0 | 146   | 65  | 0 | 3  | 252   | 0 | 0 | 104 | 0 | 1  | 5    | 71  | 0 | 0 | 0 |




Location: 7 GAVINS POINT ROAD & SD 52 AM Date: Friday, July 29, 2022 Peak Hour: 02:45 PM - 03:45 PM Peak 15-Minutes: 02:45 PM - 03:00 PM

## **Peak Hour - All Vehicles**

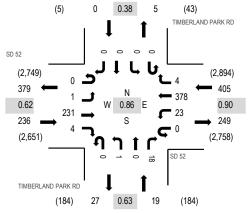


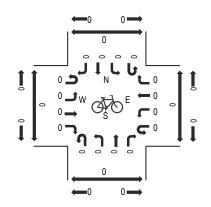




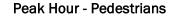
Note: Total study counts contained in parentheses.

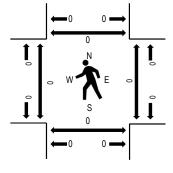
# **Traffic Counts**


| 110 | Interval   |        | SD<br>Eastb |   |       |        | SD 5<br>Westb |         |      | GAVI   | NS PC<br>Northb | DINT RO | DAD   |        | South | bound |       |       | Rolling | Ped  | estriar | Crossings   |
|-----|------------|--------|-------------|---|-------|--------|---------------|---------|------|--------|-----------------|---------|-------|--------|-------|-------|-------|-------|---------|------|---------|-------------|
|     | Start Time | U-Turn | Left        |   | Right | U-Turn |               | Thru Ri | ight | U-Turn | Left            | Thru    | Right | U-Turn | Left  | Thru  | Right | Total | Hour    | West |         | South North |
|     | 7:00 AM    | 0      | 0           | 3 | 2     | 0      | 3             | 0       | 0    | 0      | 1               | 0       | 5     |        |       |       |       | 14    | 74      | 0    | 0       | 0           |
|     | 7:15 AM    | 0      | 0           | 4 | 5     | 0      | 8             | 5       | 0    | 0      | 0               | 0       | 2     |        |       |       |       | 24    | 75      | 0    | 0       | 0           |
|     | 7:30 AM    | 0      | 0           | 4 | 0     | 0      | 2             | 6       | 0    | 0      | 2               | 0       | 7     |        |       |       |       | 21    | 69      | 0    | 0       | 0           |
|     | 7:45 AM    | 0      | 0           | 4 | 0     | 0      | 3             | 6       | 0    | 0      | 0               | 0       | 2     |        |       |       |       | 15    | 66      | 0    | 0       | 0           |
|     | 8:00 AM    | 0      | 0           | 7 | 1     | 0      | 0             | 3       | 0    | 0      | 1               | 0       | 3     |        |       |       |       | 15    | 74      | 0    | 0       | 0           |
|     | 8:15 AM    | 0      | 0           | 5 | 0     | 0      | 3             | 5       | 0    | 0      | 1               | 0       | 4     |        |       |       |       | 18    | 73      | 0    | 0       | 0           |
|     | 8:30 AM    | 0      | 0           | 1 | 1     | 0      | 1             | 9       | 0    | 0      | 0               | 0       | 6     |        |       |       |       | 18    | 74      | 0    | 0       | 0           |
|     | 8:45 AM    | 0      | 0           | 6 | 0     | 0      | 6             | 3       | 0    | 0      | 2               | 0       | 6     |        |       |       |       | 23    | 74      | 0    | 0       | 0           |
|     | 9:00 AM    | 0      | 0           | 4 | 0     | 0      | 4             | 4       | 0    | 0      | 0               | 0       | 2     |        |       |       |       | 14    | 73      | 0    | 0       | 0           |
|     | 9:15 AM    | 0      | 0           | 4 | 0     | 0      | 5             | 7       | 0    | 0      | 1               | 0       | 2     |        |       |       |       | 19    | 86      | 0    | 0       | 0           |
|     | 9:30 AM    | 0      | 0           | 4 | 0     | 0      | 3             | 7       | 0    | 0      | 0               | 0       | 4     |        |       |       |       | 18    | 87      | 0    | 0       | 0           |
|     | 9:45 AM    | 0      | 0           | 9 | 1     | 0      | 3             | 4       | 0    | 0      | 0               | 0       | 5     |        |       |       |       | 22    | 93      | 0    | 0       | 0           |
|     | 10:00 AM   | 0      | 0           | 6 | 2     | 0      | 5             | 9       | 0    | 0      | 0               | 0       | 5     |        |       |       |       | 27    | 92      | 0    | 0       | 0           |
|     | 10:15 AM   | 0      | 0           | 6 | 1     | 0      | 3             | 3       | 0    | 0      | 2               | 0       | 5     |        |       |       |       | 20    | 89      | 0    | 0       | 0           |
|     | 10:30 AM   | 0      | 0           | 4 | 0     | 0      | 8             | 8       | 0    | 0      | 0               | 0       | 4     |        |       |       |       | 24    | 95      | 0    | 0       | 0           |
|     | 10:45 AM   | 0      | 0           | 4 | 1     | 0      | 7             | 0       | 0    | 0      | 3               | 0       | 6     |        |       |       |       | 21    | 102     | 0    | 0       | 0           |
|     | 11:00 AM   | 0      | 0           | 6 | 1     | 0      | 6             | 6       | 0    | 0      | 2               | 0       | 3     |        |       |       |       | 24    | 101     | 0    | 0       | 0           |
|     | 11:15 AM   | 0      | 0           | 5 | 2     | 0      | 4             | 7       | 0    | 0      | 0               | 0       | 8     |        |       |       |       | 26    | 96      | 0    | 0       | 0           |
|     | 11:30 AM   | 0      | 0           | 8 | 0     | 0      | 12            | 4       | 0    | 0      | 0               | 0       | 7     |        |       |       |       | 31    | 111     | 0    | 0       | 0           |
|     | 11:45 AM   | 0      | 0           | 6 | 1     | 0      | 4             | 4       | 0    | 0      | 0               | 0       | 5     |        |       |       |       | 20    | 108     | 0    | 0       | 0           |
|     | 12:00 PM   | 0      | 0           | 1 | 3     | 0      | 5             | 6       | 0    | 0      | 0               | 0       | 4     |        |       |       |       | 19    | 114     | 0    | 0       | 0           |
|     | 12:15 PM   | 0      | 0           | 6 | 4     | 0      | 5             | 10      | 0    | 0      | 1               | 0       | 15    |        |       |       |       | 41    | 115     | 0    | 0       | 0           |
|     | 12:30 PM   | 0      | 0           | 6 | 1     | 0      | 6             | 6       | 0    | 0      | 2               | 0       | 7     |        |       |       |       | 28    | 109     | 0    | 0       | 0           |
|     | 12:45 PM   | 0      | 0           | 1 | 2     | 0      | 6             | 7       | 0    | 0      | 2               | 0       | 8     |        |       |       |       | 26    | 104     | 0    | 0       | 0           |
|     | 1:00 PM    | 0      | 0           | 7 | 0     | 0      | 1             | 6       | 0    | 0      | 1               | 0       | 5     |        |       |       |       | 20    | 109     | 0    | 0       | 0           |
|     | 1:15 PM    | 0      | 0           | 8 | 1     | 0      | 9             | 11      | 0    | 1      | 1               | 0       | 4     |        |       |       |       | 35    | 127     | 0    | 0       | 0           |
|     | 1:30 PM    | 0      | 0           | 4 | 1     | 0      | 5             | 7       | 0    | 0      | 1               | 0       | 5     |        |       |       |       | 23    | 122     | 0    | 0       | 0           |
|     | 1:45 PM    | 0      | 0           | 5 | 3     | 1      | 8             | 7       | 0    | 0      | 0               | 0       | 7     |        |       |       |       | 31    | 132     | 0    | 0       | 0           |
|     | 2:00 PM    | 0      | 0           | 6 | 5     | 0      | 8             | 10      | 0    | 0      | 1               | 0       | 8     |        |       |       |       | 38    | 144     | 0    | 0       | 0           |
|     | 2:15 PM    | 0      | 0           | 7 | 1     | 0      | 6             | 10      | 0    | 0      | 1               | 0       | 5     |        |       |       |       | 30    | 137     | 0    | 0       | 0           |
|     | 2:30 PM    | 0      | 0           | 4 | 0     | 0      | 12            | 5       | 0    | 0      | 1               | 0       | 11    |        |       |       |       | 33    | 143     | 0    | 0       | 0           |
|     | 2:45 PM    | 0      | 0           | 9 | 0     | 0      | 9             | 14      | 0    | 0      | 1               | 0       | 10    |        |       |       |       | 43    | 145     | 0    | 0       | 0           |
|     | 3:00 PM    | 0      | 0           | 9 | 0     | 0      | 11            | 6       | 0    | 0      | 1               | 0       | 4     |        |       |       |       | 31    | 134     | 0    | 0       | 0           |
|     | 3:15 PM    | 0      | 0           | 8 | 2     | 0      | 9             | 10      | 0    | 0      | 0               | 0       | 7     |        |       |       |       | 36    | 139     | 0    | 0       | 0           |
|     | 3:30 PM    | 0      | 0           | 9 | 3     | 0      | 5             | 7       | 0    | 0      | 1               | 0       | 10    |        |       |       |       | 35    | 140     | 0    | 0       | 0           |


|             |   |   |     |    |   |     |     |   |   |    |   | _   |       |     |   |   |   |
|-------------|---|---|-----|----|---|-----|-----|---|---|----|---|-----|-------|-----|---|---|---|
| 3:45 PM     | 0 | 0 | 3   | 2  | 0 | 10  | 9   | 0 | 0 | 1  | 0 | 7   | 32    | 140 | 0 | 0 | 0 |
| 4:00 PM     | 0 | 0 | 6   | 0  | 0 | 8   | 6   | 0 | 0 | 5  | 0 | 11  | 36    | 145 | 0 | 0 | 0 |
| 4:15 PM     | 0 | 0 | 11  | 1  | 0 | 4   | 12  | 0 | 0 | 2  | 0 | 7   | 37    | 145 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 0 | 8   | 0  | 0 | 9   | 12  | 0 | 0 | 0  | 0 | 6   | 35    | 141 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 0 | 12  | 0  | 0 | 6   | 9   | 0 | 0 | 1  | 0 | 9   | 37    | 128 | 0 | 0 | 0 |
| 5:00 PM     | 0 | 0 | 6   | 0  | 0 | 14  | 7   | 0 | 0 | 0  | 0 | 9   | 36    | 120 | 0 | 0 | 0 |
| 5:15 PM     | 0 | 0 | 7   | 0  | 0 | 9   | 12  | 0 | 0 | 1  | 0 | 4   | 33    | 113 | 0 | 0 | 0 |
| 5:30 PM     | 0 | 0 | 2   | 1  | 0 | 5   | 6   | 0 | 0 | 2  | 0 | 6   | 22    | 116 | 0 | 0 | 0 |
| 5:45 PM     | 0 | 0 | 6   | 0  | 0 | 5   | 11  | 0 | 0 | 0  | 0 | 7   | 29    | 132 | 0 | 0 | 0 |
| 6:00 PM     | 0 | 0 | 5   | 1  | 0 | 10  | 8   | 0 | 0 | 1  | 0 | 4   | 29    | 132 | 0 | 0 | 0 |
| 6:15 PM     | 0 | 0 | 8   | 1  | 0 | 10  | 8   | 0 | 0 | 4  | 0 | 5   | 36    |     | 0 | 0 | 0 |
| 6:30 PM     | 0 | 0 | 15  | 0  | 0 | 6   | 10  | 0 | 0 | 0  | 0 | 7   | 38    |     | 0 | 0 | 0 |
| 6:45 PM     | 0 | 0 | 7   | 5  | 0 | 7   | 3   | 0 | 0 | 0  | 0 | 7   | 29    |     | 0 | 0 | 0 |
| Count Total | 0 | 0 | 286 | 55 | 1 | 298 | 335 | 0 | 1 | 46 | 0 | 290 | 1,312 |     | 0 | 0 | 0 |
| Peak Hour   | 0 | 0 | 35  | 5  | 0 | 34  | 37  | 0 | 0 | 3  | 0 | 31  | 145   |     | 0 | 0 | 0 |




Location: 1 TIMBERLAND PARK RD & SD 52 AM Date: Tuesday, September 20, 2022 Peak Hour: 05:00 PM - 06:00 PM Peak 15-Minutes: 05:00 PM - 05:15 PM


### **Peak Hour - Motorized Vehicles**



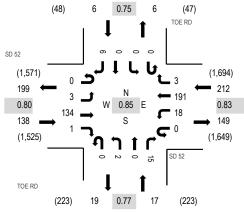


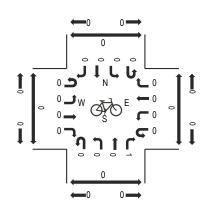
**Peak Hour - Bicycles** 



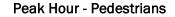


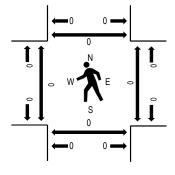
Note: Total study counts contained in parentheses.


|                |        | SD    | 52   |       |        | SD 5  | 52        | TIME     | BERLAN | D PAR | ( RD  | TIMB   | ERLAN | D PAR | K RD  |       |         |      |      |         |       |
|----------------|--------|-------|------|-------|--------|-------|-----------|----------|--------|-------|-------|--------|-------|-------|-------|-------|---------|------|------|---------|-------|
| Interval       |        | Eastb |      |       | -      | Westb |           |          | North  |       |       |        | South |       |       |       | Rolling |      |      | Crossir | 0     |
| <br>Start Time | U-Turn | Left  | Thru | Right | U-Turn | Left  | Thru Righ | t U-Turn | Left   | Thru  | Right | U-Turn | Left  | Thru  | Right | Total | Hour    | West | East | South I | North |
| 7:00 AM        | 0      | 0     | 46   | 0     | 0      | 0     |           | 0 0      | 2      | 0     | 6     | 0      | 0     | 0     | 0     | 78    | 503     | 0    | 0    | 0       | 0     |
| 7:15 AM        | 0      | 0     | 65   | 0     | 0      | 0     | 20        | 0 0      | 0      | 0     | 2     | 0      | 0     | 0     | 0     | 87    | 546     | 0    | 0    | 0       | 0     |
| 7:30 AM        | 0      | 0     | 91   | 1     | 0      | 0     | 31        | 1 0      | 1      | 0     | 11    | 0      | 1     | 0     | 0     | 137   | 570     | 0    | 0    | 0       | 0     |
| 7:45 AM        | 0      | 0     | 155  | 1     | 0      | 2     | 34        | 1 0      | 2      | 0     | 6     | 0      | 0     | 0     | 0     | 201   | 529     | 0    | 0    | 0       | 0     |
| 8:00 AM        | 0      | 0     | 71   | 1     | 0      | 3     | 40        | 0 0      | 1      | 0     | 3     | 0      | 1     | 0     | 1     | 121   | 421     | 0    | 0    | 0       | 0     |
| 8:15 AM        | 0      | 0     | 54   | 0     | 0      | 1     | 51        | 1 0      | 0      | 0     | 4     | 0      | 0     | 0     | 0     | 111   | 381     | 0    | 0    | 0       | 0     |
| 8:30 AM        | 0      | 0     | 61   | 0     | 0      | 2     | 27        | 1 0      | 0      | 0     | 5     | 0      | 0     | 0     | 0     | 96    | 368     | 0    | 0    | 0       | 0     |
| 8:45 AM        | 0      | 0     | 55   | 0     | 0      | 1     | 32        | 0 0      | 1      | 0     | 4     | 0      | 0     | 0     | 0     | 93    | 365     | 0    | 0    | 0       | 0     |
| 9:00 AM        | 0      | 0     | 44   | 0     | 0      | 3     | 32        | 0 0      | 0      | 0     | 2     | 0      | 0     | 0     | 0     | 81    | 360     | 0    | 0    | 0       | 0     |
| 9:15 AM        | 0      | 0     | 44   | 1     | 0      | 1     | 51        | 0 0      | 0      | 0     | 1     | 0      | 0     | 0     | 0     | 98    | 362     | 0    | 0    | 0       | 0     |
| 9:30 AM        | 0      | 1     | 55   | 1     | 0      | 1     | 35        | 0 0      | 0      | 0     | 0     | 0      | 0     | 0     | 0     | 93    | 351     | 0    | 0    | 0       | 0     |
| 9:45 AM        | 0      | 0     | 43   | 0     | 0      | 2     | 37        | 1 0      | 2      | 0     | 3     | 0      | 0     | 0     | 0     | 88    | 347     | 0    | 0    | 0       | 0     |
| 10:00 AM       | 0      | 0     | 34   | 0     | 0      | 2     | 43        | 1 0      | 1      | 0     | 2     | 0      | 0     | 0     | 0     | 83    | 347     | 0    | 0    | 0       | 0     |
| 10:15 AM       | 0      | 0     | 47   | 0     | 0      | 2     | 35        | 1 0      | 0      | 0     | 2     | 0      | 0     | 0     | 0     | 87    | 358     | 0    | 0    | 0       | 0     |
| 10:30 AM       | 0      | 2     | 48   | 0     | 0      | 0     | 36        | 0 0      | 0      | 0     | 3     | 0      | 0     | 0     | 0     | 89    | 387     | 0    | 0    | 0       | 0     |
| 10:45 AM       | 0      | 0     | 44   | 1     | 0      | 5     | 35        | 0 0      | 1      | 0     | 2     | 0      | 0     | 0     | 0     | 88    | 413     | 0    | 0    | 0       | 0     |
| 11:00 AM       | 0      | 1     | 38   | 2     | 0      | 3     | 45        | 0 0      | 1      | 0     | 4     | 0      | 0     | 0     | 0     | 94    | 441     | 0    | 0    | 0       | 0     |
| 11:15 AM       | 0      | 0     | 55   | 1     | 0      | 2     | 56        | 0 0      | 0      | 0     | 2     | 0      | 0     | 0     | 0     | 116   | 474     | 0    | 0    | 0       | 0     |
| 11:30 AM       | 0      | 0     | 47   | 1     | 0      | 0     | 63        | 0 0      | 1      | 0     | 3     | 0      | 0     | 0     | 0     | 115   | 459     | 0    | 0    | 0       | 0     |
| 11:45 AM       | 0      | 0     | 52   | 1     | 0      | 1     | 59        | 2 0      | 1      | 0     | 0     | 0      | 0     | 0     | 0     | 116   | 476     | 0    | 0    | 0       | 0     |
| 12:00 PM       | 0      | 1     | 42   | 2     | 0      | 5     | 72        | 1 0      | 0      | 0     | 4     | 0      | 0     | 0     | 0     | 127   | 498     | 0    | 0    | 0       | 0     |
| 12:15 PM       | 0      | 0     | 43   | 2     | 0      | 5     | 45        | 1 0      | 0      | 0     | 5     | 0      | 0     | 0     | 0     | 101   | 482     | 0    | 0    | 0       | 0     |
| 12:30 PM       | 0      | 0     | 63   | 0     | 0      | 3     | 61        | 1 0      | 0      | 0     | 4     | 0      | 0     | 0     | 0     | 132   | 497     | 0    | 0    | 0       | 0     |
| 12:45 PM       | 0      | 1     | 68   | 0     | 0      | 0     | 61        | 1 0      | 2      | 0     | 5     | 0      | 0     | 0     | 0     | 138   | 464     | 0    | 0    | 0       | 0     |
| 1:00 PM        | 1      | 0     | 44   | 2     | 0      | 6     | 54        | 1 0      | 0      | 0     | 3     | 0      | 0     | 0     | 0     | 111   | 434     | 0    | 0    | 0       | 0     |
| 1:15 PM        | 0      | 0     | 62   | 1     | 0      | 2     | 48        | 0 0      | 1      | 0     | 2     | 0      | 0     | 0     | 0     | 116   | 417     | 0    | 0    | 0       | 0     |
| 1:30 PM        | 0      | 0     | 37   | 1     | 0      | 3     | 53        | 1 0      | 1      | 0     | 2     | 0      | 1     | 0     | 0     | 99    | 408     | 0    | 0    | 0       | 0     |
| 1:45 PM        | 0      | 1     | 55   | 1     | 0      | 1     | 50        | 0 0      | 0      | 0     | 0     | 0      | 0     | 0     | 0     | 108   | 417     | 0    | 0    | 0       | 0     |
| 2:00 PM        | 0      | 0     | 45   | 1     | 0      | 3     | 43        | 0 0      | 0      | 0     | 2     | 0      | 0     | 0     | 0     | 94    | 424     | 0    | 0    | 0       | 0     |
| 2:15 PM        | 0      | 0     | 43   | 0     | 0      | 3     | 56        | 0 0      | 0      | 0     | 5     | 0      | 0     | 0     | 0     | 107   | 451     | 0    | 0    | 0       | 0     |
| 2:30 PM        | 0      | 0     | 54   | 2     | 0      | 0     | 47        | 0 0      | 1      | 0     | 4     | 0      | 0     | 0     | 0     | 108   | 494     | 0    | 0    | 0       | 0     |
| 2:45 PM        | 0      | 0     | 49   | 0     | 0      | 4     | 55        | 3 0      | 0      | 0     | 4     | 0      | 0     | 0     | 0     | 115   | 533     | 0    | 0    | 0       | 0     |
| 3:00 PM        | 0      | 0     | 56   | 1     | 0      | 1     | 60        | 0 0      | 1      | 0     | 2     | 0      | 0     | 0     | 0     | 121   | 582     | 0    | 0    | 0       | 0     |
| 3:15 PM        | 0      | 0     | 54   | 0     | 0      | 5     | 88        | 0 0      | 1      | 0     | 2     | 0      | 0     | 0     | 0     | 150   | 630     | 0    | 0    | 0       | 0     |


| 3:30 PM     | 0 | 1  | 45    | 0  | 0 | 5   | 92    | 1  | 0 | 0  | 0 | 3   | 0 | 0 | 0 | 0 | 147   | 627 | 0 | 0 | 0 | 0 |
|-------------|---|----|-------|----|---|-----|-------|----|---|----|---|-----|---|---|---|---|-------|-----|---|---|---|---|
| 3:45 PM     | 0 | 1  | 59    | 1  | 0 | 9   | 90    | 1  | 0 | 2  | 0 | 1   | 0 | 0 | 0 | 0 | 164   | 618 | 0 | 0 | 0 | 0 |
| 4:00 PM     | 1 | 0  | 64    | 0  | 0 | 4   | 96    | 1  | 0 | 2  | 0 | 1   | 0 | 0 | 0 | 0 | 169   | 591 | 0 | 0 | 0 | 0 |
| 4:15 PM     | 0 | 0  | 48    | 3  | 0 | 3   | 87    | 2  | 0 | 1  | 0 | 3   | 0 | 0 | 0 | 0 | 147   | 613 | 0 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 0  | 48    | 0  | 0 | 6   | 82    | 0  | 0 | 0  | 0 | 2   | 0 | 0 | 0 | 0 | 138   | 621 | 0 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 0  | 49    | 0  | 0 | 5   | 77    | 2  | 0 | 1  | 0 | 3   | 0 | 0 | 0 | 0 | 137   | 643 | 0 | 0 | 0 | 0 |
| 5:00 PM     | 0 | 1  | 66    | 3  | 0 | 5   | 107   | 1  | 0 | 1  | 0 | 7   | 0 | 0 | 0 | 0 | 191   | 660 | 0 | 0 | 0 | 0 |
| 5:15 PM     | 0 | 0  | 56    | 1  | 0 | 7   | 84    | 2  | 0 | 0  | 0 | 5   | 0 | 0 | 0 | 0 | 155   | 600 | 0 | 0 | 0 | 0 |
| 5:30 PM     | 0 | 0  | 54    | 0  | 0 | 2   | 99    | 0  | 0 | 0  | 0 | 5   | 0 | 0 | 0 | 0 | 160   | 558 | 0 | 0 | 0 | 0 |
| 5:45 PM     | 0 | 0  | 55    | 0  | 0 | 9   | 88    | 1  | 0 | 0  | 0 | 1   | 0 | 0 | 0 | 0 | 154   | 518 | 0 | 0 | 0 | 0 |
| 6:00 PM     | 0 | 2  | 51    | 2  | 0 | 10  | 60    | 0  | 0 | 1  | 0 | 4   | 0 | 1 | 0 | 0 | 131   | 473 | 0 | 0 | 0 | 0 |
| 6:15 PM     | 0 | 0  | 47    | 1  | 0 | 2   | 59    | 0  | 0 | 1  | 0 | 3   | 0 | 0 | 0 | 0 | 113   |     | 0 | 0 | 0 | 0 |
| 6:30 PM     | 0 | 0  | 56    | 0  | 0 | 6   | 54    | 1  | 0 | 1  | 0 | 2   | 0 | 0 | 0 | 0 | 120   |     | 0 | 0 | 0 | 0 |
| 6:45 PM     | 0 | 0  | 40    | 0  | 0 | 4   | 60    | 1  | 0 | 1  | 0 | 3   | 0 | 0 | 0 | 0 | 109   |     | 0 | 0 | 0 | 0 |
| Count Total | 2 | 12 | 2,602 | 35 | 0 | 149 | 2,714 | 31 | 0 | 32 | 0 | 152 | 0 | 4 | 0 | 1 | 5,734 |     | 0 | 0 | 0 | 0 |
| Peak Hour   | 0 | 1  | 231   | 4  | 0 | 23  | 378   | 4  | 0 | 1  | 0 | 18  | 0 | 0 | 0 | C | 660   |     | 0 | 0 | 0 | 0 |




Location: 2 TOE RD & SD 52 AM Date: Tuesday, September 20, 2022 Peak Hour: 04:45 PM - 05:45 PM Peak 15-Minutes: 05:00 PM - 05:15 PM


### **Peak Hour - Motorized Vehicles**



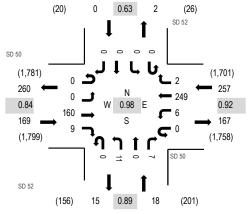


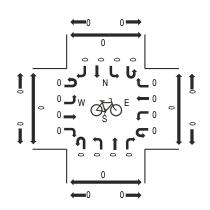
**Peak Hour - Bicycles** 



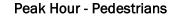


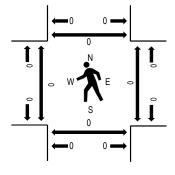
Note: Total study counts contained in parentheses.


|                        |             | SD       |          |            | -           | SD 5      |                 |   |            | TOE I     |            |            |             | TOE      |            |            |             |                 |             |      |                    |   |
|------------------------|-------------|----------|----------|------------|-------------|-----------|-----------------|---|------------|-----------|------------|------------|-------------|----------|------------|------------|-------------|-----------------|-------------|------|--------------------|---|
| Interval<br>Start Time | II Turn     | Eastb    |          | Diskt      |             | Westb     |                 |   |            | Northbo   |            | Diskt      |             | Southb   |            | Diskt      |             | Rolling<br>Hour | Ped<br>West |      | Crossin<br>South N | - |
| 7:00 AM                | U-Turn<br>0 | Leπ<br>0 | 23       | Right<br>0 | U-Turn<br>0 | Lent<br>4 | Thru Rigl<br>24 | 1 | -Turn<br>0 | Lent<br>O | i nru<br>0 | Right<br>1 | U-Turn<br>0 | Len<br>1 | i nru<br>0 | Right<br>0 | Total<br>54 | 273             | 0 O         | Lasi | 0                  | 0 |
| 7:15 AM                | 0           | 1        | 23<br>36 | 1          | 0           | 4         | 24<br>10        | 0 | 0          | 1         | 0          | 2          | 0           | 0        | 0          | 0          | 52          | 273             | 0           | 0    | 0                  | 0 |
| 7:30 AM                | 0           | 0        | 50<br>59 | 0          | 0           | 2         | 16              | 0 | 0          | 0         | 0          | 2          | 0           | 0        | 0          | 0          | 78          | 287             | 0           | 0    | 0                  | 0 |
| 7:45 AM                | 0           | 0        | 59<br>59 | 1          | 0           | 2         | 23              | 0 | 0          | 1         | 0          | 1          | 0           | 1        | 0          | 1          | 89          | 207             | 0           | 1    | 0                  | 0 |
| 8:00 AM                | 0           | 0        | 39<br>34 | 1          | 0           | 2         | 23<br>12        | 0 | 0          | 3         | 0          | 1          | 0           | 0        | 0          | 0          | 53          | 270             | 0           | 2    | 0                  | 0 |
| 8:15 AM                | 0           | 0        | 34<br>31 | 5          | 0           | 2         | 23              | 0 | 0          | 0         | 0          | 4          | 0           | 1        | 0          | 0          | 67          | 255             | 0           | 2    | 0                  | 0 |
| 8:30 AM                | 0           | 0        | 37       | 0          | 0           | 1         | 25              | 0 | 0          | 3         | 0          | 4          | 0           | 0        | 0          | 0          | 67          | 237             | 0           | 0    | 0                  | 0 |
| 8:45 AM                | 0           | 0        | 37       | 1          | 0           | 3         | 20              | 0 | 0          | 2         | 0          | 3          | 0           | 1        | 0          | 1          | 68          | 240             | 0           | 0    | 0                  | 0 |
| 9:00 AM                | 0           | 0        | 24       | 0          | 0           | 4         | 20              | 0 | 0          | 2         | 0          | 2          | 0           | 1        | 0          | 0          | 55          | 233             | 0           | 0    | 0                  | 0 |
| 9:15 AM                | 0           | 1        | 30       | 2          | 0           | 1         | 19              | 1 | 0          | 0         | 0          | 2          | 0           | 0        | 0          | 0          | 56          | 235             | 0           | 0    | 0                  | 0 |
| 9:30 AM                | 0           | 0        | 37       | 0          | 0           | 1         | 28              | 1 | 0          | 0         | 0          | 4          | 0           | 1        | 0          | 2          | 74          | 232             | 0           | 0    | 0                  | 0 |
| 9:45 AM                | 0           | 0        | 27       | 1          | 0           | 2         | 20              | 0 | 0          | 2         | 0          | 1          | 0           | 1        | 0          | 0          | 54          | 228             | 0           | 1    | 0                  | 0 |
| 10:00 AM               | 0           | 0        | 22       | 0          | 0           | 2         | 22              | 1 | 0          | 3         | 0          | . 1        | 0           | 1        | 0          | 0          | 52          | 239             | 0           | 0    | 0                  | 0 |
| 10:15 AM               | 0           | 1        | 18       | 1          | 0           | 3         | 21              | 0 | 0          | 1         | 0          | 5          | 0           | 1        | 0          | 1          | 52          | 238             | 0           | 0    | 0                  | 0 |
| 10:30 AM               | 0           | 0        | 33       | 2          | 0           | 6         | 23              | 0 | 0          | 0         | 0          | 5          | 0           | 0        | 0          | 1          | 70          | 261             | 0           | 0    | 0                  | 0 |
| 10:45 AM               | 0           | 0        | 27       | 4          | 0           | 2         | 24              | 1 | 0          | 4         | 0          | 3          | 0           | 0        | 0          | 0          | 65          | 256             | 0           | 0    | 0                  | 0 |
| 11:00 AM               | 0           | 0        | 21       | 3          | 0           | 3         | 20              | 1 | 0          | 1         | 0          | 2          | 0           | 0        | 0          | 0          | 51          | 264             | 0           | 0    | 0                  | 0 |
| 11:15 AM               | 0           | 0        | 37       | 1          | 0           | 7         | 25              | 0 | 0          | 1         | 0          | 4          | 0           | 0        | 0          | 0          | 75          | 281             | 0           | 0    | 0                  | 0 |
| 11:30 AM               | 0           | 0        | 21       | 0          | 0           | 2         | 34              | 2 | 0          | 2         | 0          | 4          | 0           | 0        | 0          | 0          | 65          | 271             | 0           | 0    | 0                  | 1 |
| 11:45 AM               | 0           | 1        | 29       | 2          | 0           | 6         | 23              | 1 | 0          | 3         | 0          | 7          | 0           | 1        | 0          | 0          | 73          | 284             | 0           | 0    | 0                  | 0 |
| 12:00 PM               | 0           | 0        | 28       | 1          | 0           | 1         | 30              | 0 | 0          | 1         | 0          | 7          | 0           | 0        | 0          | 0          | 68          | 296             | 0           | 0    | 0                  | 0 |
| 12:15 PM               | 0           | 0        | 23       | 2          | 0           | 9         | 24              | 0 | 0          | 2         | 0          | 4          | 0           | 0        | 0          | 1          | 65          | 310             | 0           | 0    | 0                  | 0 |
| 12:30 PM               | 0           | 0        | 26       | 1          | 0           | 5         | 35              | 1 | 0          | 1         | 0          | 7          | 0           | 1        | 0          | 1          | 78          | 318             | 0           | 0    | 0                  | 0 |
| 12:45 PM               | 0           | 1        | 28       | 1          | 0           | 5         | 37              | 1 | 0          | 3         | 0          | 8          | 0           | 1        | 0          | 0          | 85          | 304             | 0           | 0    | 0                  | 0 |
| 1:00 PM                | 0           | 0        | 24       | 1          | 0           | 6         | 39              | 0 | 0          | 2         | 0          | 7          | 0           | 2        | 0          | 1          | 82          | 290             | 0           | 0    | 0                  | 0 |
| 1:15 PM                | 0           | 0        | 27       | 1          | 0           | 4         | 39              | 0 | 0          | 1         | 0          | 1          | 0           | 0        | 0          | 0          | 73          | 284             | 0           | 0    | 0                  | 0 |
| 1:30 PM                | 0           | 0        | 23       | 1          | 0           | 5         | 27              | 1 | 0          | 2         | 0          | 4          | 0           | 0        | 0          | 1          | 64          | 298             | 0           | 0    | 0                  | 0 |
| 1:45 PM                | 0           | 0        | 34       | 2          | 0           | 4         | 26              | 1 | 0          | 1         | 0          | 3          | 0           | 0        | 0          | 0          | 71          | 311             | 0           | 0    | 0                  | 0 |
| 2:00 PM                | 0           | 1        | 27       | 0          | 0           | 3         | 40              | 0 | 0          | 0         | 0          | 5          | 0           | 0        | 0          | 0          | 76          | 314             | 0           | 0    | 0                  | 0 |
| 2:15 PM                | 0           | 0        | 38       | 2          | 0           | 6         | 33              | 0 | 0          | 2         | 0          | 5          | 0           | 0        | 0          | 1          | 87          | 312             | 0           | 0    | 0                  | 0 |
| 2:30 PM                | 0           | 1        | 37       | 0          | 0           | 3         | 28              | 1 | 0          | 0         | 0          | 7          | 0           | 0        | 0          | 0          | 77          | 302             | 0           | 0    | 0                  | 0 |
| 2:45 PM                | 0           | 0        | 29       | 1          | 0           | 4         | 31              | 1 | 0          | 2         | 0          | 4          | 0           | 0        | 0          | 2          | 74          | 314             | 0           | 0    | 0                  | 0 |
| 3:00 PM                | 0           | 0        | 29       | 0          | 0           | 9         | 31              | 0 | 0          | 1         | 0          | 3          | 0           | 1        | 0          | 0          | 74          | 317             | 0           | 0    | 0                  | 0 |
| 3:15 PM                | 0           | 1        | 34       | 0          | 0           | 1         | 36              | 0 | 0          | 1         | 0          | 2          | 0           | 1        | 0          | 1          | 77          | 331             | 0           | 0    | 0                  | 0 |
|                        |             |          |          |            |             |           |                 |   |            |           |            |            |             |          |            |            |             |                 |             |      |                    |   |


| 3:30 PM     | 0 | 0  | 21    | 1  | 0 | 9   | 55    | 2  | 0 | 0  | 0 | 0   | 0 | 1  | 0 | 0  | 89    | 331 | 0 | 0 | 0 | 0 |
|-------------|---|----|-------|----|---|-----|-------|----|---|----|---|-----|---|----|---|----|-------|-----|---|---|---|---|
| 3:45 PM     | 0 | 1  | 25    | 0  | 0 | 6   | 42    | 0  | 0 | 0  | 0 | 3   | 0 | 0  | 0 | 0  | 77    | 323 | 0 | 0 | 0 | 0 |
| 4:00 PM     | 0 | 0  | 32    | 2  | 0 | 3   | 45    | 1  | 0 | 2  | 0 | 3   | 0 | 0  | 0 | 0  | 88    | 325 | 0 | 0 | 0 | 0 |
| 4:15 PM     | 0 | 0  | 24    | 3  | 0 | 3   | 40    | 2  | 0 | 0  | 0 | 3   | 0 | 2  | 0 | 0  | 77    | 347 | 0 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 2  | 28    | 2  | 0 | 1   | 38    | 2  | 0 | 1  | 0 | 5   | 0 | 1  | 0 | 1  | 81    | 357 | 0 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 1  | 33    | 0  | 0 | 5   | 34    | 2  | 0 | 0  | 0 | 2   | 0 | 0  | 0 | 2  | 79    | 373 | 0 | 0 | 0 | 0 |
| 5:00 PM     | 0 | 2  | 35    | 0  | 0 | 3   | 61    | 1  | 0 | 1  | 0 | 4   | 0 | 0  | 0 | 3  | 110   | 371 | 0 | 0 | 0 | 0 |
| 5:15 PM     | 0 | 0  | 30    | 1  | 0 | 6   | 46    | 0  | 0 | 1  | 0 | 2   | 0 | 0  | 0 | 1  | 87    | 360 | 0 | 0 | 0 | 0 |
| 5:30 PM     | 0 | 0  | 36    | 0  | 0 | 4   | 50    | 0  | 0 | 0  | 0 | 7   | 0 | 0  | 0 | 0  | 97    | 341 | 0 | 0 | 0 | 0 |
| 5:45 PM     | 0 | 0  | 21    | 1  | 0 | 3   | 42    | 1  | 0 | 0  | 1 | 6   | 0 | 2  | 0 | 0  | 77    | 318 | 0 | 0 | 0 | 0 |
| 6:00 PM     | 0 | 0  | 43    | 1  | 0 | 1   | 48    | 1  | 0 | 0  | 0 | 3   | 0 | 1  | 0 | 1  | 99    | 307 | 0 | 0 | 0 | 0 |
| 6:15 PM     | 0 | 0  | 24    | 0  | 0 | 3   | 36    | 0  | 0 | 1  | 0 | 3   | 0 | 1  | 0 | 0  | 68    |     | 0 | 0 | 0 | 0 |
| 6:30 PM     | 0 | 1  | 35    | 1  | 0 | 1   | 31    | 2  | 0 | 0  | 0 | 2   | 0 | 0  | 0 | 1  | 74    |     | 0 | 0 | 0 | 0 |
| 6:45 PM     | 0 | 1  | 22    | 1  | 0 | 2   | 35    | 1  | 0 | 1  | 0 | 2   | 0 | 1  | 0 | 0  | 66    |     | 0 | 0 | 0 | 0 |
| Count Total | 0 | 16 | 1,458 | 51 | 0 | 172 | 1,492 | 30 | 0 | 56 | 1 | 166 | 0 | 25 | 0 | 23 | 3,490 |     | 0 | 5 | 0 | 1 |
| Peak Hour   | 0 | 3  | 134   | 1  | 0 | 18  | 191   | 3  | 0 | 2  | 0 | 15  | 0 | 0  | 0 | 6  | 373   |     | 0 | 0 | 0 | 0 |




Location: 3 SD 52 & SD 50 AM Date: Tuesday, September 20, 2022 Peak Hour: 04:30 PM - 05:30 PM Peak 15-Minutes: 05:00 PM - 05:15 PM


### **Peak Hour - Motorized Vehicles**



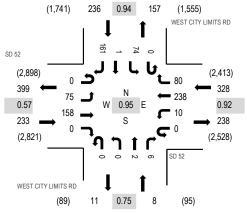


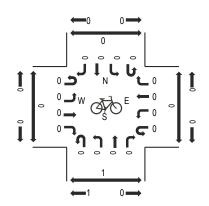
**Peak Hour - Bicycles** 



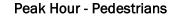


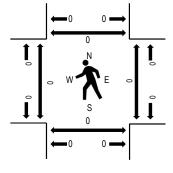
Note: Total study counts contained in parentheses.


|            |        | SD    | 50   |       | -      | SD 5  | 50        |          | SD    | 52    |       |        | SD     | 52   |       |       |         |      |      |         |       |
|------------|--------|-------|------|-------|--------|-------|-----------|----------|-------|-------|-------|--------|--------|------|-------|-------|---------|------|------|---------|-------|
| Interval   |        | Eastb |      |       |        | Westb |           |          | North | bound |       |        | Southt | ound |       |       | Rolling |      |      | Crossin | -     |
| Start Time | U-Turn | Left  | Thru | Right | U-Turn | Left  | Thru Righ | t U-Turr | Left  | Thru  | Right | U-Turn | Left   | Thru | Right | Total | Hour    | West | East | South I | North |
| 7:00 AM    | 0      | 0     | 36   | 2     | 0      | 1     | 23        | 0 0      | 2     | 0     | 0     | 0      | 0      | 0    | 0     | 64    | 351     | 0    | 0    | 0       | 0     |
| 7:15 AM    | 0      | 0     | 51   | 3     | 0      | 0     | 29        | 0 0      | 6     | 0     | 1     | 0      | 0      | 0    | 0     | 90    | 368     | 0    | 0    | 0       | 0     |
| 7:30 AM    | 0      | 0     | 60   | 2     | 0      | 1     | 37        | 0 0      | 4     | 0     | 2     | 0      | 0      | 0    | 0     | 106   | 346     | 0    | 0    | 0       | 0     |
| 7:45 AM    | 0      | 0     | 67   | 1     | 0      | 0     | 16        | 0 0      | 5     | 0     | 2     | 0      | 0      | 0    | 0     | 91    | 315     | 0    | 0    | 0       | 0     |
| 8:00 AM    | 0      | 0     | 44   | 1     | 0      | 1     | 29        | 1 C      | 1     | 0     | 3     | 0      | 1      | 0    | 0     | 81    | 293     | 0    | 0    | 0       | 0     |
| 8:15 AM    | 0      | 0     | 38   | 0     | 0      | 0     | 27        | 1 C      | 1     | 1     | 0     | 0      | 0      | 0    | 0     | 68    | 266     | 0    | 0    | 0       | 0     |
| 8:30 AM    | 0      | 0     | 30   | 3     | 0      | 1     | 35        | 0 0      | 6     | 0     | 0     | 0      | 0      | 0    | 0     | 75    | 281     | 0    | 0    | 0       | 0     |
| 8:45 AM    | 0      | 0     | 22   | 2     | 0      | 1     | 38        | 1 C      | 5     | 0     | 0     | 0      | 0      | 0    | 0     | 69    | 276     | 0    | 0    | 0       | 0     |
| 9:00 AM    | 0      | 0     | 30   | 1     | 0      | 2     | 19        | 0 0      | 0     | 0     | 1     | 0      | 1      | 0    | 0     | 54    | 260     | 0    | 0    | 0       | 0     |
| 9:15 AM    | 0      | 1     | 42   | 3     | 0      | 2     | 32        | 0 0      | 2     | 0     | 0     | 0      | 1      | 0    | 0     | 83    | 278     | 0    | 0    | 0       | 0     |
| 9:30 AM    | 0      | 0     | 35   | 0     | 0      | 1     | 28        | 0 0      | 4     | 0     | 2     | 0      | 0      | 0    | 0     | 70    | 259     | 0    | 0    | 0       | 0     |
| 9:45 AM    | 0      | 0     | 35   | 0     | 0      | 0     | 15        | 0 0      | 2     | 0     | 1     | 0      | 0      | 0    | 0     | 53    | 260     | 0    | 0    | 0       | 0     |
| 10:00 AM   | 0      | 0     | 39   | 1     | 0      | 1     | 28        | 1 C      | 2     | 0     | 0     | 0      | 0      | 0    | 0     | 72    | 260     | 0    | 0    | 0       | 0     |
| 10:15 AM   | 0      | 0     | 30   | 0     | 0      | 0     | 30        | 0 0      | 3     | 0     | 1     | 0      | 0      | 0    | 0     | 64    | 244     | 0    | 0    | 0       | 0     |
| 10:30 AM   | 0      | 0     | 28   | 2     | 0      | 0     | 36        | 0 0      | 4     | 0     | 1     | 0      | 0      | 0    | 0     | 71    | 240     | 0    | 0    | 0       | 0     |
| 10:45 AM   | 0      | 1     | 25   | 0     | 0      | 1     | 21        | 0 0      | 1     | 0     | 3     | 0      | 1      | 0    | 0     | 53    | 223     | 0    | 0    | 0       | 0     |
| 11:00 AM   | 0      | 0     | 26   | 1     | 0      | 1     | 23        | 0 0      | 3     | 0     | 0     | 0      | 1      | 0    | 1     | 56    | 245     | 0    | 0    | 0       | 0     |
| 11:15 AM   | 0      | 0     | 26   | 1     | 0      | 1     | 27        | 0 0      | 2     | 0     | 3     | 0      | 0      | 0    | 0     | 60    | 250     | 0    | 0    | 0       | 0     |
| 11:30 AM   | 0      | 1     | 30   | 1     | 0      | 1     | 18        | 0 0      | 2     | 0     | 0     | 0      | 0      | 0    | 1     | 54    | 248     | 0    | 0    | 0       | 0     |
| 11:45 AM   | 0      | 0     | 44   | 0     | 0      | 1     | 29        | 0 0      | 1     | 0     | 0     | 0      | 0      | 0    | 0     | 75    | 255     | 0    | 0    | 0       | 0     |
| 12:00 PM   | 0      | 0     | 20   | 1     | 0      | 2     | 32        | 2 0      | 2     | 0     | 1     | 0      | 1      | 0    | 0     | 61    | 255     | 0    | 0    | 0       | 0     |
| 12:15 PM   | 0      | 0     | 29   | 1     | 0      | 1     | 20        | 1 C      | 3     | 0     | 1     | 0      | 2      | 0    | 0     | 58    | 260     | 0    | 0    | 0       | 0     |
| 12:30 PM   | 0      | 0     | 28   | 4     | 0      | 0     | 21        | 0 0      | 6     | 0     | 1     | 0      | 0      | 0    | 1     | 61    | 276     | 0    | 0    | 0       | 0     |
| 12:45 PM   | 0      | 1     | 35   | 2     | 0      | 1     | 30        | 0 0      | 1     | 0     | 4     | 0      | 0      | 1    | 0     | 75    | 302     | 0    | 0    | 0       | 0     |
| 1:00 PM    | 0      | 0     | 32   | 4     | 0      | 0     | 27        | 0 0      | 1     | 0     | 1     | 0      | 1      | 0    | 0     | 66    | 300     | 0    | 0    | 0       | 0     |
| 1:15 PM    | 0      | 0     | 43   | 5     | 0      | 0     | 24        | 0 0      | 0     | 0     | 2     | 0      | 0      | 0    | 0     | 74    | 296     | 0    | 0    | 0       | 0     |
| 1:30 PM    | 0      | 0     | 45   | 4     | 0      | 2     | 32        | 1 0      | 1     | 0     | 2     | 0      | 0      | 0    | 0     | 87    | 308     | 0    | 0    | 0       | 0     |
| 1:45 PM    | 0      | 0     | 39   | 5     | 0      | 0     | 27        | 0 0      | 1     | 0     | 1     | 0      | 0      | 0    | 0     | 73    | 316     | 0    | 0    | 0       | 0     |
| 2:00 PM    | 0      | 0     | 22   | 5     | 0      | 1     | 26        | 1 C      | 6     | 0     | 1     | 0      | 0      | 0    | 0     | 62    | 307     | 0    | 0    | 0       | 0     |
| 2:15 PM    | 0      | 0     | 33   | 8     | 0      | 1     | 39        | 0 0      | 3     | 1     | 1     | 0      | 0      | 0    | 0     | 86    | 320     | 0    | 0    | 0       | 0     |
| 2:30 PM    | 0      | 0     | 40   | 2     | 1      | 0     | 44        | 0 0      | 6     | 0     | 1     | 0      | 1      | 0    | 0     | 95    | 325     | 0    | 0    | 0       | 0     |
| 2:45 PM    | 0      | 0     | 25   | 3     | 0      | 0     | 30        | 0 0      | 4     | 0     | 2     | 0      | 0      | 0    | 0     | 64    | 313     | 0    | 0    | 0       | 0     |
| 3:00 PM    | 0      | 0     | 32   | 2     | 0      | 2     | 36        | 0 0      | 2     | 0     | 1     | 0      | 0      | 0    | 0     | 75    | 340     | 0    | 0    | 0       | 0     |
| 3:15 PM    | 0      | 0     | 37   | 1     | 0      | 2     | 48        | 1 0      | 1     | 1     | 0     | 0      | 0      | 0    | 0     | 91    | 354     | 0    | 0    | 0       | 0     |
|            |        |       |      |       |        |       |           |          |       |       |       |        |        |      |       |       |         |      |      |         |       |


| 3:30 PM     | 0 | 0 | 27    | 1   | 0 | 1  | 47    | 0  | 0 | 6   | 0 | 1  | 0 | 0  | 0 | 0 | 83    | 355 | 0 | 0 | 0 | 0 |
|-------------|---|---|-------|-----|---|----|-------|----|---|-----|---|----|---|----|---|---|-------|-----|---|---|---|---|
| 3:45 PM     | 0 | 0 | 27    | 0   | 0 | 1  | 55    | 1  | 0 | 5   | 1 | 1  | 0 | 0  | 0 | 0 | 91    | 384 | 0 | 0 | 0 | 0 |
| 4:00 PM     | 0 | 0 | 40    | 2   | 0 | 2  | 41    | 0  | 0 | 2   | 0 | 1  | 0 | 1  | 0 | 0 | 89    | 401 | 0 | 0 | 0 | 0 |
| 4:15 PM     | 0 | 0 | 43    | 4   | 0 | 1  | 38    | 0  | 0 | 3   | 0 | 2  | 0 | 1  | 0 | 0 | 92    | 425 | 0 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 0 | 48    | 2   | 0 | 0  | 58    | 1  | 0 | 3   | 0 | 0  | 0 | 0  | 0 | 0 | 112   | 444 | 0 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 0 | 42    | 2   | 0 | 3  | 56    | 0  | 0 | 1   | 0 | 4  | 0 | 0  | 0 | 0 | 108   | 423 | 0 | 0 | 0 | 0 |
| 5:00 PM     | 0 | 0 | 37    | 2   | 0 | 2  | 67    | 1  | 0 | 3   | 0 | 1  | 0 | 0  | 0 | 0 | 113   | 406 | 0 | 0 | 0 | 0 |
| 5:15 PM     | 0 | 0 | 33    | 3   | 0 | 1  | 68    | 0  | 0 | 4   | 0 | 2  | 0 | 0  | 0 | 0 | 111   | 396 | 0 | 0 | 0 | 0 |
| 5:30 PM     | 0 | 0 | 37    | 1   | 0 | 1  | 49    | 0  | 0 | 2   | 0 | 0  | 0 | 1  | 0 | 0 | 91    | 356 | 0 | 0 | 0 | 0 |
| 5:45 PM     | 0 | 0 | 39    | 6   | 0 | 1  | 38    | 1  | 0 | 4   | 0 | 1  | 0 | 0  | 0 | 1 | 91    | 333 | 0 | 0 | 0 | 0 |
| 6:00 PM     | 0 | 0 | 36    | 4   | 0 | 1  | 50    | 1  | 0 | 9   | 0 | 0  | 0 | 2  | 0 | 0 | 103   | 303 | 0 | 0 | 0 | 0 |
| 6:15 PM     | 0 | 0 | 32    | 4   | 0 | 2  | 26    | 0  | 0 | 5   | 0 | 2  | 0 | 0  | 0 | 0 | 71    |     | 0 | 0 | 0 | 0 |
| 6:30 PM     | 0 | 0 | 28    | 2   | 0 | 1  | 32    | 2  | 0 | 1   | 0 | 2  | 0 | 0  | 0 | 0 | 68    |     | 0 | 0 | 0 | 0 |
| 6:45 PM     | 0 | 1 | 19    | 4   | 0 | 2  | 35    | 0  | 0 | 0   | 0 | 0  | 0 | 0  | 0 | 0 | 61    |     | 0 | 0 | 0 | 0 |
| Count Total | 0 | 5 | 1,686 | 108 | 1 | 47 | 1,636 | 17 | 0 | 141 | 4 | 56 | 0 | 15 | 1 | 4 | 3,721 |     | 0 | 0 | 0 | 0 |
| Peak Hour   | 0 | 0 | 160   | 9   | 0 | 6  | 249   | 2  | 0 | 11  | 0 | 7  | 0 | 0  | 0 | 0 | 444   |     | 0 | 0 | 0 | 0 |




Location: 4 WEST CITY LIMITS RD & SD 52 AM Date: Tuesday, September 20, 2022 Peak Hour: 03:15 PM - 04:15 PM Peak 15-Minutes: 03:30 PM - 03:45 PM


### **Peak Hour - Motorized Vehicles**



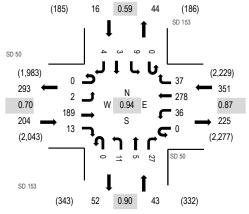


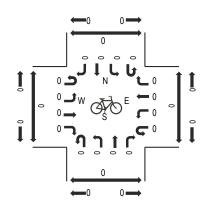
**Peak Hour - Bicycles** 





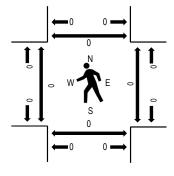
Note: Total study counts contained in parentheses.


|                |        | SD    | 52  |       |        | SD 5  | 52     |    | WES    | T CITY | LIMITS | RD    | WES    | T CITY | LIMITS | S RD  |       |         |      |      |         |   |
|----------------|--------|-------|-----|-------|--------|-------|--------|----|--------|--------|--------|-------|--------|--------|--------|-------|-------|---------|------|------|---------|---|
| Interval       |        | Eastb |     |       |        | Westb |        |    |        | Northb |        |       |        | South  |        |       |       | Rolling |      |      | Crossin | 0 |
| <br>Start Time | U-Turn | Left  |     | Right | U-Turn | Left  | Thru F | -  | U-Turn | Left   | Thru   | Right | U-Turn |        | Thru   | Right | Total | Hour    | West | East | South I |   |
| 7:00 AM        | 0      | 19    | 30  | 0     | 0      | 0     | 10     | 7  | 0      | 0      | 0      | 2     | 0      | 13     | 0      | 13    | 94    | 620     | 0    | 0    | 0       | 0 |
| 7:15 AM        | 0      | 22    | 43  | 0     | 0      | 0     | 17     | 11 | 0      | 0      | 1      | 1     | 0      | 15     | 0      | 8     | 118   | 677     | 0    | 0    | 0       | 0 |
| 7:30 AM        | 0      | 39    | 57  | 0     | 0      | 0     | 18     | 14 | 0      | 0      | 1      | 2     | 0      | 17     | 0      | 11    | 159   | 705     | 0    | 0    | 0       | 0 |
| 7:45 AM        | 0      | 70    | 115 | 0     | 0      | 0     | 25     | 15 | 0      | 0      | 2      | 0     | 0      | 11     | 0      | 11    | 249   | 675     | 0    | 0    | 0       | 0 |
| 8:00 AM        | 0      | 26    | 47  | 0     | 0      | 1     | 24     | 14 | 0      | 0      | 3      | 1     | 0      | 16     | 0      | 19    | 151   | 540     | 0    | 0    | 0       | 0 |
| 8:15 AM        | 0      | 15    | 46  | 0     | 0      | 2     | 34     | 14 | 0      | 0      | 0      | 3     | 0      | 12     | 0      | 20    | 146   | 490     | 0    | 0    | 0       | 0 |
| 8:30 AM        | 0      | 23    | 41  | 0     | 0      | 4     | 20     | 16 | 0      | 0      | 0      | 3     | 0      | 11     | 2      | 9     | 129   | 467     | 0    | 0    | 0       | 0 |
| 8:45 AM        | 0      | 23    | 39  | 0     | 0      | 0     | 20     | 6  | 0      | 0      | 0      | 1     | 0      | 13     | 1      | 11    | 114   | 467     | 0    | 0    | 0       | 0 |
| 9:00 AM        | 0      | 17    | 32  | 0     | 0      | 2     | 19     | 5  | 0      | 0      | 1      | 1     | 0      | 10     | 0      | 14    | 101   | 455     | 0    | 0    | 0       | 0 |
| 9:15 AM        | 0      | 19    | 26  | 0     | 0      | 0     | 30     | 7  | 0      | 0      | 1      | 2     | 0      | 15     | 1      | 22    | 123   | 466     | 0    | 0    | 0       | 0 |
| 9:30 AM        | 0      | 19    | 38  | 0     | 0      | 0     | 29     | 15 | 0      | 0      | 0      | 1     | 0      | 14     | 3      | 10    | 129   | 449     | 0    | 0    | 0       | 0 |
| 9:45 AM        | 0      | 17    | 25  | 1     | 0      | 1     | 25     | 9  | 0      | 0      | 1      | 0     | 0      | 10     | 0      | 13    | 102   | 422     | 0    | 0    | 0       | 0 |
| 10:00 AM       | 0      | 14    | 26  | 0     | 0      | 0     | 30     | 12 | 0      | 0      | 1      | 2     | 0      | 8      | 0      | 19    | 112   | 434     | 0    | 0    | 0       | 0 |
| 10:15 AM       | 0      | 14    | 37  | 0     | 0      | 0     | 18     | 13 | 0      | 0      | 2      | 0     | 0      | 5      | 0      | 17    | 106   | 436     | 0    | 0    | 0       | 0 |
| 10:30 AM       | 0      | 16    | 33  | 0     | 0      | 1     | 23     | 13 | 0      | 0      | 0      | 1     | 0      | 4      | 0      | 11    | 102   | 471     | 0    | 0    | 0       | 0 |
| 10:45 AM       | 0      | 15    | 33  | 0     | 0      | 0     | 25     | 16 | 0      | 0      | 0      | 1     | 0      | 11     | 0      | 13    | 114   | 492     | 0    | 0    | 0       | 0 |
| 11:00 AM       | 0      | 16    | 26  | 0     | 0      | 2     | 31     | 10 | 0      | 0      | 1      | 1     | 0      | 9      | 0      | 18    | 114   | 536     | 0    | 0    | 0       | 0 |
| 11:15 AM       | 0      | 20    | 37  | 0     | 0      | 1     | 39     | 7  | 0      | 0      | 0      | 0     | 0      | 14     | 0      | 23    | 141   | 578     | 0    | 0    | 0       | 0 |
| 11:30 AM       | 0      | 15    | 33  | 0     | 0      | 0     | 39     | 4  | 0      | 1      | 1      | 0     | 0      | 7      | 1      | 22    | 123   | 568     | 0    | 0    | 0       | 0 |
| 11:45 AM       | 0      | 13    | 45  | 0     | 0      | 1     | 36     | 12 | 0      | 0      | 1      | 1     | 0      | 17     | 2      | 30    | 158   | 589     | 0    | 0    | 0       | 0 |
| 12:00 PM       | 0      | 13    | 31  | 0     | 0      | 4     | 43     | 16 | 0      | 0      | 0      | 1     | 0      | 15     | 0      | 33    | 156   | 604     | 0    | 0    | 0       | 0 |
| 12:15 PM       | 0      | 19    | 34  | 0     | 0      | 0     | 39     | 15 | 0      | 0      | 1      | 1     | 0      | 9      | 0      | 13    | 131   | 578     | 0    | 0    | 0       | 0 |
| 12:30 PM       | 0      | 21    | 37  | 0     | 0      | 1     | 38     | 6  | 0      | 0      | 1      | 1     | 0      | 12     | 0      | 27    | 144   | 588     | 0    | 0    | 0       | 0 |
| 12:45 PM       | 0      | 21    | 59  | 0     | 0      | 0     | 38     | 7  | 0      | 0      | 2      | 2     | 0      | 17     | 0      | 27    | 173   | 577     | 0    | 0    | 0       | 0 |
| 1:00 PM        | 0      | 20    | 29  | 0     | 0      | 3     | 33     | 9  | 0      | 0      | 0      | 1     | 0      | 11     | 0      | 24    | 130   | 544     | 0    | 0    | 0       | 0 |
| 1:15 PM        | 0      | 15    | 47  | 0     | 0      | 0     | 29     | 9  | 0      | 0      | 2      | 2     | 0      | 17     | 0      | 20    | 141   | 534     | 0    | 0    | 1       | 0 |
| 1:30 PM        | 0      | 17    | 23  | 0     | 0      | 0     | 37     | 21 | 0      | 0      | 0      | 2     | 0      | 14     | 0      | 19    | 133   | 518     | 0    | 0    | 0       | 0 |
| 1:45 PM        | 0      | 15    | 43  | 0     | 0      | 0     | 34     | 11 | 0      | 0      | 0      | 1     | 0      | 12     | 3      | 21    | 140   | 516     | 0    | 0    | 0       | 0 |
| 2:00 PM        | 0      | 14    | 33  | 0     | 0      | 0     | 22     | 10 | 0      | 0      | 0      | 0     | 0      | 13     | 2      | 26    | 120   | 516     | 0    | 0    | 0       | 0 |
| 2:15 PM        | 0      | 15    | 39  | 0     | 0      | 0     | 38     | 10 | 0      | 0      | 1      | 0     | 0      | 5      | 2      | 15    | 125   | 560     | 0    | 0    | 0       | 0 |
| 2:30 PM        | 0      | 19    | 39  | 0     | 0      | 0     | 27     | 11 | 0      | 0      | 1      | 0     | 0      | 9      | 0      | 25    | 131   | 632     | 0    | 0    | 0       | 0 |
| 2:45 PM        | 0      | 19    | 37  | 1     | 0      | 3     | 42     | 10 | 0      | 0      | 0      | 2     | 0      | 9      | 0      | 17    | 140   | 712     | 0    | 0    | 0       | 0 |
| 3:00 PM        | 0      | 14    | 48  | 0     | 0      | 2     | 38     | 24 | 0      | 0      | 2      | 0     | 0      | 11     | 0      | 25    | 164   | 779     | 0    | 0    | 0       | 0 |
| 3:15 PM        | 0      | 16    | 40  | 0     | 0      | 2     | 58     | 19 | 0      | 0      | 0      | 1     | 0      | 19     | 1      | 41    | 197   | 805     | 0    | 0    | 0       | 0 |
|                |        |       |     |       |        |       |        |    |        |        |        |       |        |        |        |       |       |         |      |      |         |   |


| 3:30 PM     | 0 | 16  | 41    | 0 | 0 | 3  | 65    | 21  | 0 | 0 | 1  | 2  | 0 | 21  | 0  | 41    | 211   | 785 | 0 | 0 | 0 | 0 |
|-------------|---|-----|-------|---|---|----|-------|-----|---|---|----|----|---|-----|----|-------|-------|-----|---|---|---|---|
| 3:45 PM     | 0 | 19  | 45    | 0 | 0 | 2  | 54    | 22  | 0 | 0 | 1  | 1  | 0 | 27  | 0  | 36    | 207   | 736 | 0 | 0 | 0 | 0 |
| 4:00 PM     | 0 | 24  | 32    | 0 | 0 | 3  | 61    | 18  | 0 | 0 | 0  | 2  | 0 | 7   | 0  | 43    | 190   | 697 | 0 | 0 | 0 | 0 |
| 4:15 PM     | 0 | 25  | 27    | 0 | 0 | 3  | 52    | 16  | 0 | 1 | 1  | 0  | 0 | 14  | 1  | 37    | 177   | 736 | 0 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 17  | 33    | 0 | 0 | 1  | 50    | 11  | 0 | 0 | 0  | 1  | 0 | 13  | 0  | 36    | 162   | 755 | 0 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 16  | 37    | 1 | 0 | 2  | 51    | 16  | 0 | 0 | 0  | 3  | 0 | 7   | 1  | 34    | 168   | 774 | 0 | 0 | 0 | 0 |
| 5:00 PM     | 0 | 19  | 50    | 0 | 0 | 4  | 70    | 24  | 0 | 0 | 0  | 2  | 0 | 14  | 0  | 46    | 229   | 775 | 0 | 0 | 0 | 0 |
| 5:15 PM     | 0 | 18  | 52    | 0 | 0 | 1  | 58    | 14  | 0 | 0 | 2  | 1  | 0 | 14  | 1  | 35    | 196   | 699 | 0 | 0 | 0 | 0 |
| 5:30 PM     | 0 | 13  | 46    | 0 | 0 | 1  | 65    | 9   | 0 | 0 | 0  | 0  | 0 | 3   | 0  | 44    | 181   | 644 | 0 | 0 | 0 | 0 |
| 5:45 PM     | 0 | 19  | 36    | 0 | 0 | 2  | 47    | 7   | 0 | 0 | 1  | 3  | 0 | 12  | 1  | 41    | 169   | 604 | 0 | 0 | 0 | 0 |
| 6:00 PM     | 0 | 20  | 37    | 1 | 0 | 5  | 45    | 8   | 0 | 1 | 0  | 1  | 0 | 10  | 1  | 24    | 153   | 570 | 0 | 0 | 0 | 0 |
| 6:15 PM     | 0 | 20  | 35    | 0 | 0 | 1  | 34    | 12  | 0 | 0 | 1  | 1  | 0 | 7   | 1  | 29    | 141   |     | 0 | 0 | 0 | 0 |
| 6:30 PM     | 0 | 19  | 35    | 0 | 0 | 2  | 36    | 12  | 0 | 0 | 0  | 3  | 0 | 13  | 0  | 21    | 141   |     | 0 | 0 | 0 | 0 |
| 6:45 PM     | 0 | 13  | 35    | 0 | 0 | 1  | 42    | 6   | 0 | 0 | 0  | 2  | 0 | 13  | 0  | 23    | 135   |     | 0 | 0 | 0 | 0 |
| Count Total | 0 | 928 | 1,889 | 4 | 0 | 61 | 1,758 | 594 | 0 | 3 | 33 | 59 | 0 | 580 | 24 | 1,137 | 7,070 |     | 0 | 0 | 1 | 0 |
| Peak Hour   | 0 | 75  | 158   | 0 | 0 | 10 | 238   | 80  | 0 | 0 | 2  | 6  | 0 | 74  | 1  | 161   | 805   |     | 0 | 0 | 0 | 0 |



Location: 5 SD 153 & SD 50 AM Date: Tuesday, September 20, 2022 Peak Hour: 04:30 PM - 05:30 PM Peak 15-Minutes: 05:00 PM - 05:15 PM


### **Peak Hour - Motorized Vehicles**



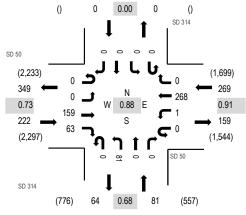


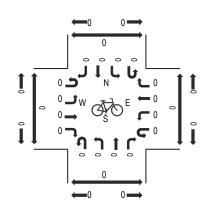
**Peak Hour - Bicycles** 

### Peak Hour - Pedestrians

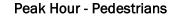


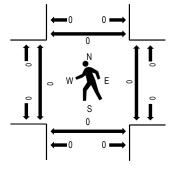
Note: Total study counts contained in parentheses.


|            |        | SD    | 50   |       | -      | SD 5  | 0        |     |        | SD 1   | 53   |       |        | SD 1   | 153  |       |       |         |      |          |         |       |
|------------|--------|-------|------|-------|--------|-------|----------|-----|--------|--------|------|-------|--------|--------|------|-------|-------|---------|------|----------|---------|-------|
| Interval   |        | Eastb |      |       |        | Westb |          |     |        | Northb | ound |       |        | Southb | ound |       |       | Rolling | Ped  | lestriar | Crossin | igs   |
| Start Time | U-Turn | Left  | Thru | Right | U-Turn | Left  | Thru Rig | lht | U-Turn | Left   | Thru | Right | U-Turn | Left   | Thru | Right | Total | Hour    | West | East     | South I | North |
| 7:00 AM    | 0      | 1     | 40   | 1     | 0      | 1     | 19       | 1   | 0      | 3      | 1    | 2     | 0      | 4      | 1    | 0     | 74    | 472     | 0    | 0        | 0       | 0     |
| 7:15 AM    | 0      | 0     | 64   | 0     | 0      | 2     | 33       | 3   | 0      | 1      | 0    | 4     | 0      | 7      | 1    | 0     | 115   | 504     | 0    | 0        | 0       | 0     |
| 7:30 AM    | 0      | 0     | 71   | 2     | 0      | 2     | 34       | 1   | 0      | 3      | 0    | 7     | 0      | 16     | 1    | 0     | 137   | 488     | 0    | 0        | 0       | 0     |
| 7:45 AM    | 0      | 0     | 104  | 3     | 0      | 1     | 21       | 2   | 0      | 0      | 0    | 6     | 0      | 7      | 2    | 0     | 146   | 439     | 0    | 0        | 0       | 0     |
| 8:00 AM    | 0      | 0     | 53   | 1     | 0      | 4     | 28       | 0   | 0      | 2      | 0    | 12    | 0      | 5      | 1    | 0     | 106   | 376     | 0    | 0        | 0       | 0     |
| 8:15 AM    | 0      | 2     | 42   | 4     | 0      | 6     | 36       | 1   | 0      | 1      | 1    | 3     | 0      | 2      | 1    | 0     | 99    | 332     | 0    | 0        | 0       | 0     |
| 8:30 AM    | 0      | 0     | 37   | 1     | 0      | 2     | 38       | 0   | 0      | 2      | 0    | 3     | 0      | 3      | 2    | 0     | 88    | 334     | 0    | 0        | 0       | 0     |
| 8:45 AM    | 0      | 2     | 28   | 1     | 0      | 1     | 35       | 3   | 0      | 1      | 1    | 7     | 0      | 3      | 1    | 0     | 83    | 337     | 0    | 0        | 0       | 0     |
| 9:00 AM    | 0      | 1     | 31   | 0     | 0      | 2     | 16       | 1   | 0      | 3      | 1    | 2     | 0      | 4      | 1    | 0     | 62    | 312     | 0    | 0        | 0       | 0     |
| 9:15 AM    | 0      | 1     | 43   | 2     | 0      | 4     | 38       | 2   | 0      | 2      | 1    | 3     | 0      | 4      | 0    | 1     | 101   | 342     | 0    | 0        | 0       | 0     |
| 9:30 AM    | 0      | 0     | 46   | 2     | 0      | 4     | 30       | 1   | 0      | 2      | 2    | 2     | 0      | 2      | 0    | 0     | 91    | 320     | 0    | 0        | 0       | 0     |
| 9:45 AM    | 0      | 0     | 29   | 1     | 0      | 4     | 17       | 1   | 0      | 0      | 0    | 4     | 0      | 1      | 1    | 0     | 58    | 316     | 0    | 0        | 0       | 0     |
| 10:00 AM   | 0      | 0     | 41   | 3     | 0      | 5     | 30       | 0   | 0      | 3      | 1    | 4     | 0      | 3      | 1    | 1     | 92    | 322     | 0    | 0        | 0       | 0     |
| 10:15 AM   | 0      | 0     | 32   | 0     | 0      | 3     | 30       | 2   | 0      | 1      | 1    | 6     | 0      | 4      | 0    | 0     | 79    | 300     | 0    | 0        | 0       | 0     |
| 10:30 AM   | 0      | 0     | 34   | 4     | 0      | 3     | 33       | 3   | 0      | 0      | 2    | 4     | 0      | 1      | 1    | 2     | 87    | 305     | 0    | 0        | 0       | 0     |
| 10:45 AM   | 0      | 0     | 28   | 1     | 0      | 2     | 23       | 2   | 0      | 2      | 0    | 5     | 0      | 1      | 0    | 0     | 64    | 291     | 0    | 0        | 0       | 0     |
| 11:00 AM   | 0      | 0     | 30   | 1     | 0      | 4     | 27       | 1   | 0      | 1      | 1    | 3     | 0      | 1      | 1    | 0     | 70    | 336     | 0    | 0        | 0       | 0     |
| 11:15 AM   | 0      | 1     | 32   | 2     | 0      | 1     | 36       | 0   | 0      | 1      | 0    | 5     | 0      | 5      | 0    | 1     | 84    | 357     | 0    | 0        | 0       | 0     |
| 11:30 AM   | 0      | 1     | 38   | 1     | 0      | 8     | 20       | 1   | 0      | 0      | 0    | 3     | 0      | 0      | 1    | 0     | 73    | 336     | 0    | 0        | 0       | 0     |
| 11:45 AM   | 0      | 1     | 44   | 1     | 0      | 7     | 46       | 4   | 0      | 1      | 0    | 3     | 0      | 2      | 0    | 0     | 109   | 341     | 0    | 0        | 0       | 0     |
| 12:00 PM   | 0      | 1     | 30   | 2     | 0      | 5     | 37       | 4   | 0      | 1      | 0    | 8     | 0      | 3      | 0    | 0     | 91    | 334     | 0    | 0        | 0       | 0     |
| 12:15 PM   | 0      | 0     | 25   | 0     | 0      | 8     | 24       | 0   | 0      | 2      | 0    | 1     | 0      | 2      | 1    | 0     | 63    | 328     | 0    | 0        | 0       | 0     |
| 12:30 PM   | 0      | 0     | 41   | 0     | 0      | 4     | 26       | 2   | 0      | 1      | 1    | 3     | 0      | 0      | 0    | 0     | 78    | 361     | 0    | 0        | 0       | 0     |
| 12:45 PM   | 0      | 0     | 40   | 5     | 0      | 3     | 42       | 2   | 0      | 0      | 2    | 5     | 0      | 2      | 1    | 0     | 102   | 378     | 0    | 0        | 0       | 0     |
| 1:00 PM    | 0      | 0     | 38   | 0     | 0      | 7     | 28       | 3   | 0      | 2      | 0    | 7     | 0      | 0      | 0    | 0     | 85    | 367     | 0    | 0        | 0       | 0     |
| 1:15 PM    | 0      | 1     | 50   | 0     | 0      | 4     | 30       | 2   | 0      | 1      | 1    | 4     | 0      | 2      | 1    | 0     | 96    | 361     | 0    | 0        | 0       | 0     |
| 1:30 PM    | 0      | 0     | 44   | 1     | 0      | 3     | 32       | 1   | 0      | 4      | 1    | 5     | 0      | 4      | 0    | 0     | 95    | 369     | 0    | 0        | 0       | 0     |
| 1:45 PM    | 0      | 0     | 43   | 0     | 0      | 2     | 32       | 3   | 0      | 2      | 1    | 5     | 0      | 2      | 1    | 0     | 91    | 369     | 0    | 0        | 0       | 0     |
| 2:00 PM    | 0      | 0     | 30   | 1     | 0      | 10    | 33       | 1   | 0      | 0      | 0    | 1     | 0      | 2      | 1    | 0     | 79    | 346     | 0    | 0        | 0       | 0     |
| 2:15 PM    | 0      | 0     | 39   | 0     | 0      | 4     | 50       | 5   | 0      | 2      | 0    | 0     | 0      | 2      | 2    | 0     | 104   | 371     | 0    | 0        | 0       | 0     |
| 2:30 PM    | 0      | 1     | 35   | 2     | 0      | 4     | 38       | 1   | 0      | 6      | 0    | 5     | 0      | 0      | 2    | 1     | 95    | 382     | 0    | 0        | 0       | 0     |
| 2:45 PM    | 0      | 0     | 27   | 1     | 0      | 4     | 31       | 0   | 0      | 0      | 0    | 3     | 0      | 2      | 0    | 0     | 68    | 408     | 0    | 0        | 0       | 0     |
| 3:00 PM    | 0      | 0     | 40   | 2     | 0      | 5     | 43       | 2   | 0      | 3      | 2    | 4     | 0      | 2      | 0    | 1     | 104   | 461     | 0    | 0        | 0       | 0     |
| 3:15 PM    | 0      | 0     | 39   | 1     | 0      | 7     | 52       | 4   | 0      | 1      | 1    | 4     | 0      | 4      | 2    | 0     | 115   | 461     | 0    | 0        | 0       | 0     |
|            |        |       |      |       |        |       |          |     |        |        |      |       |        |        |      |       |       |         |      |          |         |       |


| 3:30 PM     | 0 | 0  | 33    | 1  | 0 | 8   | 59    | 2   | 0 | 3  | 2  | 7   | 0 | 3   | 2  | 1  | 121   | 460 | 0 | 0 | 0 | 0 |
|-------------|---|----|-------|----|---|-----|-------|-----|---|----|----|-----|---|-----|----|----|-------|-----|---|---|---|---|
| 3:45 PM     | 0 | 0  | 34    | 2  | 0 | 2   | 66    | 4   | 0 | 3  | 0  | 6   | 0 | 2   | 1  | 1  | 121   | 501 | 0 | 0 | 0 | 0 |
| 4:00 PM     | 0 | 0  | 36    | 2  | 0 | 3   | 47    | 7   | 0 | 2  | 2  | 4   | 0 | 0   | 1  | 0  | 104   | 532 | 0 | 0 | 0 | 0 |
| 4:15 PM     | 0 | 1  | 44    | 2  | 0 | 10  | 47    | 1   | 0 | 1  | 1  | 1   | 0 | 4   | 1  | 1  | 114   | 592 | 0 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 0  | 57    | 3  | 0 | 10  | 65    | 10  | 0 | 1  | 1  | 8   | 0 | 6   | 0  | 1  | 162   | 614 | 0 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 0  | 51    | 7  | 0 | 6   | 67    | 7   | 0 | 4  | 0  | 5   | 0 | 2   | 0  | 3  | 152   | 572 | 0 | 0 | 0 | 0 |
| 5:00 PM     | 0 | 1  | 47    | 1  | 0 | 10  | 78    | 13  | 0 | 3  | 2  | 7   | 0 | 1   | 1  | 0  | 164   | 543 | 0 | 0 | 0 | 0 |
| 5:15 PM     | 0 | 1  | 34    | 2  | 0 | 10  | 68    | 7   | 0 | 3  | 2  | 7   | 0 | 0   | 2  | 0  | 136   | 496 | 0 | 0 | 0 | 0 |
| 5:30 PM     | 0 | 0  | 39    | 3  | 0 | 6   | 56    | 6   | 0 | 0  | 1  | 6   | 0 | 2   | 1  | 0  | 120   | 450 | 0 | 0 | 0 | 0 |
| 5:45 PM     | 0 | 0  | 39    | 9  | 0 | 6   | 56    | 3   | 0 | 4  | 2  | 3   | 0 | 0   | 1  | 0  | 123   | 424 | 0 | 0 | 0 | 0 |
| 6:00 PM     | 0 | 1  | 45    | 2  | 0 | 5   | 51    | 2   | 0 | 5  | 1  | 3   | 0 | 0   | 1  | 1  | 117   | 388 | 0 | 0 | 0 | 0 |
| 6:15 PM     | 0 | 0  | 36    | 2  | 0 | 2   | 37    | 3   | 0 | 3  | 0  | 4   | 0 | 3   | 0  | 0  | 90    |     | 0 | 0 | 0 | 0 |
| 6:30 PM     | 0 | 1  | 27    | 1  | 0 | 4   | 46    | 6   | 0 | 1  | 0  | 4   | 0 | 1   | 0  | 3  | 94    |     | 0 | 0 | 0 | 0 |
| 6:45 PM     | 0 | 1  | 29    | 2  | 0 | 2   | 46    | 2   | 0 | 1  | 0  | 1   | 0 | 3   | 0  | 0  | 87    |     | 0 | 0 | 0 | 0 |
| Count Total | 0 | 19 | 1,939 | 85 | 0 | 220 | 1,877 | 132 | 0 | 88 | 35 | 209 | 0 | 129 | 38 | 18 | 4,789 |     | 0 | 0 | 0 | 0 |
| Peak Hour   | 0 | 2  | 189   | 13 | 0 | 36  | 278   | 37  | 0 | 11 | 5  | 27  | 0 | 9   | 3  | 4  | 614   |     | 0 | 0 | 0 | 0 |




Location: 6 SD 314 & SD 50 AM Date: Tuesday, September 20, 2022 Peak Hour: 04:30 PM - 05:30 PM Peak 15-Minutes: 05:00 PM - 05:15 PM


## **Peak Hour - Motorized Vehicles**



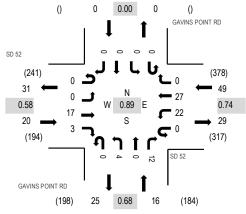


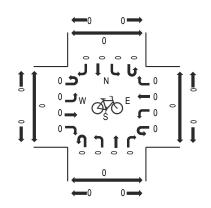
**Peak Hour - Bicycles** 



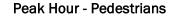


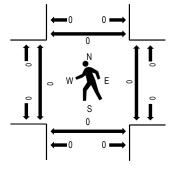
Note: Total study counts contained in parentheses.


|                |        | SD    | 50   |       |        | SD 5  | 0         |        |      | SD 3   | 14   |       |        | SD 3   | 314  |       |       |         |      |      |         |       |
|----------------|--------|-------|------|-------|--------|-------|-----------|--------|------|--------|------|-------|--------|--------|------|-------|-------|---------|------|------|---------|-------|
| Interval       |        | Eastb |      |       |        | Westb |           |        |      | Northb |      |       |        | Southt |      |       |       | Rolling |      |      | Crossin | 0     |
| <br>Start Time | U-Turn | Left  | Thru | Right | U-Turn | Left  | Thru Righ | it U-1 | Turn | Left   | Thru | Right | U-Turn | Left   | Thru | Right | Total | Hour    | West | East | South N | North |
| 7:00 AM        | 0      | 0     | 30   | 13    | 0      | 0     | 13        | 0      | 0    | 12     | 0    | 0     | 0      | 0      | 0    | 0     | 68    | 451     | 0    | 0    | 0       | 0     |
| 7:15 AM        | 0      | 0     | 37   | 35    | 0      | 1     | 26        | 0      | 0    | 12     | 0    | 1     | 0      | 0      | 0    | 0     | 112   | 482     | 0    | 0    | 0       | 0     |
| 7:30 AM        | 0      | 0     | 49   | 44    | 0      | 0     | 24        | 0      | 0    | 8      | 0    | 2     | 0      | 0      | 0    | 0     | 127   | 463     | 0    | 0    | 0       | 0     |
| 7:45 AM        | 0      | 0     | 72   | 49    | 0      | 0     | 13        | 0      | 0    | 10     | 0    | 0     | 0      | 0      | 0    | 0     | 144   | 416     | 0    | 0    | 0       | 0     |
| 8:00 AM        | 0      | 0     | 37   | 30    | 0      | 0     | 25        | 0      | 0    | 7      | 0    | 0     | 0      | 0      | 0    | 0     | 99    | 353     | 0    | 0    | 0       | 0     |
| 8:15 AM        | 0      | 0     | 27   | 23    | 0      | 0     | 33        | 0      | 0    | 10     | 0    | 0     | 0      | 0      | 0    | 0     | 93    | 313     | 0    | 0    | 0       | 0     |
| 8:30 AM        | 0      | 0     | 26   | 15    | 0      | 0     | 23        | 0      | 0    | 16     | 0    | 0     | 0      | 0      | 0    | 0     | 80    | 319     | 0    | 0    | 0       | 0     |
| 8:45 AM        | 0      | 0     | 18   | 23    | 0      | 0     | 28        | 0      | 0    | 12     | 0    | 0     | 0      | 0      | 0    | 0     | 81    | 320     | 0    | 0    | 0       | 0     |
| 9:00 AM        | 0      | 0     | 25   | 16    | 0      | 0     | 12        | 0      | 0    | 6      | 0    | 0     | 0      | 0      | 0    | 0     | 59    | 303     | 0    | 0    | 0       | 0     |
| 9:15 AM        | 0      | 0     | 42   | 10    | 0      | 0     | 40        | 0      | 0    | 7      | 0    | 0     | 0      | 0      | 0    | 0     | 99    | 326     | 0    | 0    | 0       | 0     |
| 9:30 AM        | 0      | 0     | 26   | 22    | 0      | 0     | 24        | 0      | 0    | 9      | 0    | 0     | 0      | 0      | 0    | 0     | 81    | 307     | 0    | 0    | 0       | 0     |
| 9:45 AM        | 0      | 0     | 30   | 10    | 0      | 1     | 18        | 0      | 0    | 5      | 0    | 0     | 0      | 0      | 0    | 0     | 64    | 301     | 0    | 0    | 0       | 0     |
| 10:00 AM       | 0      | 0     | 34   | 13    | 0      | 0     | 20        | 0      | 0    | 15     | 0    | 0     | 0      | 0      | 0    | 0     | 82    | 301     | 0    | 0    | 0       | 0     |
| 10:15 AM       | 0      | 0     | 27   | 14    | 0      | 0     | 24        | 0      | 0    | 15     | 0    | 0     | 0      | 0      | 0    | 0     | 80    | 290     | 0    | 0    | 0       | 0     |
| 10:30 AM       | 0      | 0     | 26   | 11    | 0      | 1     | 27        | 0      | 0    | 10     | 0    | 0     | 0      | 0      | 0    | 0     | 75    | 284     | 0    | 0    | 0       | 0     |
| 10:45 AM       | 0      | 0     | 26   | 11    | 0      | 0     | 17        | 0      | 0    | 10     | 0    | 0     | 0      | 0      | 0    | 0     | 64    | 281     | 0    | 0    | 0       | 0     |
| 11:00 AM       | 0      | 0     | 29   | 8     | 0      | 1     | 28        | 0      | 0    | 5      | 0    | 0     | 0      | 0      | 0    | 0     | 71    | 325     | 0    | 0    | 0       | 0     |
| 11:15 AM       | 0      | 0     | 29   | 11    | 0      | 0     | 26        | 0      | 0    | 8      | 0    | 0     | 0      | 0      | 0    | 0     | 74    | 340     | 0    | 0    | 0       | 0     |
| 11:30 AM       | 0      | 0     | 29   | 12    | 0      | 0     | 27        | 0      | 0    | 4      | 0    | 0     | 0      | 0      | 0    | 0     | 72    | 332     | 0    | 0    | 0       | 0     |
| 11:45 AM       | 0      | 0     | 36   | 14    | 0      | 0     | 47        | 0      | 0    | 11     | 0    | 0     | 0      | 0      | 0    | 0     | 108   | 335     | 0    | 0    | 0       | 0     |
| 12:00 PM       | 0      | 0     | 33   | 9     | 0      | 0     | 30        | 0      | 0    | 14     | 0    | 0     | 0      | 0      | 0    | 0     | 86    | 317     | 0    | 0    | 0       | 0     |
| 12:15 PM       | 0      | 0     | 18   | 13    | 0      | 1     | 29        | 0      | 0    | 5      | 0    | 0     | 0      | 0      | 0    | 0     | 66    | 316     | 0    | 0    | 0       | 0     |
| 12:30 PM       | 0      | 0     | 28   | 17    | 0      | 0     | 23        | 0      | 0    | 7      | 0    | 0     | 0      | 0      | 0    | 0     | 75    | 341     | 0    | 0    | 0       | 0     |
| 12:45 PM       | 0      | 0     | 34   | 10    | 0      | 0     | 37        | 0      | 0    | 9      | 0    | 0     | 0      | 0      | 0    | 0     | 90    | 363     | 0    | 0    | 0       | 0     |
| 1:00 PM        | 0      | 0     | 32   | 10    | 0      | 1     | 33        | 0      | 0    | 8      | 0    | 1     | 0      | 0      | 0    | 0     | 85    | 359     | 0    | 0    | 0       | 0     |
| 1:15 PM        | 0      | 0     | 39   | 20    | 0      | 0     | 22        | 0      | 0    | 10     | 0    | 0     | 0      | 0      | 0    | 0     | 91    | 355     | 0    | 0    | 0       | 0     |
| 1:30 PM        | 0      | 0     | 40   | 16    | 0      | 3     | 26        | 0      | 0    | 12     | 0    | 0     | 0      | 0      | 0    | 0     | 97    | 362     | 0    | 0    | 0       | 0     |
| 1:45 PM        | 0      | 0     | 35   | 16    | 0      | 0     | 25        | 0      | 0    | 10     | 0    | 0     | 0      | 0      | 0    | 0     | 86    | 350     | 0    | 0    | 0       | 0     |
| 2:00 PM        | 0      | 0     | 22   | 9     | 0      | 1     | 43        | 0      | 0    | 4      | 0    | 2     | 0      | 0      | 0    | 0     | 81    | 333     | 0    | 0    | 0       | 0     |
| 2:15 PM        | 0      | 0     | 27   | 14    | 0      | 0     | 46        | 0      | 0    | 11     | 0    | 0     | 0      | 0      | 0    | 0     | 98    | 351     | 0    | 0    | 0       | 0     |
| 2:30 PM        | 0      | 0     | 26   | 16    | 0      | 0     | 29        | 0      | 0    | 14     | 0    | 0     | 0      | 0      | 0    | 0     | 85    | 362     | 0    | 0    | 0       | 0     |
| 2:45 PM        | 0      | 0     | 19   | 12    | 0      | 1     | 29        | 0      | 0    | 7      | 0    | 1     | 0      | 0      | 0    | 0     | 69    | 390     | 0    | 0    | 0       | 0     |
| 3:00 PM        | 0      | 0     | 34   | 13    | 0      | 0     | 41        | 0      | 0    | 11     | 0    | 0     | 0      | 0      | 0    | 0     | 99    | 434     | 0    | 0    | 0       | 0     |
| 3:15 PM        | 0      | 0     | 28   | 19    | 0      | 0     | 42        | 0      | 0    | 20     | 0    | 0     | 0      | 0      | 0    | 0     | 109   | 431     | 0    | 0    | 0       | 0     |
|                |        |       |      |       |        |       |           |        |      |        |      |       |        |        |      |       |       |         |      |      |         |       |


| 3:30 PM     | 0 | 0 | 31    | 12  | 0 | 0  | 59    | 0 | 0 | 11  | 0 | 0 | 0 | 0 | 0 | 0 | 113   | 437 | 0 | 0 | 0 | 0 |
|-------------|---|---|-------|-----|---|----|-------|---|---|-----|---|---|---|---|---|---|-------|-----|---|---|---|---|
| 3:45 PM     | 0 | 0 | 28    | 14  | 0 | 0  | 49    | 0 | 0 | 22  | 0 | 0 | 0 | 0 | 0 | 0 | 113   | 480 | 0 | 0 | 0 | 0 |
| 4:00 PM     | 0 | 0 | 25    | 15  | 0 | 0  | 40    | 0 | 0 | 16  | 0 | 0 | 0 | 0 | 0 | 0 | 96    | 499 | 0 | 0 | 0 | 0 |
| 4:15 PM     | 0 | 0 | 40    | 12  | 0 | 1  | 48    | 0 | 0 | 13  | 0 | 1 | 0 | 0 | 0 | 0 | 115   | 566 | 0 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 0 | 49    | 21  | 0 | 0  | 70    | 0 | 0 | 16  | 0 | 0 | 0 | 0 | 0 | 0 | 156   | 572 | 0 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 0 | 38    | 17  | 0 | 0  | 64    | 0 | 0 | 13  | 0 | 0 | 0 | 0 | 0 | 0 | 132   | 539 | 0 | 0 | 0 | 0 |
| 5:00 PM     | 0 | 0 | 41    | 17  | 0 | 0  | 74    | 0 | 0 | 31  | 0 | 0 | 0 | 0 | 0 | 0 | 163   | 515 | 0 | 0 | 0 | 0 |
| 5:15 PM     | 0 | 0 | 31    | 8   | 0 | 1  | 60    | 0 | 0 | 21  | 0 | 0 | 0 | 0 | 0 | 0 | 121   | 456 | 0 | 0 | 0 | 0 |
| 5:30 PM     | 0 | 0 | 39    | 11  | 0 | 0  | 54    | 0 | 0 | 18  | 0 | 1 | 0 | 0 | 0 | 0 | 123   | 427 | 0 | 0 | 0 | 0 |
| 5:45 PM     | 0 | 0 | 33    | 11  | 0 | 1  | 52    | 0 | 0 | 11  | 0 | 0 | 0 | 0 | 0 | 0 | 108   | 387 | 0 | 0 | 0 | 0 |
| 6:00 PM     | 0 | 0 | 32    | 15  | 0 | 0  | 44    | 0 | 0 | 13  | 0 | 0 | 0 | 0 | 0 | 0 | 104   | 363 | 0 | 0 | 0 | 0 |
| 6:15 PM     | 0 | 0 | 28    | 16  | 0 | 0  | 37    | 0 | 0 | 11  | 0 | 0 | 0 | 0 | 0 | 0 | 92    |     | 0 | 0 | 0 | 0 |
| 6:30 PM     | 0 | 0 | 23    | 9   | 0 | 0  | 39    | 0 | 0 | 12  | 0 | 0 | 0 | 0 | 0 | 0 | 83    |     | 0 | 0 | 0 | 0 |
| 6:45 PM     | 0 | 0 | 27    | 6   | 0 | 0  | 45    | 0 | 0 | 6   | 0 | 0 | 0 | 0 | 0 | 0 | 84    |     | 0 | 0 | 0 | 0 |
| Count Total | 0 | 0 | 1,535 | 762 | 0 | 14 | 1,685 | 0 | 0 | 548 | 0 | 9 | 0 | 0 | 0 | 0 | 4,553 |     | 0 | 0 | 0 | 0 |
| Peak Hour   | 0 | 0 | 159   | 63  | 0 | 1  | 268   | 0 | 0 | 81  | 0 | 0 | 0 | 0 | 0 | 0 | 572   |     | 0 | 0 | 0 | 0 |




Location: 7 GAVINS POINT RD & SD 52 AM Date: Tuesday, September 20, 2022 Peak Hour: 05:30 PM - 06:30 PM Peak 15-Minutes: 05:45 PM - 06:00 PM


### **Peak Hour - Motorized Vehicles**





**Peak Hour - Bicycles** 





Note: Total study counts contained in parentheses.

|            |        | SD    | 52   |       |        | SD 5  | 52       |        | GA  | VINS PO | DINT R | D     | GA     | VINS P | OINT F | RD    |       |         |      |      |         |       |
|------------|--------|-------|------|-------|--------|-------|----------|--------|-----|---------|--------|-------|--------|--------|--------|-------|-------|---------|------|------|---------|-------|
| Interval   |        | Eastb |      |       |        | Westb | ound     |        |     | Northbo | ound   |       |        | South  | ound   |       |       | Rolling |      |      | Crossin | -     |
| Start Time | U-Turn | Left  | Thru | Right | U-Turn | Left  | Thru Rig | nt U-T | urn | Left    | Thru   | Right | U-Turn | Left   | Thru   | Right | Total | Hour    | West | East | South N | Vorth |
| 7:00 AM    | 0      | 0     | 7    | 0     | 0      | 6     | 1        | 0      | 0   | 3       | 0      | 1     | 0      | 0      | 0      | 0     | 18    | 81      | 0    | 0    | 0       | 0     |
| 7:15 AM    | 0      | 0     | 4    | 2     | 0      | 6     | 3        | 0      | 0   | 4       | 0      | 4     | 0      | 0      | 0      | 0     | 23    | 77      | 0    | 0    | 0       | 0     |
| 7:30 AM    | 0      | 0     | 12   | 0     | 0      | 1     | 3        | 0      | 0   | 1       | 0      | 8     | 0      | 0      | 0      | 0     | 25    | 69      | 0    | 0    | 0       | 0     |
| 7:45 AM    | 0      | 0     | 3    | 0     | 0      | 2     | 7        | 0      | 0   | 0       | 0      | 3     | 0      | 0      | 0      | 0     | 15    | 63      | 0    | 0    | 0       | 0     |
| 8:00 AM    | 0      | 0     | 2    | 1     | 0      | 4     | 2        | 0      | 0   | 0       | 0      | 5     | 0      | 0      | 0      | 0     | 14    | 72      | 0    | 0    | 0       | 0     |
| 8:15 AM    | 0      | 0     | 2    | 0     | 0      | 4     | 3        | 0      | 0   | 1       | 0      | 5     | 0      | 0      | 0      | 0     | 15    | 69      | 0    | 0    | 0       | 0     |
| 8:30 AM    | 0      | 0     | 3    | 1     | 0      | 4     | 3        | 0      | 0   | 2       | 0      | 6     | 0      | 0      | 0      | 0     | 19    | 62      | 0    | 0    | 0       | 0     |
| 8:45 AM    | 0      | 0     | 5    | 0     | 0      | 3     | 5        | 0      | 0   | 2       | 0      | 9     | 0      | 0      | 0      | 0     | 24    | 56      | 0    | 0    | 0       | 0     |
| 9:00 AM    | 0      | 0     | 2    | 1     | 0      | 4     | 0        | 0      | 0   | 0       | 0      | 4     | 0      | 0      | 0      | 0     | 11    | 40      | 0    | 0    | 0       | 0     |
| 9:15 AM    | 0      | 0     | 3    | 0     | 0      | 0     | 4        | 0      | 0   | 0       | 0      | 1     | 0      | 0      | 0      | 0     | 8     | 40      | 0    | 0    | 0       | 0     |
| 9:30 AM    | 0      | 0     | 1    | 1     | 0      | 3     | 5        | 0      | 0   | 1       | 0      | 2     | 0      | 0      | 0      | 0     | 13    | 43      | 0    | 1    | 0       | 0     |
| 9:45 AM    | 0      | 0     | 3    | 0     | 0      | 1     | 2        | 0      | 0   | 0       | 0      | 2     | 0      | 0      | 0      | 0     | 8     | 38      | 0    | 0    | 0       | 0     |
| 10:00 AM   | 0      | 0     | 2    | 0     | 0      | 4     | 2        | 0      | 0   | 0       | 0      | 3     | 0      | 0      | 0      | 0     | 11    | 40      | 0    | 0    | 0       | 0     |
| 10:15 AM   | 0      | 0     | 1    | 1     | 0      | 0     | 3        | 0      | 0   | 1       | 0      | 5     | 0      | 0      | 0      | 0     | 11    | 40      | 0    | 0    | 0       | 0     |
| 10:30 AM   | 0      | 0     | 3    | 0     | 0      | 1     | 2        | 0      | 0   | 1       | 0      | 1     | 0      | 0      | 0      | 0     | 8     | 41      | 0    | 0    | 0       | 0     |
| 10:45 AM   | 0      | 0     | 4    | 0     | 0      | 4     | 1        | 0      | 0   | 0       | 0      | 1     | 0      | 0      | 0      | 0     | 10    | 42      | 0    | 0    | 0       | 0     |
| 11:00 AM   | 0      | 0     | 0    | 0     | 0      | 3     | 4        | 0      | 0   | 0       | 0      | 4     | 0      | 0      | 0      | 0     | 11    | 43      | 0    | 0    | 0       | 0     |
| 11:15 AM   | 0      | 0     | 2    | 0     | 0      | 4     | 3        | 0      | 0   | 2       | 0      | 1     | 0      | 0      | 0      | 0     | 12    | 43      | 0    | 0    | 0       | 0     |
| 11:30 AM   | 0      | 0     | 2    | 0     | 0      | 2     | 3        | 0      | 0   | 1       | 0      | 1     | 0      | 0      | 0      | 0     | 9     | 41      | 0    | 0    | 0       | 0     |
| 11:45 AM   | 0      | 0     | 1    | 0     | 0      | 6     | 3        | 0      | 0   | 0       | 0      | 1     | 0      | 0      | 0      | 0     | 11    | 43      | 0    | 0    | 0       | 0     |
| 12:00 PM   | 0      | 0     | 2    | 0     | 0      | 1     | 5        | 0      | 0   | 0       | 0      | 3     | 0      | 0      | 0      | 0     | 11    | 41      | 0    | 0    | 0       | 0     |
| 12:15 PM   | 0      | 0     | 4    | 0     | 0      | 0     | 5        | 0      | 0   | 0       | 0      | 1     | 0      | 0      | 0      | 0     | 10    | 39      | 0    | 0    | 0       | 0     |
| 12:30 PM   | 0      | 0     | 2    | 0     | 0      | 0     | 6        | 0      | 0   | 0       | 0      | 3     | 0      | 0      | 0      | 0     | 11    | 48      | 0    | 0    | 0       | 0     |
| 12:45 PM   | 0      | 0     | 3    | 1     | 0      | 1     | 1        | 0      | 0   | 1       | 0      | 2     | 0      | 0      | 0      | 0     | 9     | 52      | 0    | 0    | 0       | 0     |
| 1:00 PM    | 0      | 0     | 3    | 1     | 0      | 2     | 2        | 0      | 0   | 0       | 0      | 1     | 0      | 0      | 0      | 0     | 9     | 64      | 0    | 0    | 0       | 0     |
| 1:15 PM    | 0      | 0     | 6    | 3     | 0      | 7     | 2        | 0      | 0   | 0       | 0      | 1     | 0      | 0      | 0      | 0     | 19    | 72      | 0    | 0    | 0       | 0     |
| 1:30 PM    | 0      | 0     | 4    | 1     | 0      | 3     | 4        | 0      | 0   | 0       | 0      | 3     | 0      | 0      | 0      | 0     | 15    | 79      | 0    | 0    | 0       | 0     |
| 1:45 PM    | 0      | 0     | 5    | 1     | 0      | 4     | 4        | 0      | 0   | 1       | 0      | 6     | 0      | 0      | 0      | 0     | 21    | 82      | 0    | 0    | 0       | 0     |
| 2:00 PM    | 0      | 0     | 6    | 1     | 0      | 3     | 4        | 0      | 0   | 0       | 0      | 3     | 0      | 0      | 0      | 0     | 17    | 83      | 0    | 0    | 0       | 0     |
| 2:15 PM    | 0      | 0     | 7    | 1     | 0      | 3     | 11       | 0      | 0   | 0       | 0      | 4     | 0      | 0      | 0      | 0     | 26    | 82      | 0    | 0    | 0       | 0     |
| 2:30 PM    | 0      | 0     | 4    | 1     | 0      | 4     | 4        | 0      | 0   | 1       | 0      | 4     | 0      | 0      | 0      | 0     | 18    | 71      | 0    | 0    | 0       | 0     |
| 2:45 PM    | 0      | 0     | 5    | 0     | 0      | 4     | 8        | 0      | 0   | 0       | 0      | 5     | 0      | 0      | 0      | 0     | 22    | 78      | 0    | 0    | 0       | 0     |
| 3:00 PM    | 0      | 0     | 4    | 0     | 0      | 8     | 3        | 0      | 0   | 1       | 0      | 0     | 0      | 0      | 0      | 0     | 16    | 73      | 0    | 0    | 0       | 0     |
| 3:15 PM    | 0      | 0     | 2    | 0     | 0      | 7     | 3        | 0      | 0   | 1       | 0      | 2     | 0      | 0      | 0      | 0     | 15    | 76      | 0    | 0    | 0       | 0     |

| 3:30 PM     | 0 | 0 | 1   | 2  | 0 | 6   | 11  | 0 | 0 | 2  | 0 | 3   | 0 | 0 | 0 | 0 | 25  | 78 | 0 | 0 | 0 | 0 |
|-------------|---|---|-----|----|---|-----|-----|---|---|----|---|-----|---|---|---|---|-----|----|---|---|---|---|
| 3:45 PM     | 0 | 0 | 3   | 0  | 0 | 4   | 4   | 0 | 0 | 0  | 0 | 6   | 0 | 0 | 0 | 0 | 17  | 71 | 0 | 0 | 0 | 0 |
| 4:00 PM     | 0 | 0 | 1   | 0  | 0 | 4   | 5   | 0 | 0 | 1  | 0 | 8   | 0 | 0 | 0 | 0 | 19  | 74 | 0 | 0 | 0 | 0 |
| 4:15 PM     | 0 | 0 | 5   | 1  | 0 | 3   | 5   | 0 | 0 | 0  | 0 | 3   | 0 | 0 | 0 | 0 | 17  | 66 | 0 | 0 | 0 | 0 |
| 4:30 PM     | 0 | 0 | 0   | 1  | 0 | 6   | 7   | 0 | 0 | 1  | 0 | 3   | 0 | 0 | 0 | 0 | 18  | 65 | 0 | 0 | 0 | 0 |
| 4:45 PM     | 0 | 0 | 5   | 0  | 0 | 6   | 9   | 0 | 0 | 0  | 0 | 0   | 0 | 0 | 0 | 0 | 20  | 68 | 0 | 0 | 0 | 0 |
| 5:00 PM     | 0 | 0 | 4   | 0  | 0 | 2   | 3   | 0 | 0 | 0  | 0 | 2   | 0 | 0 | 0 | 0 | 11  | 72 | 0 | 0 | 0 | 0 |
| 5:15 PM     | 0 | 0 | 3   | 2  | 0 | 5   | 6   | 0 | 0 | 0  | 0 | 0   | 0 | 0 | 0 | 0 | 16  | 79 | 0 | 0 | 0 | 0 |
| 5:30 PM     | 0 | 0 | 5   | 0  | 0 | 8   | 6   | 0 | 0 | 0  | 0 | 2   | 0 | 0 | 0 | 0 | 21  | 85 | 0 | 0 | 0 | 0 |
| 5:45 PM     | 0 | 0 | 3   | 1  | 0 | 5   | 11  | 0 | 0 | 2  | 0 | 2   | 0 | 0 | 0 | 0 | 24  | 84 | 0 | 0 | 0 | 0 |
| 6:00 PM     | 0 | 0 | 6   | 1  | 0 | 4   | 4   | 0 | 0 | 2  | 0 | 1   | 0 | 0 | 0 | 0 | 18  | 73 | 0 | 0 | 0 | 0 |
| 6:15 PM     | 0 | 0 | 3   | 1  | 0 | 5   | 6   | 0 | 0 | 0  | 0 | 7   | 0 | 0 | 0 | 0 | 22  |    | 0 | 0 | 0 | 0 |
| 6:30 PM     | 0 | 0 | 7   | 0  | 0 | 1   | 5   | 0 | 0 | 1  | 0 | 6   | 0 | 0 | 0 | 0 | 20  |    | 0 | 0 | 0 | 0 |
| 6:45 PM     | 0 | 0 | 2   | 1  | 0 | 3   | 4   | 0 | 0 | 1  | 0 | 2   | 0 | 0 | 0 | 0 | 13  |    | 0 | 0 | 0 | 0 |
| Count Total | 0 | 0 | 167 | 27 | 0 | 171 | 207 | 0 | 0 | 34 | 0 | 150 | 0 | 0 | 0 | 0 | 756 |    | 0 | 1 | 0 | 0 |
| Peak Hour   | 0 | 0 | 17  | 3  | 0 | 22  | 27  | 0 | 0 | 4  | 0 | 12  | 0 | 0 | 0 | 0 | 85  |    | 0 | 0 | 0 | 0 |

## Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|----------|------|------|------|------|------|------|------|--|
| Lane Configurations    | 1    | et   |      | 1    | el<br>el |      |      | \$   |      |      | ÷    |      |  |
| Traffic Vol, veh/h     | 0    | 292  | 6    | 9    | 116      | 6    | 6    | 0    | 29   | 35   | 5    | 0    |  |
| Future Vol, veh/h      | 0    | 292  | 6    | 9    | 116      | 6    | 6    | 0    | 29   | 35   | 5    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free     | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None | -    | -        | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 100  | -    | -    | 115  | -        | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0        | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0        | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 70   | 70   | 70   | 100  | 100      | 100  | 100  | 100  | 100  | 100  | 100  | 100  |  |
| Heavy Vehicles, %      | 0    | 5    | 17   | 0    | 19       | 17   | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 0    | 417  | 9    | 9    | 116      | 6    | 6    | 0    | 29   | 35   | 5    | 0    |  |

|                      |         |         |        |     | -     |        |     |       |         |     |     |  |
|----------------------|---------|---------|--------|-----|-------|--------|-----|-------|---------|-----|-----|--|
| Major/Minor I        | Major1  |         | Major2 |     |       | Minor1 |     |       | /linor2 |     |     |  |
| Conflicting Flow All | 122     | 0 0     | 426    | 0   | 0     | 562    | 562 | 422   | 573     | 563 | 119 |  |
| Stage 1              | -       |         | -      | -   | -     | 422    | 422 | -     | 137     | 137 | -   |  |
| Stage 2              | -       |         | -      | -   | -     | 140    | 140 | -     | 436     | 426 | -   |  |
| Critical Hdwy        | 4.1     |         | 4.1    | -   | -     | 7.1    | 6.5 | 6.2   | 7.1     | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -       |         | -      | -   | -     | 6.1    | 5.5 | -     | 6.1     | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -       |         | -      | -   | -     | 6.1    | 5.5 | -     | 6.1     | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2     |         | 2.2    | -   | -     | 3.5    | 4   | 3.3   | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1478    |         | 1144   | -   | -     | 441    | 439 | 636   | 433     | 438 | 938 |  |
| Stage 1              | -       |         | -      | -   | -     | 613    | 592 | -     | 871     | 787 | -   |  |
| Stage 2              | -       |         | -      | -   | -     | 868    | 785 | -     | 603     | 589 | -   |  |
| Platoon blocked, %   |         |         |        | -   | -     |        |     |       |         |     |     |  |
| Mov Cap-1 Maneuver   | 1478    |         | 1144   | -   | -     | 434    | 435 | 636   | 411     | 434 | 938 |  |
| Mov Cap-2 Maneuver   | -       |         | -      | -   | -     | 434    | 435 | -     | 411     | 434 | -   |  |
| Stage 1              | -       |         | -      | -   | -     | 613    | 592 | -     | 871     | 781 | -   |  |
| Stage 2              | -       |         | -      | -   | -     | 856    | 779 | -     | 576     | 589 | -   |  |
|                      |         |         |        |     |       |        |     |       |         |     |     |  |
| Approach             | EB      |         | WB     |     |       | NB     |     |       | SB      |     |     |  |
| HCM Control Delay, s | 0       |         | 0.6    |     |       | 11.5   |     |       | 14.6    |     |     |  |
| HCM LOS              |         |         |        |     |       | В      |     |       | В       |     |     |  |
|                      |         |         |        |     |       |        |     |       |         |     |     |  |
| Minor Lane/Major Mvm | nt NBLr | n1 EBL  | EBT    | EBR | WBL   | WBT    | WBR | SBLn1 |         |     |     |  |
| Capacity (veh/h)     | 58      | 39 1478 | -      | -   | 1144  | -      | -   | 414   |         |     |     |  |
| HCM Lane V/C Ratio   | 0.05    |         | -      | -   | 0.008 | -      | -   | 0.097 |         |     |     |  |

| HCM Lane V/C Ratio    | 0.059 | - | - | - 0.0 | 308 | - | - | 0.097 |  |  |
|-----------------------|-------|---|---|-------|-----|---|---|-------|--|--|
| HCM Control Delay (s) | 11.5  | 0 | - | -     | 8.2 | - | - | 14.6  |  |  |
| HCM Lane LOS          | В     | А | - | -     | А   | - | - | В     |  |  |
| HCM 95th %tile Q(veh) | 0.2   | 0 | - | -     | 0   | - | - | 0.3   |  |  |

### Intersection

Int Delay, s/veh

| Movement EDI EDT EDD \\/DI \\/DT \\/DD \\DI \\DT \\DD \DD \DD \DD \DD \DD \DD \DD \ | SBR  | SBT  | C  | SBL  | NBR  | NBT               | NBL  | WBR  | WBT  | WBL     | EBR  | EBT  | EBL  | Movement               |
|-------------------------------------------------------------------------------------|------|------|----|------|------|-------------------|------|------|------|---------|------|------|------|------------------------|
|                                                                                     | SDR  |      | -  | SDL  | NDR  |                   | INDL | VUDN |      | VVDL    | EDN  |      |      |                        |
| Lane Configurations 🎢 🛧 🌴 🛟                                                         |      | -∰   |    |      |      | - <del>4</del> 7- |      |      | _¶₽  | <u></u> |      | _¶₽  |      |                        |
| Traffic Vol, veh/h 13 86 2 14 45 11 1 0 5 43 1                                      | 2    | 1    |    | 43   | 5    | 0                 | 1    | 11   | 45   | 14      | 2    | 86   | 13   | Traffic Vol, veh/h     |
| Future Vol, veh/h 13 86 2 14 45 11 1 0 5 43 1                                       | 2    | 1    |    | 43   | 5    | 0                 | 1    | 11   | 45   | 14      | 2    | 86   | 13   | Future Vol, veh/h      |
| Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0                                        | 0    | 0    |    | 0    | 0    | 0                 | 0    | 0    | 0    | 0       | 0    | 0    | 0    | Conflicting Peds, #/hr |
| Sign Control Free Free Free Free Free Free Stop Stop Stop Stop                      | Stop | Stop | St | Stop | Stop | Stop              | Stop | Free | Free | Free    | Free | Free | Free | Sign Control           |
| RT Channelized None None I                                                          | None | - 1  |    | -    | None | -                 | -    | None | -    | -       | None | -    | -    | RT Channelized         |
| Storage Length 125 125                                                              | -    | -    |    | -    | -    | -                 | -    | -    | -    | 125     | -    | -    | 125  | Storage Length         |
| Veh in Median Storage, # - 0 0 0 0                                                  | -    | 0    |    | -    | -    | 0                 | -    | -    | 0    | -       | -    | 0    | # -  | Veh in Median Storage, |
| Grade, % - 0 0 0 0                                                                  | -    | 0    |    | -    | -    | 0                 | -    | -    | 0    | -       | -    | 0    | -    | Grade, %               |
| Peak Hour Factor 79 79 79 88 88 88 50 50 50 72 72                                   | 72   | 72   |    | 72   | 50   | 50                | 50   | 88   | 88   | 88      | 79   | 79   | 79   | Peak Hour Factor       |
| Heavy Vehicles, % 0 1 0 0 0 0 0 0 0 0 0                                             | 0    | 0    |    | 0    | 0    | 0                 | 0    | 0    | 0    | 0       | 0    | 1    | 0    | Heavy Vehicles, %      |
| Mvmt Flow 16 109 3 16 51 13 2 0 10 60 1                                             | 3    | 1    |    | 60   | 10   | 0                 | 2    | 13   | 51   | 16      | 3    | 109  | 16   | Mvmt Flow              |

| Major/Minor           | Major1 |       | 1     | Major2 |     | 1     | Minor1 |     | Ν     | /linor2 |     |      |  |
|-----------------------|--------|-------|-------|--------|-----|-------|--------|-----|-------|---------|-----|------|--|
| Conflicting Flow All  | 64     | 0     | 0     | 112    | 0   | 0     | 201    | 239 | 56    | 177     | 234 | 32   |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 143    | 143 | -     | 90      | 90  | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 58     | 96  | -     | 87      | 144 | -    |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.1    | -   | -     | 7.5    | 6.5 | 6.9   | 7.5     | 6.5 | 6.9  |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -     | 6.5    | 5.5 | -     | 6.5     | 5.5 | -    |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -     | 6.5    | 5.5 | -     | 6.5     | 5.5 | -    |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.2    | -   | -     | 3.5    | 4   | 3.3   | 3.5     | 4   | 3.3  |  |
| Pot Cap-1 Maneuver    | 1551   | -     | -     | 1490   | -   | -     | 745    | 666 | 1005  | 774     | 670 | 1041 |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 851    | 782 | -     | 913     | 824 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 953    | 819 | -     | 917     | 782 | -    |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -     |        |     |       |         |     |      |  |
| Mov Cap-1 Maneuver    | 1551   | -     | -     | 1490   | -   | -     | 730    | 652 | 1005  | 754     | 656 | 1041 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -     | 730    | 652 | -     | 754     | 656 | -    |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 842    | 774 | -     | 904     | 815 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 939    | 810 | -     | 899     | 774 | -    |  |
|                       |        |       |       |        |     |       |        |     |       |         |     |      |  |
| Approach              | EB     |       |       | WB     |     |       | NB     |     |       | SB      |     |      |  |
| HCM Control Delay, s  | 0.9    |       |       | 1.5    |     |       | 8.9    |     |       | 10.2    |     |      |  |
| HCM LOS               |        |       |       |        |     |       | A      |     |       | В       |     |      |  |
|                       |        |       |       |        |     |       |        |     |       |         |     |      |  |
| Minor Lane/Major Mvm  | nt     | NBLn1 | EBL   | EBT    | EBR | WBL   | WBT    | WBR | SBLn1 |         |     |      |  |
| Capacity (veh/h)      |        | 946   | 1551  | -      | -   | 1490  | -      | -   | 761   |         |     |      |  |
| HCM Lane V/C Ratio    |        | 0.013 | 0.011 | -      | -   | 0.011 | -      | -   | 0.084 |         |     |      |  |
| HCM Control Delay (s) | )      | 8.9   | 7.3   | -      | -   | 7.4   | -      | -   | 10.2  |         |     |      |  |

HCM Lane LOS В А А А ----HCM 95th %tile Q(veh) 0 0 0.3 0 -\_ --

## Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR   |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Lane Configurations    | ٦    | ef 👘 |      | ۲    | ef 👘 |      |      | 4    |      |      | र्च  | 1     |
| Traffic Vol, veh/h     | 150  | 265  | 0    | 3    | 101  | 57   | 0    | 6    | 6    | 56   | 0    | 61    |
| Future Vol, veh/h      | 150  | 265  | 0    | 3    | 101  | 57   | 0    | 6    | 6    | 56   | 0    | 61    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop  |
| RT Channelized         | -    | -    | None | -    | -    | None | -    | -    | None | -    | -    | Yield |
| Storage Length         | 100  | -    | -    | 100  | -    | -    | -    | -    | -    | -    | -    | 125   |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Peak Hour Factor       | 56   | 56   | 56   | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100   |
| Heavy Vehicles, %      | 0    | 1    | 2    | 0    | 5    | 16   | 0    | 0    | 0    | 11   | 0    | 5     |
| Mvmt Flow              | 268  | 473  | 0    | 3    | 101  | 57   | 0    | 6    | 6    | 56   | 0    | 61    |

| Major/Minor I        | Major1 |       | Ν     | /lajor2 |     | 1     | Minor1 |      |       | Minor2 |      |       |  |
|----------------------|--------|-------|-------|---------|-----|-------|--------|------|-------|--------|------|-------|--|
| Conflicting Flow All | 158    | 0     | 0     | 473     | 0   | 0     | 1145   | 1173 | 473   | 1151   | 1145 | 130   |  |
| Stage 1              | -      | -     | -     | -       | -   | -     | 1009   | 1009 | -     | 136    | 136  | -     |  |
| Stage 2              | -      | -     | -     | -       | -   | -     | 136    | 164  | -     | 1015   | 1009 | -     |  |
| Critical Hdwy        | 4.1    | -     | -     | 4.1     | -   | -     | 7.1    | 6.5  | 6.2   | 7.21   | 6.5  | 6.25  |  |
| Critical Hdwy Stg 1  | -      | -     | -     | -       | -   | -     | 6.1    | 5.5  | -     | 6.21   | 5.5  | -     |  |
| Critical Hdwy Stg 2  | -      | -     | -     | -       | -   | -     | 6.1    | 5.5  | -     | 6.21   | 5.5  | -     |  |
| Follow-up Hdwy       | 2.2    | -     | -     | 2.2     | -   | -     | 3.5    | 4    | 3.3   | 3.599  | 4    | 3.345 |  |
| Pot Cap-1 Maneuver   | 1434   | -     | -     | 1099    | -   | -     | 178    | 194  | 595   | 168    | 201  | 912   |  |
| Stage 1              | -      | -     | -     | -       | -   | -     | 292    | 320  | -     | 846    | 788  | -     |  |
| Stage 2              | -      | -     | -     | -       | -   | -     | 872    | 766  | -     | 276    | 320  | -     |  |
| Platoon blocked, %   |        | -     | -     |         | -   | -     |        |      |       |        |      |       |  |
| Mov Cap-1 Maneuver   | 1434   | -     | -     | 1099    | -   | -     | 142    | 157  | 595   | 138    | 163  | 912   |  |
| Mov Cap-2 Maneuver   | -      | -     | -     | -       | -   | -     | 142    | 157  | -     | 138    | 163  | -     |  |
| Stage 1              | -      | -     | -     | -       | -   | -     | 237    | 260  | -     | 688    | 786  | -     |  |
| Stage 2              | -      | -     | -     | -       | -   | -     | 811    | 764  | -     | 217    | 260  | -     |  |
|                      |        |       |       |         |     |       |        |      |       |        |      |       |  |
| Approach             | EB     |       |       | WB      |     |       | NB     |      |       | SB     |      |       |  |
| HCM Control Delay, s | 2.9    |       |       | 0.2     |     |       | 20.3   |      |       | 27.7   |      |       |  |
| HCM LOS              |        |       |       |         |     |       | С      |      |       | D      |      |       |  |
|                      |        |       |       |         |     |       |        |      |       |        |      |       |  |
| Minor Lane/Major Mvm | it N   | BLn1  | EBL   | EBT     | EBR | WBL   | WBT    | WBR  | SBLn1 | SBLn2  |      |       |  |
| Capacity (veh/h)     |        | 248   | 1434  | _       | -   | 1099  | -      | -    | 138   | 912    |      |       |  |
| HCM Lane V/C Ratio   | (      | 0.048 | 0.187 | -       | -   | 0.003 | -      | -    | 0.406 | 0.067  |      |       |  |

| HCM Control Delay (s)       20.3       8.1       -       -       8.3       -       -       47.9       9.2         HCM Lane LOS       C       A       -       -       A       -       E       A         HCM 95th %tile Q(veh)       0.2       0.7       -       0       -       -       1.8       0.2 | HCM Lane V/C Ratio    | 0.048 ( | 0.187 | - | - ( | 0.003 | - | - ( | ).406 | ).067 |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|-------|---|-----|-------|---|-----|-------|-------|--|--|
|                                                                                                                                                                                                                                                                                                      | HCM Control Delay (s) | 20.3    | 8.1   | - | -   | 8.3   | - | -   | 47.9  | 9.2   |  |  |
| HCM 95th %tile Q(veh) 0.2 0.7 0 1.8 0.2                                                                                                                                                                                                                                                              | HCM Lane LOS          | С       | А     | - | -   | А     | - | -   | Е     | А     |  |  |
|                                                                                                                                                                                                                                                                                                      | HCM 95th %tile Q(veh) | 0.2     | 0.7   | - | -   | 0     | - | -   | 1.8   | 0.2   |  |  |

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    | 5    | 4    |      | 5    | 4    |      |      | 4    |      | -    | 4    |      |  |
| Traffic Vol, veh/h     | 0    | 222  | 7    | 2    | 111  | 1    | 16   | 0    | 8    | 1    | 0    | 0    |  |
| Future Vol, veh/h      | 0    | 222  | 7    | 2    | 111  | 1    | 16   | 0    | 8    | 1    | 0    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 115  | -    | -    | 120  | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 84   | 84   | 84   | 75   | 75   | 75   | 86   | 86   | 86   | 25   | 25   | 25   |  |
| Heavy Vehicles, %      | 0    | 6    | 0    | 0    | 19   | 0    | 0    | 0    | 13   | 0    | 0    | 0    |  |
| Mvmt Flow              | 0    | 264  | 8    | 3    | 148  | 1    | 19   | 0    | 9    | 4    | 0    | 0    |  |

| Major/Minor          | Major1 |   | Ν | Major2 |   | Ν | linor1 |     | Ν     | linor2 |     |     |  |
|----------------------|--------|---|---|--------|---|---|--------|-----|-------|--------|-----|-----|--|
| Conflicting Flow All | 149    | 0 | 0 | 272    | 0 | 0 | 423    | 423 | 268   | 428    | 427 | 149 |  |
| Stage 1              | -      | - | - | -      | - | - | 268    | 268 | -     | 155    | 155 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 155    | 155 | -     | 273    | 272 | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.1    | - | - | 7.1    | 6.5 | 6.33  | 7.1    | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.1    | 5.5 | -     | 6.1    | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.1    | 5.5 | -     | 6.1    | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2    | - | - | 3.5    | 4   | 3.417 | 3.5    | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1445   | - | - | 1303   | - | - | 545    | 526 | 745   | 541    | 523 | 903 |  |
| Stage 1              | -      | - | - | -      | - | - | 742    | 691 | -     | 852    | 773 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 852    | 773 | -     | 737    | 688 | -   |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |     |       |        |     |     |  |
| Mov Cap-1 Maneuver   | 1445   | - | - | 1303   | - | - | 544    | 525 | 745   | 533    | 522 | 903 |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 544    | 525 | -     | 533    | 522 | -   |  |
| Stage 1              | -      | - | - | -      | - | - | 742    | 691 | -     | 852    | 771 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 850    | 771 | -     | 728    | 688 | -   |  |
|                      |        |   |   |        |   |   |        |     |       |        |     |     |  |
| Approach             | EB     |   |   | WB     |   |   | NB     |     |       | SB     |     |     |  |
| HCM Control Delay, s | 0      |   |   | 0.1    |   |   | 11.3   |     |       | 11.8   |     |     |  |
| HCM LOS              |        |   |   |        |   |   | В      |     |       | В      |     |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR | SBLn1 |
|-----------------------|-------|------|-----|-----|-------|-----|-----|-------|
| Capacity (veh/h)      | 598   | 1445 | -   | -   | 1303  | -   | -   | 533   |
| HCM Lane V/C Ratio    | 0.047 | -    | -   | -   | 0.002 | -   | -   | 0.008 |
| HCM Control Delay (s) | 11.3  | 0    | -   | -   | 7.8   | -   | -   | 11.8  |
| HCM Lane LOS          | В     | Α    | -   | -   | А     | -   | -   | В     |
| HCM 95th %tile Q(veh) | 0.1   | 0    | -   | -   | 0     | -   | -   | 0     |

| Int Delay, s/veh       | 1.4  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | 1    |      | ٦    | 1    | Y    |      |
| Traffic Vol, veh/h     | 195  | 0    | 1    | 88   | 37   | 3    |
| Future Vol, veh/h      | 195  | 0    | 1    | 88   | 37   | 3    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | 120  | -    | 0    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 73   | 73   | 82   | 82   | 77   | 77   |
| Heavy Vehicles, %      | 6    | 0    | 0    | 2    | 19   | 0    |
| Mvmt Flow              | 267  | 0    | 1    | 107  | 48   | 4    |

| Major/Minor          | Major1 | Ν     | Major2 |       | Minor1 |       |
|----------------------|--------|-------|--------|-------|--------|-------|
| Conflicting Flow All | 0      | -     | 267    | 0     | 376    | 267   |
| Stage 1              | -      |       | 207    | -     | 267    | 207   |
| Stage 2              | -      | _     | -      | -     | 109    | -     |
| Critical Hdwy        |        | -     | 4.1    | _     | 6.59   | 6.2   |
| Critical Hdwy Stg 1  | _      |       | -      | -     | 5.59   | - 0.2 |
| Critical Hdwy Stg 2  | -      |       | -      | _     | 5.59   | -     |
| Follow-up Hdwy       | _      | -     | 2.2    |       | 3.671  | 3.3   |
| Pot Cap-1 Maneuver   | -      | 0     | 1308   | -     | 593    | 777   |
| Stage 1              | -      | 0     | -      | -     | 740    | -     |
| Stage 2              |        | 0     | -      | _     | 875    | _     |
| Platoon blocked, %   | _      | U     |        | _     | 015    |       |
| Mov Cap-1 Maneuver   |        | -     | 1308   | _     | 592    | 777   |
| Mov Cap-2 Maneuver   |        | _     | -      | _     | 592    | -     |
| Stage 1              | _      | _     | _      | _     | 740    | _     |
| Stage 2              | _      | _     | _      | -     | 874    | -     |
| Oldge 2              |        |       |        |       | 014    |       |
|                      |        |       |        |       |        |       |
| Approach             | EB     |       | WB     |       | NB     |       |
| HCM Control Delay, s | ; O    |       | 0.1    |       | 11.5   |       |
| HCM LOS              |        |       |        |       | В      |       |
|                      |        |       |        |       |        |       |
| Minor Lane/Major Mvr | mt     | NBLn1 | EBT    | WBL   | WBT    |       |
| Capacity (veh/h)     |        | 603   | -      |       | -      |       |
| HCM Lane V/C Ratio   |        | 0.086 |        | 0.001 | -      |       |
| HCM Control Delay (s | :)     | 11.5  | -      | 7.8   | -      |       |
| HCM Lane LOS         | ,      | B     | -      | A     | -      |       |
| HCM 95th %tile Q(veh | h)     | 0.3   | -      | 0     | -      |       |
|                      | ''     | 0.0   |        | 0     |        |       |

### Intersection

| Movement               | EBL  | EBT          | EBR  | WBL  | WBT          | WBR  | NBL      | NBT   | NBR  | SBL  | SBT              | SBR  |
|------------------------|------|--------------|------|------|--------------|------|----------|-------|------|------|------------------|------|
|                        |      |              | LDIX | VVDL |              | WDIN |          |       | NDIN | JDL  |                  | SDIX |
| Lane Configurations    | - 1  | - <b>†</b> Þ |      | - 1  | - <b>†</b> Þ |      | <u>٦</u> | ર્ન 👘 |      |      | - <del>(</del> } |      |
| Traffic Vol, veh/h     | 0    | 183          | 7    | 9    | 74           | 0    | 4        | 0     | 7    | 2    | 0                | 1    |
| Future Vol, veh/h      | 0    | 183          | 7    | 9    | 74           | 0    | 4        | 0     | 7    | 2    | 0                | 1    |
| Conflicting Peds, #/hr | 0    | 0            | 0    | 0    | 0            | 0    | 0        | 0     | 0    | 0    | 0                | 0    |
| Sign Control           | Free | Free         | Free | Free | Free         | Free | Stop     | Stop  | Stop | Stop | Stop             | Stop |
| RT Channelized         | -    | -            | None | -    | -            | None | -        | -     | None | -    | -                | None |
| Storage Length         | 50   | -            | -    | 125  | -            | -    | 90       | -     | -    | -    | -                | -    |
| Veh in Median Storage, | # -  | 0            | -    | -    | 0            | -    | -        | 0     | -    | -    | 0                | -    |
| Grade, %               | -    | 0            | -    | -    | 0            | -    | -        | 0     | -    | -    | 0                | -    |
| Peak Hour Factor       | 80   | 80           | 80   | 83   | 83           | 83   | 69       | 69    | 69   | 75   | 75               | 75   |
| Heavy Vehicles, %      | 0    | 0            | 14   | 11   | 4            | 0    | 25       | 0     | 0    | 0    | 0                | 0    |
| Mvmt Flow              | 0    | 229          | 9    | 11   | 89           | 0    | 6        | 0     | 10   | 3    | 0                | 1    |

| Major/Minor N         | Major1 |       | N     | Major2 |     |     | Minor1 |     | Ν     | linor2 |     |      |  |
|-----------------------|--------|-------|-------|--------|-----|-----|--------|-----|-------|--------|-----|------|--|
| Conflicting Flow All  | 89     | 0     | 0     | 238    | 0   | 0   | 301    | 345 | 119   | 226    | 349 | 45   |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 234    | 234 | -     | 111    | 111 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 67     | 111 | -     | 115    | 238 | -    |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.32   | -   | -   | 8      | 6.5 | 6.9   | 7.5    | 6.5 | 6.9  |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -   | 7      | 5.5 | -     | 6.5    | 5.5 | -    |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -   | 7      | 5.5 | -     | 6.5    | 5.5 | -    |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.31   | -   | -   | 3.75   | 4   | 3.3   | 3.5    | 4   | 3.3  |  |
| Pot Cap-1 Maneuver    | 1519   | -     | -     | 1263   | -   | -   | 573    | 581 | 917   | 715    | 578 | 1022 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 686    | 715 | -     | 888    | 807 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 872    | 807 | -     | 883    | 712 | -    |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -   |        |     |       |        |     |      |  |
| Mov Cap-1 Maneuver    | 1519   | -     | -     | 1263   | -   | -   | 568    | 576 | 917   | 702    | 573 | 1022 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -   | 568    | 576 | -     | 702    | 573 | -    |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 686    | 715 | -     | 888    | 800 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 863    | 800 | -     | 873    | 712 | -    |  |
|                       |        |       |       |        |     |     |        |     |       |        |     |      |  |
| Approach              | EB     |       |       | WB     |     |     | NB     |     |       | SB     |     |      |  |
| HCM Control Delay, s  | 0      |       |       | 0.9    |     |     | 9.9    |     |       | 9.6    |     |      |  |
| HCM LOS               |        |       |       |        |     |     | А      |     |       | Α      |     |      |  |
|                       |        |       |       |        |     |     |        |     |       |        |     |      |  |
| Minor Lane/Major Mvm  | t I    | VBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT | WBR S | BLn1   |     |      |  |
| Capacity (veh/h)      |        | 568   | 917   | 1519   | -   | -   | 1263   | -   | -     | 784    |     |      |  |
| HCM Lane V/C Ratio    |        | 0.01  | 0.011 | -      | -   | -   | 0.009  | -   | -     | 0.005  |     |      |  |
| HCM Control Delay (s) |        | 11.4  | 9     | 0      | -   | -   | 7.9    | -   | -     | 9.6    |     |      |  |
| HCM Lane LOS          |        | В     | А     | А      | -   | -   | А      | -   | -     | А      |     |      |  |
| HCM 95th %tile Q(veh) | )      | 0     | 0     | 0      | -   | -   | 0      | -   | -     | 0      |     |      |  |

# Intersection

| Movement               | EBL  | EBT         | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|-------------|------|------|-------------|------|------|------|------|------|------|------|
| Lane Configurations    | ኘ    | <b>∱</b> î≽ |      | ۲    | <b>∱</b> î≽ |      |      | र्च  | 1    |      | ÷    |      |
| Traffic Vol, veh/h     | 7    | 150         | 12   | 36   | 77          | 4    | 9    | 2    | 123  | 4    | 1    | 3    |
| Future Vol, veh/h      | 7    | 150         | 12   | 36   | 77          | 4    | 9    | 2    | 123  | 4    | 1    | 3    |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free        | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -           | None | -    | -           | None | -    | -    | None | -    | -    | None |
| Storage Length         | 100  | -           | -    | 100  | -           | -    | 60   | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 78   | 78          | 78   | 94   | 94          | 94   | 70   | 70   | 70   | 50   | 50   | 50   |
| Heavy Vehicles, %      | 0    | 1           | 8    | 3    | 1           | 0    | 0    | 0    | 0    | 25   | 0    | 0    |
| Mvmt Flow              | 9    | 192         | 15   | 38   | 82          | 4    | 13   | 3    | 176  | 8    | 2    | 6    |

| Major1 |                                                                                                   |                                                                                                                                                                         | Major2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | Minor1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /linor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 86     | 0                                                                                                 | 0                                                                                                                                                                       | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                     | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.1    | -                                                                                                 | -                                                                                                                                                                       | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.2    | -                                                                                                 | -                                                                                                                                                                       | 2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1523   | -                                                                                                 | -                                                                                                                                                                       | 1354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | -                                                                                                 | -                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1523   | -                                                                                                 | -                                                                                                                                                                       | 1354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EB     |                                                                                                   |                                                                                                                                                                         | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.3    |                                                                                                   |                                                                                                                                                                         | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nt     | NBLn1                                                                                             | NBLn2                                                                                                                                                                   | EBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EBR                                                   | WBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WBR S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 571                                                                                               | 937                                                                                                                                                                     | 1523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 1354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 0.028                                                                                             | 0.188                                                                                                                                                                   | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| )      | 11.5                                                                                              | 9.7                                                                                                                                                                     | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | В                                                                                                 | А                                                                                                                                                                       | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| I)     | 0.1                                                                                               | 0.7                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 86<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 86 0<br><br>4.1 -<br><br>2.2 -<br>1523 -<br><br>1523 -<br><br>1523 -<br><br>1523 -<br><br>1523 -<br><br>1523 -<br><br>1523 -<br><br><br><br>571<br>0.028<br>) 11.5<br>B | 86       0       0         -       -       -         4.1       -       -         -       -       -         1523       -       -         -       -       -         1523       -       -         -       -       -         1523       -       -         -       -       -         1523       -       -         -       -       -         1523       -       -         -       -       -         0.3       -       -         EB       0.3       -         0.3       -       -         0.028       0.188       -         )       11.5       9.7         B       A | 86       0       0       207         -       -       -       -         4.1       -       -       4.16         -       -       -       -         4.1       -       -       4.16         -       -       -       -         2.2       -       -       2.23         1523       -       1354         -       -       -         1523       -       1354         -       -       -         1523       -       1354         -       -       -         1523       -       1354         -       -       -         0.3       2.4         EB       WB         0.3       2.4         571       937       1523         0.028       0.188       0.006         )       11.5       9.7       7.4         B       A       A | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 86         0         0         207         0         0           -         -         -         -         -         -         -           4.1         -         4.16         -         -         -         -           4.1         -         4.16         -         -         -         -         -           -         -         -         -         -         -         -         -           2.2         -         2.23         -         -         -         -         -           1523         -         1354         -         -         -         -         -           -         -         -         -         -         -         -         -         -           1523         -         1354         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | 86       0       0       207       0       0       336         -       -       -       -       -       218         -       -       -       -       218         -       -       -       -       218         -       -       -       -       118         4.1       -       -       4.16       -       -       7.5         -       -       -       -       6.5       -       -       6.5         2.2       -       2.23       -       -       3.5       1523       -       -       599         -       -       1354       -       -       599       -       -       770         -       -       -       -       -       880       -       770         -       -       -       -       -       -       770       -       -       770         -       -       -       -       -       880       -       -       779         -       -       1354       -       -       579       -       -       765         -       -       - | 86         0         0         207         0         0         336         380           -         -         -         -         -         218         218           -         -         -         -         -         218         218           -         -         -         -         118         162 $4.1$ -         - $4.16$ -         -         7.5 $6.5$ -         -         -         -         6.5 $5.5$ $5.5$ -         -         -         2.23         -         - $3.5$ $4$ 1523         -         1354         -         -         599         556           -         -         -         -         -         770         726           -         -         -         -         -         880         768           -         -         -         -         579         537           -         -         -         -         765         722           -         -         -         -         848         746 | 86         0         0         207         0         0         336         380         104           -         -         -         -         218         218         -           -         -         -         -         118         162         -           4.1         -         4.16         -         7.5         6.5         6.9           -         -         -         -         6.5         5.5         -           -         -         -         6.5         5.5         -           2.2         -         2.23         -         3.5         4         3.3           1523         -         1354         -         599         556         937           -         -         -         -         880         768         -           -         -         -         -         579         537         937           -         -         -         -         579         537         -           -         -         -         -         848         746         -           -         -         -         -         1354         - <td>86         0         <math>207</math>         0         0         <math>336</math> <math>380</math> <math>104</math> <math>276</math>           -         -         -         -         218         218         -         <math>160</math>           -         -         -         -         118         <math>162</math>         -         <math>116</math> <math>4.1</math>         -         -         <math>4.16</math>         -         -         <math>7.5</math> <math>6.5</math> <math>6.9</math> <math>8</math>           -         -         -         -         6.5         <math>5.5</math>         -         <math>7</math>           -         -         <math>2.23</math>         -         <math>3.5</math> <math>4</math> <math>3.3</math> <math>3.75</math> <math>1523</math>         -         <math>1354</math>         -         <math>599</math> <math>556</math> <math>937</math> <math>598</math>           -         -         -         -         7070         <math>726</math> <math>-764</math>           -         -         -         -         <math>880</math> <math>768</math> <math>813</math>           -         -         -         <math>579</math> <math>537</math> <math>937</math> <math>471</math>           -         -         -         <math>765</math> <math>722</math> <math>759</math>           -</td> <td>86       0       0       207       0       0       336       380       104       276       385         -       -       -       -       218       218       -       160       160         -       -       -       118       162       -       116       225         4.1       -       -       4.16       -       -       7.5       6.5       6.9       8       6.5         -       -       -       -       6.5       5.5       -       7       5.5         2.2       -       2.23       -       3.5       4       3.3       3.75       4         1523       -       1354       -       599       556       937       598       552         -       -       -       -       707       726       -       764       769         -       -       -       -       -       579       537       937       471       533         -       -       -       -       579       537       937       471       533         -       -       -       -       765       722       -       <td< td=""><td>86       0       0       207       0       0       336       380       104       276       385       43         -       -       -       -       218       218       -       160       160       -         -       -       -       118       162       -       116       225       -         4.1       -       4.16       -       -       7.5       6.5       6.9       8       6.5       6.9         -       -       -       -       6.5       5.5       -       7       5.5       -         2.2       -       2.23       -       -       3.5       4       3.3       3.75       4       3.3         1523       -       1354       -       -       599       556       937       598       552       1025         -       -       -       -       7070       726       -       764       769       -         1523       -       1354       -       -       579       537       937       471       533       1025         -       -       -       765       722       -       759</td></td<></td> | 86         0 $207$ 0         0 $336$ $380$ $104$ $276$ -         -         -         -         218         218         - $160$ -         -         -         -         118 $162$ - $116$ $4.1$ -         - $4.16$ -         - $7.5$ $6.5$ $6.9$ $8$ -         -         -         -         6.5 $5.5$ - $7$ -         - $2.23$ - $3.5$ $4$ $3.3$ $3.75$ $1523$ - $1354$ - $599$ $556$ $937$ $598$ -         -         -         -         7070 $726$ $-764$ -         -         -         - $880$ $768$ $813$ -         -         - $579$ $537$ $937$ $471$ -         -         - $765$ $722$ $759$ - | 86       0       0       207       0       0       336       380       104       276       385         -       -       -       -       218       218       -       160       160         -       -       -       118       162       -       116       225         4.1       -       -       4.16       -       -       7.5       6.5       6.9       8       6.5         -       -       -       -       6.5       5.5       -       7       5.5         2.2       -       2.23       -       3.5       4       3.3       3.75       4         1523       -       1354       -       599       556       937       598       552         -       -       -       -       707       726       -       764       769         -       -       -       -       -       579       537       937       471       533         -       -       -       -       579       537       937       471       533         -       -       -       -       765       722       - <td< td=""><td>86       0       0       207       0       0       336       380       104       276       385       43         -       -       -       -       218       218       -       160       160       -         -       -       -       118       162       -       116       225       -         4.1       -       4.16       -       -       7.5       6.5       6.9       8       6.5       6.9         -       -       -       -       6.5       5.5       -       7       5.5       -         2.2       -       2.23       -       -       3.5       4       3.3       3.75       4       3.3         1523       -       1354       -       -       599       556       937       598       552       1025         -       -       -       -       7070       726       -       764       769       -         1523       -       1354       -       -       579       537       937       471       533       1025         -       -       -       765       722       -       759</td></td<> | 86       0       0       207       0       0       336       380       104       276       385       43         -       -       -       -       218       218       -       160       160       -         -       -       -       118       162       -       116       225       -         4.1       -       4.16       -       -       7.5       6.5       6.9       8       6.5       6.9         -       -       -       -       6.5       5.5       -       7       5.5       -         2.2       -       2.23       -       -       3.5       4       3.3       3.75       4       3.3         1523       -       1354       -       -       599       556       937       598       552       1025         -       -       -       -       7070       726       -       764       769       -         1523       -       1354       -       -       579       537       937       471       533       1025         -       -       -       765       722       -       759 |

## Intersection

| Movement               | EBL  | EBT           | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|---------------|------|------|-------------|------|------|------|------|------|------|------|--|
| Lane Configurations    | ሻ    | _ <b>≜</b> î≽ |      | ۲.   | <b>∱</b> î≽ |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h     | 0    | 371           | 3    | 6    | 156         | 3    | 4    | 0    | 24   | 2    | 0    | 1    |  |
| Future Vol, veh/h      | 0    | 371           | 3    | 6    | 156         | 3    | 4    | 0    | 24   | 2    | 0    | 1    |  |
| Conflicting Peds, #/hr | 0    | 0             | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free          | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -             | None | -    | -           | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 50   | -             | -    | 110  | -           | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | ,# - | 0             | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0             | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 60   | 60            | 60   | 78   | 78          | 78   | 58   | 58   | 58   | 38   | 38   | 38   |  |
| Heavy Vehicles, %      | 0    | 1             | 0    | 0    | 4           | 0    | 25   | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 0    | 618           | 5    | 8    | 200         | 4    | 7    | 0    | 41   | 5    | 0    | 3    |  |

| Major/Minor          | Major1 |       | Ν   | /lajor2 |     | 1   | Minor1 |       | Ν     | /linor2 |     |     |  |
|----------------------|--------|-------|-----|---------|-----|-----|--------|-------|-------|---------|-----|-----|--|
| Conflicting Flow All | 204    | 0     | 0   | 623     | 0   | 0   | 737    | 841   | 312   | 527     | 841 | 102 |  |
| Stage 1              | -      | -     | -   | -       | -   | -   | 621    | 621   | -     | 218     | 218 | -   |  |
| Stage 2              | -      | -     | -   | -       | -   | -   | 116    | 220   | -     | 309     | 623 | -   |  |
| Critical Hdwy        | 4.1    | -     | -   | 4.1     | -   | -   | 8      | 6.5   | 6.9   | 7.5     | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1  | -      | -     | -   | -       | -   | -   | 7      | 5.5   | -     | 6.5     | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | -     | -   | -       | -   | -   | 7      | 5.5   | -     | 6.5     | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | -     | -   | 2.2     | -   | -   | 3.75   | 4     | 3.3   | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1380   | -     | -   | 968     | -   | -   | 267    | 303   | 690   | 438     | 303 | 940 |  |
| Stage 1              | -      | -     | -   | -       | -   | -   | 390    | 482   | -     | 770     | 726 | -   |  |
| Stage 2              | -      | -     | -   | -       | -   | -   | 813    | 725   | -     | 682     | 481 | -   |  |
| Platoon blocked, %   |        | -     | -   |         | -   | -   |        |       |       |         |     |     |  |
| Mov Cap-1 Maneuver   | 1380   | -     | -   | 968     | -   | -   | 265    | 301   | 690   | 409     | 301 | 940 |  |
| Mov Cap-2 Maneuver   | -      | -     | -   | -       | -   | -   | 265    | 301   | -     | 409     | 301 | -   |  |
| Stage 1              | -      | -     | -   | -       | -   | -   | 390    | 482   | -     | 770     | 720 | -   |  |
| Stage 2              | -      | -     | -   | -       | -   | -   | 804    | 719   | -     | 641     | 481 | -   |  |
|                      |        |       |     |         |     |     |        |       |       |         |     |     |  |
| Approach             | EB     |       |     | WB      |     |     | NB     |       |       | SB      |     |     |  |
| HCM Control Delay, s | 0      |       |     | 0.3     |     |     | 12     |       |       | 12.3    |     |     |  |
| HCM LOS              |        |       |     |         |     |     | В      |       |       | В       |     |     |  |
|                      |        |       |     |         |     |     |        |       |       |         |     |     |  |
| Minor Lane/Major Mvn | nt N   | IBLn1 | EBL | EBT     | EBR | WBL | WBT    | WBR S | SBLn1 |         |     |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR S | SBLn1 |  |
|-----------------------|-------|------|-----|-----|-------|-----|-------|-------|--|
| Capacity (veh/h)      | 561   | 1380 | -   | -   | 968   | -   | -     | 504   |  |
| HCM Lane V/C Ratio    | 0.086 | -    | -   | -   | 800.0 | -   | -     | 0.016 |  |
| HCM Control Delay (s) | 12    | 0    | -   | -   | 8.7   | -   | -     | 12.3  |  |
| HCM Lane LOS          | В     | А    | -   | -   | А     | -   | -     | В     |  |
| HCM 95th %tile Q(veh) | 0.3   | 0    | -   | -   | 0     | -   | -     | 0     |  |

| Int Delay, s/veh       | 3.5  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | ef 👘 |      |      | ्र   | - Y  |      |
| Traffic Vol, veh/h     | 19   | 1    | 11   | 15   | 2    | 21   |
| Future Vol, veh/h      | 19   | 1    | 11   | 15   | 2    | 21   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | -    | -    | 0    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 42   | 42   | 72   | 72   | 64   | 64   |
| Heavy Vehicles, %      | 0    | 0    | 0    | 0    | 0    | 5    |
| Mvmt Flow              | 45   | 2    | 15   | 21   | 3    | 33   |

| Major/Minor           | Major1 | Ν        | /lajor2 | Ν   | /linor1 |       |
|-----------------------|--------|----------|---------|-----|---------|-------|
| Conflicting Flow All  | 0      | 0        | 47      | 0   | 97      | 46    |
| Stage 1               | -      | -        | -       | -   | 46      | -     |
| Stage 2               | -      | -        | -       | -   | 51      | -     |
| Critical Hdwy         | -      | -        | 4.1     | -   | 6.4     | 6.25  |
| Critical Hdwy Stg 1   | -      | -        | -       | -   | 5.4     | -     |
| Critical Hdwy Stg 2   | -      | -        | -       | -   | 5.4     | -     |
| Follow-up Hdwy        | -      | -        | 2.2     | -   | 3.5     | 3.345 |
| Pot Cap-1 Maneuver    | -      | -        | 1573    | -   | •••     | 1015  |
| Stage 1               | -      | -        | -       | -   | 982     | -     |
| Stage 2               | -      | -        | -       | -   | 977     | -     |
| Platoon blocked, %    | -      | -        |         | -   |         |       |
| Mov Cap-1 Maneuver    | -      | -        | 1573    | -   | 898     | 1015  |
| Mov Cap-2 Maneuver    | -      | -        | -       | -   | 854     | -     |
| Stage 1               | -      | -        | -       | -   | 982     | -     |
| Stage 2               | -      | -        | -       | -   | 967     | -     |
|                       |        |          |         |     |         |       |
| Approach              | EB     |          | WB      |     | NB      |       |
| HCM Control Delay, s  | 0      |          | 3.1     |     | 8.7     |       |
| HCM LOS               |        |          |         |     | А       |       |
|                       |        |          |         |     |         |       |
| Minor Lane/Major Mvn  | nt N   | VBLn1    | EBT     | EBR | WBL     | WBT   |
| Capacity (veh/h)      |        | 999      | -       | -   | 1573    | -     |
| HCM Lane V/C Ratio    |        | 0.036    | _       | -   | 0.01    | _     |
| HCM Control Delay (s) | )      | 8.7      | -       | -   | 7.3     | 0     |
| HCM Lane LOS          | /      | 0.7<br>A | _       | -   | A       | A     |
| HCM 95th %tile Q(veh  | )      | 0.1      | -       | -   | 0       | -     |
|                       |        | <b>.</b> |         |     |         |       |

| Int Delay, s/veh       | 0     |      |      |      |      |      |
|------------------------|-------|------|------|------|------|------|
| Movement               | EBL   | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    |       | 1    |      | 1    | 1    |      |
| Traffic Vol, veh/h     | 0     | 158  | 0    | 40   | 1    | 0    |
| Future Vol, veh/h      | 0     | 158  | 0    | 40   | 1    | 0    |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free  | Free | Free | Free | Stop | Stop |
| RT Channelized         | -     | None | -    | None | -    | None |
| Storage Length         | -     | 0    | -    | -    | -    | -    |
| Veh in Median Storage  | , # 1 | -    | -    | 0    | 0    | -    |
| Grade, %               | 0     | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 73    | 73   | 77   | 77   | 82   | 82   |
| Heavy Vehicles, %      | 0     | 3    | 0    | 20   | 0    | 0    |
| Mvmt Flow              | 0     | 216  | 0    | 52   | 1    | 0    |

| Major/Minor           | Major1    | Ν | linor2 |   |
|-----------------------|-----------|---|--------|---|
| Conflicting Flow All  | -         | 0 | 52     | - |
| Stage 1               | -         | - | 0      | - |
| Stage 2               | -         | - | 52     | - |
| Critical Hdwy         | -         | - | 6.5    | - |
| Critical Hdwy Stg 1   | -         | - | -      | - |
| Critical Hdwy Stg 2   | -         | - | 5.5    | - |
| Follow-up Hdwy        | -         | - | 4      | - |
| Pot Cap-1 Maneuver    | 0         | - | 843    | 0 |
| Stage 1               | 0         | - | -      | 0 |
| Stage 2               | 0         | - | 856    | 0 |
| Platoon blocked, %    |           | - |        |   |
| Mov Cap-1 Maneuver    | -         | - | 0      | - |
| Mov Cap-2 Maneuver    | -         | - | 0      | - |
| Stage 1               | -         | - | 0      | - |
| Stage 2               | -         | - | 0      | - |
|                       |           |   |        |   |
| Approach              | NB        |   | SB     |   |
| HCM Control Delay, s  | 0         |   |        |   |
| HCM LOS               | Ū         |   | -      |   |
|                       |           |   |        |   |
|                       |           |   |        |   |
| Minor Lane/Major Mvmt | NBT SBLn1 |   |        |   |
| Capacity (veh/h)      |           |   |        |   |
| HCM Lane V/C Ratio    |           |   |        |   |
| HCM Control Delay (s) |           |   |        |   |
| HCM Lane LOS          |           |   |        |   |
| HCM 95th %tile Q(veh) |           |   |        |   |

## Intersection

| Movement               | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|----------|------|------|----------|------|------|------|------|------|------|------|--|
| Lane Configurations    | 1    | el<br>el |      | 1    | el<br>el |      |      | \$   |      |      | ÷    |      |  |
| Traffic Vol, veh/h     | 0    | 292      | 6    | 9    | 116      | 6    | 6    | 0    | 29   | 35   | 5    | 0    |  |
| Future Vol, veh/h      | 0    | 292      | 6    | 9    | 116      | 6    | 6    | 0    | 29   | 35   | 5    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free     | Free | Free | Free     | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -        | None | -    | -        | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 100  | -        | -    | 115  | -        | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0        | -    | -    | 0        | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0        | -    | -    | 0        | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 70   | 70       | 70   | 100  | 100      | 100  | 100  | 100  | 100  | 100  | 100  | 100  |  |
| Heavy Vehicles, %      | 0    | 5        | 17   | 0    | 19       | 17   | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 0    | 417      | 9    | 9    | 116      | 6    | 6    | 0    | 29   | 35   | 5    | 0    |  |

|                      |         |         |        |     | -     |        |     |       |         |     |     |  |
|----------------------|---------|---------|--------|-----|-------|--------|-----|-------|---------|-----|-----|--|
| Major/Minor I        | Major1  |         | Major2 |     |       | Minor1 |     |       | /linor2 |     |     |  |
| Conflicting Flow All | 122     | 0 0     | 426    | 0   | 0     | 562    | 562 | 422   | 573     | 563 | 119 |  |
| Stage 1              | -       |         | -      | -   | -     | 422    | 422 | -     | 137     | 137 | -   |  |
| Stage 2              | -       |         | -      | -   | -     | 140    | 140 | -     | 436     | 426 | -   |  |
| Critical Hdwy        | 4.1     |         | 4.1    | -   | -     | 7.1    | 6.5 | 6.2   | 7.1     | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -       |         | -      | -   | -     | 6.1    | 5.5 | -     | 6.1     | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -       |         | -      | -   | -     | 6.1    | 5.5 | -     | 6.1     | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2     |         | 2.2    | -   | -     | 3.5    | 4   | 3.3   | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1478    |         | 1144   | -   | -     | 441    | 439 | 636   | 433     | 438 | 938 |  |
| Stage 1              | -       |         | -      | -   | -     | 613    | 592 | -     | 871     | 787 | -   |  |
| Stage 2              | -       |         | -      | -   | -     | 868    | 785 | -     | 603     | 589 | -   |  |
| Platoon blocked, %   |         |         |        | -   | -     |        |     |       |         |     |     |  |
| Mov Cap-1 Maneuver   | 1478    |         | 1144   | -   | -     | 434    | 435 | 636   | 411     | 434 | 938 |  |
| Mov Cap-2 Maneuver   | -       |         | -      | -   | -     | 434    | 435 | -     | 411     | 434 | -   |  |
| Stage 1              | -       |         | -      | -   | -     | 613    | 592 | -     | 871     | 781 | -   |  |
| Stage 2              | -       |         | -      | -   | -     | 856    | 779 | -     | 576     | 589 | -   |  |
|                      |         |         |        |     |       |        |     |       |         |     |     |  |
| Approach             | EB      |         | WB     |     |       | NB     |     |       | SB      |     |     |  |
| HCM Control Delay, s | 0       |         | 0.6    |     |       | 11.5   |     |       | 14.6    |     |     |  |
| HCM LOS              |         |         |        |     |       | В      |     |       | В       |     |     |  |
|                      |         |         |        |     |       |        |     |       |         |     |     |  |
| Minor Lane/Major Mvm | nt NBLr | n1 EBL  | EBT    | EBR | WBL   | WBT    | WBR | SBLn1 |         |     |     |  |
| Capacity (veh/h)     | 58      | 39 1478 | -      | -   | 1144  | -      | -   | 414   |         |     |     |  |
| HCM Lane V/C Ratio   | 0.05    |         | -      | -   | 0.008 | -      | -   | 0.097 |         |     |     |  |

| HCM Lane V/C Ratio    | 0.059 | - | - | - 0.0 | 308 | - | - | 0.097 |  |  |
|-----------------------|-------|---|---|-------|-----|---|---|-------|--|--|
| HCM Control Delay (s) | 11.5  | 0 | - | -     | 8.2 | - | - | 14.6  |  |  |
| HCM Lane LOS          | В     | А | - | -     | А   | - | - | В     |  |  |
| HCM 95th %tile Q(veh) | 0.2   | 0 | - | -     | 0   | - | - | 0.3   |  |  |

### Intersection

Int Delay, s/veh

| Movement EDI EDT EDD \\/DI \\/DT \\/DD \\DI \\DT \\DD \DD \DD \DD \DD \DD \DD \DD \ | SBR  | SBT  | C  | SBL  | NBR  | NBT               | NBL  | WBR  | WBT  | WBL     | EBR  | EBT  | EBL  | Movement               |
|-------------------------------------------------------------------------------------|------|------|----|------|------|-------------------|------|------|------|---------|------|------|------|------------------------|
|                                                                                     | SDR  |      | -  | SDL  | NDR  |                   | INDL | VUDN |      | VVDL    | EDN  |      |      |                        |
| Lane Configurations 🎢 🛧 🌴 🛟                                                         |      | -∰   |    |      |      | - <del>4</del> 9- |      |      | _¶₽  | <u></u> |      | _¶₽  |      |                        |
| Traffic Vol, veh/h 13 86 2 14 45 11 1 0 5 43 1                                      | 2    | 1    |    | 43   | 5    | 0                 | 1    | 11   | 45   | 14      | 2    | 86   | 13   | Traffic Vol, veh/h     |
| Future Vol, veh/h 13 86 2 14 45 11 1 0 5 43 1                                       | 2    | 1    |    | 43   | 5    | 0                 | 1    | 11   | 45   | 14      | 2    | 86   | 13   | Future Vol, veh/h      |
| Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0                                        | 0    | 0    |    | 0    | 0    | 0                 | 0    | 0    | 0    | 0       | 0    | 0    | 0    | Conflicting Peds, #/hr |
| Sign Control Free Free Free Free Free Free Stop Stop Stop Stop                      | Stop | Stop | St | Stop | Stop | Stop              | Stop | Free | Free | Free    | Free | Free | Free | Sign Control           |
| RT Channelized None None I                                                          | None | - 1  |    | -    | None | -                 | -    | None | -    | -       | None | -    | -    | RT Channelized         |
| Storage Length 125 125                                                              | -    | -    |    | -    | -    | -                 | -    | -    | -    | 125     | -    | -    | 125  | Storage Length         |
| Veh in Median Storage, # - 0 0 0 0                                                  | -    | 0    |    | -    | -    | 0                 | -    | -    | 0    | -       | -    | 0    | # -  | Veh in Median Storage, |
| Grade, % - 0 0 0 0                                                                  | -    | 0    |    | -    | -    | 0                 | -    | -    | 0    | -       | -    | 0    | -    | Grade, %               |
| Peak Hour Factor 79 79 79 88 88 88 50 50 50 72 72                                   | 72   | 72   |    | 72   | 50   | 50                | 50   | 88   | 88   | 88      | 79   | 79   | 79   | Peak Hour Factor       |
| Heavy Vehicles, % 0 1 0 0 0 0 0 0 0 0 0                                             | 0    | 0    |    | 0    | 0    | 0                 | 0    | 0    | 0    | 0       | 0    | 1    | 0    | Heavy Vehicles, %      |
| Mvmt Flow 16 109 3 16 51 13 2 0 10 60 1                                             | 3    | 1    |    | 60   | 10   | 0                 | 2    | 13   | 51   | 16      | 3    | 109  | 16   | Mvmt Flow              |

| Major/Minor           | Major1 |       | 1     | Major2 |     | 1     | Minor1 |     | Ν     | /linor2 |     |      |  |
|-----------------------|--------|-------|-------|--------|-----|-------|--------|-----|-------|---------|-----|------|--|
| Conflicting Flow All  | 64     | 0     | 0     | 112    | 0   | 0     | 201    | 239 | 56    | 177     | 234 | 32   |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 143    | 143 | -     | 90      | 90  | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 58     | 96  | -     | 87      | 144 | -    |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.1    | -   | -     | 7.5    | 6.5 | 6.9   | 7.5     | 6.5 | 6.9  |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -     | 6.5    | 5.5 | -     | 6.5     | 5.5 | -    |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -     | 6.5    | 5.5 | -     | 6.5     | 5.5 | -    |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.2    | -   | -     | 3.5    | 4   | 3.3   | 3.5     | 4   | 3.3  |  |
| Pot Cap-1 Maneuver    | 1551   | -     | -     | 1490   | -   | -     | 745    | 666 | 1005  | 774     | 670 | 1041 |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 851    | 782 | -     | 913     | 824 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 953    | 819 | -     | 917     | 782 | -    |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -     |        |     |       |         |     |      |  |
| Mov Cap-1 Maneuver    | 1551   | -     | -     | 1490   | -   | -     | 730    | 652 | 1005  | 754     | 656 | 1041 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -     | 730    | 652 | -     | 754     | 656 | -    |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 842    | 774 | -     | 904     | 815 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 939    | 810 | -     | 899     | 774 | -    |  |
|                       |        |       |       |        |     |       |        |     |       |         |     |      |  |
| Approach              | EB     |       |       | WB     |     |       | NB     |     |       | SB      |     |      |  |
| HCM Control Delay, s  | 0.9    |       |       | 1.5    |     |       | 8.9    |     |       | 10.2    |     |      |  |
| HCM LOS               |        |       |       |        |     |       | A      |     |       | В       |     |      |  |
|                       |        |       |       |        |     |       |        |     |       |         |     |      |  |
| Minor Lane/Major Mvm  | nt     | NBLn1 | EBL   | EBT    | EBR | WBL   | WBT    | WBR | SBLn1 |         |     |      |  |
| Capacity (veh/h)      |        | 946   | 1551  | -      | -   | 1490  | -      | -   | 761   |         |     |      |  |
| HCM Lane V/C Ratio    |        | 0.013 | 0.011 | -      | -   | 0.011 | -      | -   | 0.084 |         |     |      |  |
| HCM Control Delay (s) | )      | 8.9   | 7.3   | -      | -   | 7.4   | -      | -   | 10.2  |         |     |      |  |

HCM Lane LOS В А А А ----HCM 95th %tile Q(veh) 0 0 0.3 0 -\_ --

## Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR   |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Lane Configurations    | ٦    | ef 👘 |      | ۲    | ef 👘 |      |      | 4    |      |      | र्च  | 1     |
| Traffic Vol, veh/h     | 150  | 265  | 0    | 3    | 101  | 57   | 0    | 6    | 6    | 56   | 0    | 61    |
| Future Vol, veh/h      | 150  | 265  | 0    | 3    | 101  | 57   | 0    | 6    | 6    | 56   | 0    | 61    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop  |
| RT Channelized         | -    | -    | None | -    | -    | None | -    | -    | None | -    | -    | Yield |
| Storage Length         | 100  | -    | -    | 100  | -    | -    | -    | -    | -    | -    | -    | 125   |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Peak Hour Factor       | 56   | 56   | 56   | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100   |
| Heavy Vehicles, %      | 0    | 1    | 2    | 0    | 5    | 16   | 0    | 0    | 0    | 11   | 0    | 5     |
| Mvmt Flow              | 268  | 473  | 0    | 3    | 101  | 57   | 0    | 6    | 6    | 56   | 0    | 61    |

| Major/Minor I        | Major1 |       | Ν     | /lajor2 |     | 1     | Minor1 |      |       | Minor2 |      |       |  |
|----------------------|--------|-------|-------|---------|-----|-------|--------|------|-------|--------|------|-------|--|
| Conflicting Flow All | 158    | 0     | 0     | 473     | 0   | 0     | 1145   | 1173 | 473   | 1151   | 1145 | 130   |  |
| Stage 1              | -      | -     | -     | -       | -   | -     | 1009   | 1009 | -     | 136    | 136  | -     |  |
| Stage 2              | -      | -     | -     | -       | -   | -     | 136    | 164  | -     | 1015   | 1009 | -     |  |
| Critical Hdwy        | 4.1    | -     | -     | 4.1     | -   | -     | 7.1    | 6.5  | 6.2   | 7.21   | 6.5  | 6.25  |  |
| Critical Hdwy Stg 1  | -      | -     | -     | -       | -   | -     | 6.1    | 5.5  | -     | 6.21   | 5.5  | -     |  |
| Critical Hdwy Stg 2  | -      | -     | -     | -       | -   | -     | 6.1    | 5.5  | -     | 6.21   | 5.5  | -     |  |
| Follow-up Hdwy       | 2.2    | -     | -     | 2.2     | -   | -     | 3.5    | 4    | 3.3   | 3.599  | 4    | 3.345 |  |
| Pot Cap-1 Maneuver   | 1434   | -     | -     | 1099    | -   | -     | 178    | 194  | 595   | 168    | 201  | 912   |  |
| Stage 1              | -      | -     | -     | -       | -   | -     | 292    | 320  | -     | 846    | 788  | -     |  |
| Stage 2              | -      | -     | -     | -       | -   | -     | 872    | 766  | -     | 276    | 320  | -     |  |
| Platoon blocked, %   |        | -     | -     |         | -   | -     |        |      |       |        |      |       |  |
| Mov Cap-1 Maneuver   | 1434   | -     | -     | 1099    | -   | -     | 142    | 157  | 595   | 138    | 163  | 912   |  |
| Mov Cap-2 Maneuver   | -      | -     | -     | -       | -   | -     | 142    | 157  | -     | 138    | 163  | -     |  |
| Stage 1              | -      | -     | -     | -       | -   | -     | 237    | 260  | -     | 688    | 786  | -     |  |
| Stage 2              | -      | -     | -     | -       | -   | -     | 811    | 764  | -     | 217    | 260  | -     |  |
|                      |        |       |       |         |     |       |        |      |       |        |      |       |  |
| Approach             | EB     |       |       | WB      |     |       | NB     |      |       | SB     |      |       |  |
| HCM Control Delay, s | 2.9    |       |       | 0.2     |     |       | 20.3   |      |       | 27.7   |      |       |  |
| HCM LOS              |        |       |       |         |     |       | С      |      |       | D      |      |       |  |
|                      |        |       |       |         |     |       |        |      |       |        |      |       |  |
| Minor Lane/Major Mvm | it N   | BLn1  | EBL   | EBT     | EBR | WBL   | WBT    | WBR  | SBLn1 | SBLn2  |      |       |  |
| Capacity (veh/h)     |        | 248   | 1434  | _       | -   | 1099  | -      | -    | 138   | 912    |      |       |  |
| HCM Lane V/C Ratio   | (      | 0.048 | 0.187 | -       | -   | 0.003 | -      | -    | 0.406 | 0.067  |      |       |  |

| HCM Control Delay (s)       20.3       8.1       -       -       8.3       -       -       47.9       9.2         HCM Lane LOS       C       A       -       -       A       -       E       A         HCM 95th %tile Q(veh)       0.2       0.7       -       0       -       -       1.8       0.2 | HCM Lane V/C Ratio    | 0.048 ( | 0.187 | - | - ( | 0.003 | - | - ( | ).406 | ).067 |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|-------|---|-----|-------|---|-----|-------|-------|--|--|
|                                                                                                                                                                                                                                                                                                      | HCM Control Delay (s) | 20.3    | 8.1   | - | -   | 8.3   | - | -   | 47.9  | 9.2   |  |  |
| HCM 95th %tile Q(veh) 0.2 0.7 0 1.8 0.2                                                                                                                                                                                                                                                              | HCM Lane LOS          | С       | А     | - | -   | А     | - | -   | Е     | А     |  |  |
|                                                                                                                                                                                                                                                                                                      | HCM 95th %tile Q(veh) | 0.2     | 0.7   | - | -   | 0     | - | -   | 1.8   | 0.2   |  |  |

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    | 5    | 4    |      | 5    | 4    |      |      | 4    |      | -    | 4    |      |  |
| Traffic Vol, veh/h     | 0    | 222  | 7    | 2    | 111  | 1    | 16   | 0    | 8    | 1    | 0    | 0    |  |
| Future Vol, veh/h      | 0    | 222  | 7    | 2    | 111  | 1    | 16   | 0    | 8    | 1    | 0    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 115  | -    | -    | 120  | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 84   | 84   | 84   | 75   | 75   | 75   | 86   | 86   | 86   | 25   | 25   | 25   |  |
| Heavy Vehicles, %      | 0    | 6    | 0    | 0    | 19   | 0    | 0    | 0    | 13   | 0    | 0    | 0    |  |
| Mvmt Flow              | 0    | 264  | 8    | 3    | 148  | 1    | 19   | 0    | 9    | 4    | 0    | 0    |  |

| Major/Minor          | Major1 |   | Ν | Major2 |   | Ν | linor1 |     | Ν     | linor2 |     |     |  |
|----------------------|--------|---|---|--------|---|---|--------|-----|-------|--------|-----|-----|--|
| Conflicting Flow All | 149    | 0 | 0 | 272    | 0 | 0 | 423    | 423 | 268   | 428    | 427 | 149 |  |
| Stage 1              | -      | - | - | -      | - | - | 268    | 268 | -     | 155    | 155 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 155    | 155 | -     | 273    | 272 | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.1    | - | - | 7.1    | 6.5 | 6.33  | 7.1    | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.1    | 5.5 | -     | 6.1    | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.1    | 5.5 | -     | 6.1    | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2    | - | - | 3.5    | 4   | 3.417 | 3.5    | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1445   | - | - | 1303   | - | - | 545    | 526 | 745   | 541    | 523 | 903 |  |
| Stage 1              | -      | - | - | -      | - | - | 742    | 691 | -     | 852    | 773 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 852    | 773 | -     | 737    | 688 | -   |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |     |       |        |     |     |  |
| Mov Cap-1 Maneuver   | 1445   | - | - | 1303   | - | - | 544    | 525 | 745   | 533    | 522 | 903 |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 544    | 525 | -     | 533    | 522 | -   |  |
| Stage 1              | -      | - | - | -      | - | - | 742    | 691 | -     | 852    | 771 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 850    | 771 | -     | 728    | 688 | -   |  |
|                      |        |   |   |        |   |   |        |     |       |        |     |     |  |
| Approach             | EB     |   |   | WB     |   |   | NB     |     |       | SB     |     |     |  |
| HCM Control Delay, s | 0      |   |   | 0.1    |   |   | 11.3   |     |       | 11.8   |     |     |  |
| HCM LOS              |        |   |   |        |   |   | В      |     |       | В      |     |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR | SBLn1 |
|-----------------------|-------|------|-----|-----|-------|-----|-----|-------|
| Capacity (veh/h)      | 598   | 1445 | -   | -   | 1303  | -   | -   | 533   |
| HCM Lane V/C Ratio    | 0.047 | -    | -   | -   | 0.002 | -   | -   | 0.008 |
| HCM Control Delay (s) | 11.3  | 0    | -   | -   | 7.8   | -   | -   | 11.8  |
| HCM Lane LOS          | В     | Α    | -   | -   | А     | -   | -   | В     |
| HCM 95th %tile Q(veh) | 0.1   | 0    | -   | -   | 0     | -   | -   | 0     |

| Int Delay, s/veh       | 1.4  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | 1    |      | ٦    | 1    | Y    |      |
| Traffic Vol, veh/h     | 195  | 0    | 1    | 88   | 37   | 3    |
| Future Vol, veh/h      | 195  | 0    | 1    | 88   | 37   | 3    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | 120  | -    | 0    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 73   | 73   | 82   | 82   | 77   | 77   |
| Heavy Vehicles, %      | 6    | 0    | 0    | 2    | 19   | 0    |
| Mvmt Flow              | 267  | 0    | 1    | 107  | 48   | 4    |

| Major/Minor          | Major1 | Ν     | Major2 |       | Minor1 |       |
|----------------------|--------|-------|--------|-------|--------|-------|
| Conflicting Flow All | 0      | -     | 267    | 0     | 376    | 267   |
| Stage 1              | -      | -     | 207    | -     | 267    | 207   |
| Stage 2              | -      | _     | -      | -     | 109    | -     |
| Critical Hdwy        | _      | -     | 4.1    | _     | 6.59   | 6.2   |
| Critical Hdwy Stg 1  | _      |       | -      | -     | 5.59   | - 0.2 |
| Critical Hdwy Stg 2  | -      |       | -      | _     | 5.59   | -     |
| Follow-up Hdwy       | _      | -     | 2.2    |       | 3.671  | 3.3   |
| Pot Cap-1 Maneuver   | -      | 0     | 1308   | -     | 593    | 777   |
| Stage 1              | -      | 0     | -      | -     | 740    | -     |
| Stage 2              |        | 0     | -      | _     | 875    | _     |
| Platoon blocked, %   | _      | U     |        | _     | 015    |       |
| Mov Cap-1 Maneuver   |        | -     | 1308   | _     | 592    | 777   |
| Mov Cap-2 Maneuver   |        | _     | -      | _     | 592    | -     |
| Stage 1              | _      | _     | _      | _     | 740    | _     |
| Stage 2              | _      | _     | _      | -     | 874    | -     |
| Oldge 2              |        |       |        |       | 014    |       |
|                      |        |       |        |       |        |       |
| Approach             | EB     |       | WB     |       | NB     |       |
| HCM Control Delay, s | ; O    |       | 0.1    |       | 11.5   |       |
| HCM LOS              |        |       |        |       | В      |       |
|                      |        |       |        |       |        |       |
| Minor Lane/Major Mvr | mt     | NBLn1 | EBT    | WBL   | WBT    |       |
| Capacity (veh/h)     |        | 603   | -      |       | -      |       |
| HCM Lane V/C Ratio   |        | 0.086 |        | 0.001 | -      |       |
| HCM Control Delay (s | :)     | 11.5  | -      | 7.8   | -      |       |
| HCM Lane LOS         | ,      | B     | -      | A     | -      |       |
| HCM 95th %tile Q(veh | h)     | 0.3   | -      | 0     | -      |       |
|                      | ''     | 0.0   |        | 0     |        |       |

### Intersection

| Movement               | EBL  | EBT          | EBR  | WBL  | WBT          | WBR  | NBL      | NBT   | NBR  | SBL  | SBT              | SBR  |
|------------------------|------|--------------|------|------|--------------|------|----------|-------|------|------|------------------|------|
|                        |      |              | LDIX | VVDL |              | WDIN |          |       | NDIN | JDL  |                  | SDIX |
| Lane Configurations    | - 1  | - <b>†</b> Þ |      | - 1  | - <b>†</b> Þ |      | <u>٦</u> | ર્ન 👘 |      |      | - <del>(</del> } |      |
| Traffic Vol, veh/h     | 0    | 183          | 7    | 9    | 74           | 0    | 4        | 0     | 7    | 2    | 0                | 1    |
| Future Vol, veh/h      | 0    | 183          | 7    | 9    | 74           | 0    | 4        | 0     | 7    | 2    | 0                | 1    |
| Conflicting Peds, #/hr | 0    | 0            | 0    | 0    | 0            | 0    | 0        | 0     | 0    | 0    | 0                | 0    |
| Sign Control           | Free | Free         | Free | Free | Free         | Free | Stop     | Stop  | Stop | Stop | Stop             | Stop |
| RT Channelized         | -    | -            | None | -    | -            | None | -        | -     | None | -    | -                | None |
| Storage Length         | 50   | -            | -    | 125  | -            | -    | 90       | -     | -    | -    | -                | -    |
| Veh in Median Storage, | # -  | 0            | -    | -    | 0            | -    | -        | 0     | -    | -    | 0                | -    |
| Grade, %               | -    | 0            | -    | -    | 0            | -    | -        | 0     | -    | -    | 0                | -    |
| Peak Hour Factor       | 80   | 80           | 80   | 83   | 83           | 83   | 69       | 69    | 69   | 75   | 75               | 75   |
| Heavy Vehicles, %      | 0    | 0            | 14   | 11   | 4            | 0    | 25       | 0     | 0    | 0    | 0                | 0    |
| Mvmt Flow              | 0    | 229          | 9    | 11   | 89           | 0    | 6        | 0     | 10   | 3    | 0                | 1    |

| Major/Minor N         | Major1 |       | N     | Major2 |     |     | Minor1 |     | Ν     | linor2 |     |      |  |
|-----------------------|--------|-------|-------|--------|-----|-----|--------|-----|-------|--------|-----|------|--|
| Conflicting Flow All  | 89     | 0     | 0     | 238    | 0   | 0   | 301    | 345 | 119   | 226    | 349 | 45   |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 234    | 234 | -     | 111    | 111 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 67     | 111 | -     | 115    | 238 | -    |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.32   | -   | -   | 8      | 6.5 | 6.9   | 7.5    | 6.5 | 6.9  |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -   | 7      | 5.5 | -     | 6.5    | 5.5 | -    |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -   | 7      | 5.5 | -     | 6.5    | 5.5 | -    |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.31   | -   | -   | 3.75   | 4   | 3.3   | 3.5    | 4   | 3.3  |  |
| Pot Cap-1 Maneuver    | 1519   | -     | -     | 1263   | -   | -   | 573    | 581 | 917   | 715    | 578 | 1022 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 686    | 715 | -     | 888    | 807 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 872    | 807 | -     | 883    | 712 | -    |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -   |        |     |       |        |     |      |  |
| Mov Cap-1 Maneuver    | 1519   | -     | -     | 1263   | -   | -   | 568    | 576 | 917   | 702    | 573 | 1022 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -   | 568    | 576 | -     | 702    | 573 | -    |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 686    | 715 | -     | 888    | 800 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 863    | 800 | -     | 873    | 712 | -    |  |
|                       |        |       |       |        |     |     |        |     |       |        |     |      |  |
| Approach              | EB     |       |       | WB     |     |     | NB     |     |       | SB     |     |      |  |
| HCM Control Delay, s  | 0      |       |       | 0.9    |     |     | 9.9    |     |       | 9.6    |     |      |  |
| HCM LOS               |        |       |       |        |     |     | А      |     |       | Α      |     |      |  |
|                       |        |       |       |        |     |     |        |     |       |        |     |      |  |
| Minor Lane/Major Mvm  | t I    | VBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT | WBR S | BLn1   |     |      |  |
| Capacity (veh/h)      |        | 568   | 917   | 1519   | -   | -   | 1263   | -   | -     | 784    |     |      |  |
| HCM Lane V/C Ratio    |        | 0.01  | 0.011 | -      | -   | -   | 0.009  | -   | -     | 0.005  |     |      |  |
| HCM Control Delay (s) |        | 11.4  | 9     | 0      | -   | -   | 7.9    | -   | -     | 9.6    |     |      |  |
| HCM Lane LOS          |        | В     | А     | А      | -   | -   | А      | -   | -     | А      |     |      |  |
| HCM 95th %tile Q(veh) |        | 0     | 0     | 0      | -   | -   | 0      | -   | -     | 0      |     |      |  |

# Intersection

| Movement               | EBL  | EBT         | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|-------------|------|------|-------------|------|------|------|------|------|------|------|
| Lane Configurations    | ኘ    | <b>∱</b> î≽ |      | ۲    | <b>∱</b> î≽ |      |      | र्च  | 1    |      | ÷    |      |
| Traffic Vol, veh/h     | 7    | 150         | 12   | 36   | 77          | 4    | 9    | 2    | 123  | 4    | 1    | 3    |
| Future Vol, veh/h      | 7    | 150         | 12   | 36   | 77          | 4    | 9    | 2    | 123  | 4    | 1    | 3    |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free        | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -           | None | -    | -           | None | -    | -    | None | -    | -    | None |
| Storage Length         | 100  | -           | -    | 100  | -           | -    | 60   | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 78   | 78          | 78   | 94   | 94          | 94   | 70   | 70   | 70   | 50   | 50   | 50   |
| Heavy Vehicles, %      | 0    | 1           | 8    | 3    | 1           | 0    | 0    | 0    | 0    | 25   | 0    | 0    |
| Mvmt Flow              | 9    | 192         | 15   | 38   | 82          | 4    | 13   | 3    | 176  | 8    | 2    | 6    |

| Major1 |                                                                                                   |                                                                                                                                                                         | Major2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | Minor1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /linor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 86     | 0                                                                                                 | 0                                                                                                                                                                       | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                     | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.1    | -                                                                                                 | -                                                                                                                                                                       | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.2    | -                                                                                                 | -                                                                                                                                                                       | 2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1523   | -                                                                                                 | -                                                                                                                                                                       | 1354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | -                                                                                                 | -                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1523   | -                                                                                                 | -                                                                                                                                                                       | 1354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | -                                                                                                 | -                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EB     |                                                                                                   |                                                                                                                                                                         | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.3    |                                                                                                   |                                                                                                                                                                         | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nt     | NBLn1                                                                                             | NBLn2                                                                                                                                                                   | EBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EBR                                                   | WBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WBR S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 571                                                                                               | 937                                                                                                                                                                     | 1523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 1354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 0.028                                                                                             | 0.188                                                                                                                                                                   | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| )      | 11.5                                                                                              | 9.7                                                                                                                                                                     | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | В                                                                                                 | А                                                                                                                                                                       | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| I)     | 0.1                                                                                               | 0.7                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 86<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 86 0<br><br>4.1 -<br><br>2.2 -<br>1523 -<br><br>1523 -<br><br>1523 -<br><br>1523 -<br><br>1523 -<br><br>1523 -<br><br>1523 -<br><br><br><br>571<br>0.028<br>) 11.5<br>B | 86       0       0         -       -       -         4.1       -       -         -       -       -         1523       -       -         -       -       -         1523       -       -         -       -       -         1523       -       -         -       -       -         1523       -       -         -       -       -         1523       -       -         -       -       -         0.3       -       -         EB       0.3       -         0.3       -       -         0.028       0.188       -         )       11.5       9.7         B       A | 86       0       0       207         -       -       -       -         4.1       -       -       4.16         -       -       -       -         4.1       -       -       4.16         -       -       -       -         2.2       -       -       2.23         1523       -       1354         -       -       -         1523       -       1354         -       -       -         1523       -       1354         -       -       -         1523       -       1354         -       -       -         0.3       2.4         EB       WB         0.3       2.4         571       937       1523         0.028       0.188       0.006         )       11.5       9.7       7.4         B       A       A | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 86         0         0         207         0         0           -         -         -         -         -         -         -           4.1         -         4.16         -         -         -         -           4.1         -         4.16         -         -         -         -         -           -         -         -         -         -         -         -         -           2.2         -         2.23         -         -         -         -         -           1523         -         1354         -         -         -         -         -           -         -         -         -         -         -         -         -         -           1523         -         1354         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | 86       0       0       207       0       0       336         -       -       -       -       -       218         -       -       -       -       218         -       -       -       -       218         -       -       -       -       118         4.1       -       -       4.16       -       -       7.5         -       -       -       -       6.5       -       -       6.5         2.2       -       2.23       -       -       3.5       1523       -       -       599         -       -       1354       -       -       599       -       -       770         -       -       -       -       -       880       -       770         -       -       -       -       -       -       770       -       -       770         -       -       -       -       -       880       -       -       779         -       -       1354       -       -       579       -       -       765         -       -       - | 86         0         0         207         0         0         336         380           -         -         -         -         -         218         218           -         -         -         -         -         218         218           -         -         -         -         118         162 $4.1$ -         - $4.16$ -         -         7.5 $6.5$ -         -         -         -         6.5 $5.5$ $5.5$ -         -         -         2.23         -         - $3.5$ $4$ 1523         -         1354         -         -         599         556           -         -         -         -         -         770         726           -         -         -         -         -         880         768           -         -         -         -         579         537           -         -         -         -         765         722           -         -         -         -         848         746 | 86         0         0         207         0         0         336         380         104           -         -         -         -         218         218         -           -         -         -         -         118         162         -           4.1         -         4.16         -         7.5         6.5         6.9           -         -         -         -         6.5         5.5         -           -         -         -         6.5         5.5         -           2.2         -         2.23         -         3.5         4         3.3           1523         -         1354         -         599         556         937           -         -         -         -         880         768         -           -         -         -         -         579         537         937           -         -         -         -         579         537         -           -         -         -         -         848         746         -           -         -         -         -         1354         - <td>86         0         <math>207</math>         0         0         <math>336</math> <math>380</math> <math>104</math> <math>276</math>           -         -         -         -         218         218         -         <math>160</math>           -         -         -         -         118         <math>162</math>         -         <math>116</math> <math>4.1</math>         -         -         <math>4.16</math>         -         -         <math>7.5</math> <math>6.5</math> <math>6.9</math> <math>8</math>           -         -         -         -         6.5         <math>5.5</math>         -         <math>7</math>           -         -         <math>2.23</math>         -         <math>3.5</math> <math>4</math> <math>3.3</math> <math>3.75</math> <math>1523</math>         -         <math>1354</math>         -         <math>599</math> <math>556</math> <math>937</math> <math>598</math>           -         -         -         -         7070         <math>726</math> <math>-764</math>           -         -         -         -         <math>880</math> <math>768</math> <math>813</math>           -         -         -         <math>579</math> <math>537</math> <math>937</math> <math>471</math>           -         -         -         <math>765</math> <math>722</math> <math>759</math>           -</td> <td>86       0       0       207       0       0       336       380       104       276       385         -       -       -       -       218       218       -       160       160         -       -       -       118       162       -       116       225         4.1       -       -       4.16       -       -       7.5       6.5       6.9       8       6.5         -       -       -       -       6.5       5.5       -       7       5.5         2.2       -       2.23       -       3.5       4       3.3       3.75       4         1523       -       1354       -       599       556       937       598       552         -       -       -       -       707       726       -       764       769         -       -       -       -       -       579       537       937       471       533         -       -       -       -       579       537       937       471       533         -       -       -       -       765       722       -       <td< td=""><td>86       0       0       207       0       0       336       380       104       276       385       43         -       -       -       -       218       218       -       160       160       -         -       -       -       118       162       -       116       225       -         4.1       -       4.16       -       -       7.5       6.5       6.9       8       6.5       6.9         -       -       -       -       6.5       5.5       -       7       5.5       -         2.2       -       2.23       -       -       3.5       4       3.3       3.75       4       3.3         1523       -       1354       -       -       599       556       937       598       552       1025         -       -       -       -       7070       726       -       764       769       -         1523       -       1354       -       -       579       537       937       471       533       1025         -       -       -       765       722       -       759</td></td<></td> | 86         0 $207$ 0         0 $336$ $380$ $104$ $276$ -         -         -         -         218         218         - $160$ -         -         -         -         118 $162$ - $116$ $4.1$ -         - $4.16$ -         - $7.5$ $6.5$ $6.9$ $8$ -         -         -         -         6.5 $5.5$ - $7$ -         - $2.23$ - $3.5$ $4$ $3.3$ $3.75$ $1523$ - $1354$ - $599$ $556$ $937$ $598$ -         -         -         -         7070 $726$ $-764$ -         -         -         - $880$ $768$ $813$ -         -         - $579$ $537$ $937$ $471$ -         -         - $765$ $722$ $759$ - | 86       0       0       207       0       0       336       380       104       276       385         -       -       -       -       218       218       -       160       160         -       -       -       118       162       -       116       225         4.1       -       -       4.16       -       -       7.5       6.5       6.9       8       6.5         -       -       -       -       6.5       5.5       -       7       5.5         2.2       -       2.23       -       3.5       4       3.3       3.75       4         1523       -       1354       -       599       556       937       598       552         -       -       -       -       707       726       -       764       769         -       -       -       -       -       579       537       937       471       533         -       -       -       -       579       537       937       471       533         -       -       -       -       765       722       - <td< td=""><td>86       0       0       207       0       0       336       380       104       276       385       43         -       -       -       -       218       218       -       160       160       -         -       -       -       118       162       -       116       225       -         4.1       -       4.16       -       -       7.5       6.5       6.9       8       6.5       6.9         -       -       -       -       6.5       5.5       -       7       5.5       -         2.2       -       2.23       -       -       3.5       4       3.3       3.75       4       3.3         1523       -       1354       -       -       599       556       937       598       552       1025         -       -       -       -       7070       726       -       764       769       -         1523       -       1354       -       -       579       537       937       471       533       1025         -       -       -       765       722       -       759</td></td<> | 86       0       0       207       0       0       336       380       104       276       385       43         -       -       -       -       218       218       -       160       160       -         -       -       -       118       162       -       116       225       -         4.1       -       4.16       -       -       7.5       6.5       6.9       8       6.5       6.9         -       -       -       -       6.5       5.5       -       7       5.5       -         2.2       -       2.23       -       -       3.5       4       3.3       3.75       4       3.3         1523       -       1354       -       -       599       556       937       598       552       1025         -       -       -       -       7070       726       -       764       769       -         1523       -       1354       -       -       579       537       937       471       533       1025         -       -       -       765       722       -       759 |

## Intersection

| Movement               | EBL  | EBT           | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|---------------|------|------|-------------|------|------|------|------|------|------|------|--|
| Lane Configurations    | ሻ    | _ <b>≜</b> î≽ |      | ۲.   | <b>∱</b> î≽ |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h     | 0    | 371           | 3    | 6    | 156         | 3    | 4    | 0    | 24   | 2    | 0    | 1    |  |
| Future Vol, veh/h      | 0    | 371           | 3    | 6    | 156         | 3    | 4    | 0    | 24   | 2    | 0    | 1    |  |
| Conflicting Peds, #/hr | 0    | 0             | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free          | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -             | None | -    | -           | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 50   | -             | -    | 110  | -           | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | ,# - | 0             | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0             | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 60   | 60            | 60   | 78   | 78          | 78   | 58   | 58   | 58   | 38   | 38   | 38   |  |
| Heavy Vehicles, %      | 0    | 1             | 0    | 0    | 4           | 0    | 25   | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 0    | 618           | 5    | 8    | 200         | 4    | 7    | 0    | 41   | 5    | 0    | 3    |  |

| Major/Minor          | Major1 |       | Ν   | /lajor2 |     | 1   | Minor1 |       | Ν     | /linor2 |     |     |  |
|----------------------|--------|-------|-----|---------|-----|-----|--------|-------|-------|---------|-----|-----|--|
| Conflicting Flow All | 204    | 0     | 0   | 623     | 0   | 0   | 737    | 841   | 312   | 527     | 841 | 102 |  |
| Stage 1              | -      | -     | -   | -       | -   | -   | 621    | 621   | -     | 218     | 218 | -   |  |
| Stage 2              | -      | -     | -   | -       | -   | -   | 116    | 220   | -     | 309     | 623 | -   |  |
| Critical Hdwy        | 4.1    | -     | -   | 4.1     | -   | -   | 8      | 6.5   | 6.9   | 7.5     | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1  | -      | -     | -   | -       | -   | -   | 7      | 5.5   | -     | 6.5     | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | -     | -   | -       | -   | -   | 7      | 5.5   | -     | 6.5     | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | -     | -   | 2.2     | -   | -   | 3.75   | 4     | 3.3   | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1380   | -     | -   | 968     | -   | -   | 267    | 303   | 690   | 438     | 303 | 940 |  |
| Stage 1              | -      | -     | -   | -       | -   | -   | 390    | 482   | -     | 770     | 726 | -   |  |
| Stage 2              | -      | -     | -   | -       | -   | -   | 813    | 725   | -     | 682     | 481 | -   |  |
| Platoon blocked, %   |        | -     | -   |         | -   | -   |        |       |       |         |     |     |  |
| Mov Cap-1 Maneuver   | 1380   | -     | -   | 968     | -   | -   | 265    | 301   | 690   | 409     | 301 | 940 |  |
| Mov Cap-2 Maneuver   | -      | -     | -   | -       | -   | -   | 265    | 301   | -     | 409     | 301 | -   |  |
| Stage 1              | -      | -     | -   | -       | -   | -   | 390    | 482   | -     | 770     | 720 | -   |  |
| Stage 2              | -      | -     | -   | -       | -   | -   | 804    | 719   | -     | 641     | 481 | -   |  |
|                      |        |       |     |         |     |     |        |       |       |         |     |     |  |
| Approach             | EB     |       |     | WB      |     |     | NB     |       |       | SB      |     |     |  |
| HCM Control Delay, s | 0      |       |     | 0.3     |     |     | 12     |       |       | 12.3    |     |     |  |
| HCM LOS              |        |       |     |         |     |     | В      |       |       | В       |     |     |  |
|                      |        |       |     |         |     |     |        |       |       |         |     |     |  |
| Minor Lane/Major Mvn | nt N   | IBLn1 | EBL | EBT     | EBR | WBL | WBT    | WBR S | SBLn1 |         |     |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR S | SBLn1 |  |
|-----------------------|-------|------|-----|-----|-------|-----|-------|-------|--|
| Capacity (veh/h)      | 561   | 1380 | -   | -   | 968   | -   | -     | 504   |  |
| HCM Lane V/C Ratio    | 0.086 | -    | -   | -   | 800.0 | -   | -     | 0.016 |  |
| HCM Control Delay (s) | 12    | 0    | -   | -   | 8.7   | -   | -     | 12.3  |  |
| HCM Lane LOS          | В     | А    | -   | -   | А     | -   | -     | В     |  |
| HCM 95th %tile Q(veh) | 0.3   | 0    | -   | -   | 0     | -   | -     | 0     |  |

| Int Delay, s/veh       | 3.5  |      |      |              |      |      |
|------------------------|------|------|------|--------------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT          | NBL  | NBR  |
| Lane Configurations    | et   |      |      | <del>ب</del> | Y    |      |
| Traffic Vol, veh/h     | 19   | 1    | 11   | 15           | 2    | 21   |
| Future Vol, veh/h      | 19   | 1    | 11   | 15           | 2    | 21   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0            | 0    | 0    |
| Sign Control           | Free | Free | Free | Free         | Stop | Stop |
| RT Channelized         | -    | None | -    | None         | -    | None |
| Storage Length         | -    | -    | -    | -            | 0    | -    |
| Veh in Median Storage  | ,# 0 | -    | -    | 0            | 0    | -    |
| Grade, %               | 0    | -    | -    | 0            | 0    | -    |
| Peak Hour Factor       | 42   | 42   | 72   | 72           | 64   | 64   |
| Heavy Vehicles, %      | 0    | 0    | 0    | 0            | 0    | 5    |
| Mvmt Flow              | 45   | 2    | 15   | 21           | 3    | 33   |

| Major/Minor                            | Major1 | Ν        | /lajor2 | Ν   | /linor1  |       |
|----------------------------------------|--------|----------|---------|-----|----------|-------|
| Conflicting Flow All                   | 0      | 0        | 47      | 0   | 97       | 46    |
| Stage 1                                | -      | -        | -       | -   | 46       | -     |
| Stage 2                                | -      | -        | -       | -   | 51       | -     |
| Critical Hdwy                          | -      | -        | 4.1     | -   | 6.4      | 6.25  |
| Critical Hdwy Stg 1                    | -      | -        | -       | -   | 5.4      | -     |
| Critical Hdwy Stg 2                    | -      | -        | -       | -   | 5.4      | -     |
| Follow-up Hdwy                         | -      | -        | 2.2     | -   | 3.5      | 3.345 |
| Pot Cap-1 Maneuver                     | -      | -        | 1573    | -   | 907      | 1015  |
| Stage 1                                | -      | -        | -       | -   | 982      | -     |
| Stage 2                                | -      | -        | -       | -   | 977      | -     |
| Platoon blocked, %                     | -      | -        |         | -   |          |       |
| Mov Cap-1 Maneuver                     | -      | -        | 1573    | -   | 898      | 1015  |
| Mov Cap-2 Maneuver                     | -      | -        | -       | -   | 854      | -     |
| Stage 1                                | -      | -        | -       | -   | 982      | -     |
| Stage 2                                | -      | -        | -       | -   | 967      | -     |
|                                        |        |          |         |     |          |       |
| Approach                               | EB     |          | WB      |     | NB       |       |
| HCM Control Delay, s                   | 0      |          | 3.1     |     | 8.7      |       |
| HCM LOS                                |        |          |         |     | А        |       |
|                                        |        |          |         |     |          |       |
| Minor Lane/Major Mvm                   | + N    | VBLn1    | EBT     | EBR | WBL      | WBT   |
|                                        |        | 999      |         |     | 1573     |       |
| Capacity (veh/h)<br>HCM Lane V/C Ratio |        | 0.036    | -       | -   | 0.01     | -     |
| HCM Control Delay (s)                  |        | 8.7      | -       | -   | 7.3      | - 0   |
| HCM Lane LOS                           |        | 0.7<br>A | -       | -   | 7.3<br>A | A     |
| HCM 95th %tile Q(veh)                  |        | 0.1      | -       | -   | 0        | -     |
|                                        |        | 0.1      | -       | -   | 0        | -     |

| Int Delay, s/veh       | 0     |      |      |      |      |      |
|------------------------|-------|------|------|------|------|------|
| Movement               | EBL   | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    |       | 1    |      | 1    | 1    |      |
| Traffic Vol, veh/h     | 0     | 158  | 0    | 40   | 1    | 0    |
| Future Vol, veh/h      | 0     | 158  | 0    | 40   | 1    | 0    |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free  | Free | Free | Free | Stop | Stop |
| RT Channelized         | -     | None | -    | None | -    | None |
| Storage Length         | -     | 0    | -    | -    | -    | -    |
| Veh in Median Storage  | , # 1 | -    | -    | 0    | 0    | -    |
| Grade, %               | 0     | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 73    | 73   | 77   | 77   | 82   | 82   |
| Heavy Vehicles, %      | 0     | 3    | 0    | 20   | 0    | 0    |
| Mvmt Flow              | 0     | 216  | 0    | 52   | 1    | 0    |

| Major/Minor           | Major1    | Ν | linor2 |   |
|-----------------------|-----------|---|--------|---|
| Conflicting Flow All  | -         | 0 | 52     | - |
| Stage 1               | -         | - | 0      | - |
| Stage 2               | -         | - | 52     | - |
| Critical Hdwy         | -         | - | 6.5    | - |
| Critical Hdwy Stg 1   | -         | - | -      | - |
| Critical Hdwy Stg 2   | -         | - | 5.5    | - |
| Follow-up Hdwy        | -         | - | 4      | - |
| Pot Cap-1 Maneuver    | 0         | - | 843    | 0 |
| Stage 1               | 0         | - | -      | 0 |
| Stage 2               | 0         | - | 856    | 0 |
| Platoon blocked, %    |           | - |        |   |
| Mov Cap-1 Maneuver    | -         | - | 0      | - |
| Mov Cap-2 Maneuver    | -         | - | 0      | - |
| Stage 1               | -         | - | 0      | - |
| Stage 2               | -         | - | 0      | - |
|                       |           |   |        |   |
| Approach              | NB        |   | SB     |   |
| HCM Control Delay, s  | 0         |   |        |   |
| HCM LOS               | •         |   | -      |   |
|                       |           |   |        |   |
|                       |           |   |        |   |
| Minor Lane/Major Mvmt | NBT SBLn1 |   |        |   |
| Capacity (veh/h)      |           |   |        |   |
| HCM Lane V/C Ratio    |           |   |        |   |
| HCM Control Delay (s) |           |   |        |   |
| HCM Lane LOS          |           |   |        |   |
| HCM 95th %tile Q(veh) |           |   |        |   |

### Intersection

Int Delay, s/veh

HCM 95th %tile Q(veh)

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    | 1    | ¢    |      | 3    | 4    |      |      | 4    |      | 002  | 4    | 0011 |
| Traffic Vol, veh/h     | 1    | 183  | 17   | 55   | 283  | 16   | 22   | 7    | 25   | 8    | 11   | 3    |
| Future Vol, veh/h      | 1    | 183  | 17   | 55   | 283  | 16   | 22   | 7    | 25   | 8    | 11   | 3    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -    | None |
| Storage Length         | 100  | -    | -    | 115  | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 72   | 72   | 72   | 78   | 78   | 78   | 90   | 90   | 90   | 100  | 100  | 100  |
| Heavy Vehicles, %      | 0    | 5    | 0    | 4    | 3    | 0    | 0    | 0    | 0    | 13   | 0    | 0    |
| Mvmt Flow              | 1    | 254  | 24   | 71   | 363  | 21   | 24   | 8    | 28   | 8    | 11   | 3    |

| Major/Minor          | Major1 |   | N | Major2 |   | Ν | linor1 |     | ľ   | Minor2 |     |     |  |
|----------------------|--------|---|---|--------|---|---|--------|-----|-----|--------|-----|-----|--|
| Conflicting Flow All | 384    | 0 | 0 | 278    | 0 | 0 | 791    | 794 | 266 | 802    | 796 | 374 |  |
| Stage 1              | -      | - | - | -      | - | - | 268    | 268 | -   | 516    | 516 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 523    | 526 | -   | 286    | 280 | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.14   | - | - | 7.1    | 6.5 | 6.2 | 7.23   | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.1    | 5.5 | -   | 6.23   | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.1    | 5.5 | -   | 6.23   | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.236  | - | - | 3.5    | 4   | 3.3 | 3.617  | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1186   | - | - | 1273   | - | - | 310    | 323 | 778 | 290    | 322 | 677 |  |
| Stage 1              | -      | - | - | -      | - | - | 742    | 691 | -   | 522    | 538 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 541    | 532 | -   | 698    | 683 | -   |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |     |     |        |     |     |  |
| Mov Cap-1 Maneuver   | 1186   | - | - | 1273   | - | - | 287    | 305 | 778 | 262    | 304 | 677 |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 287    | 305 | -   | 262    | 304 | -   |  |
| Stage 1              | -      | - | - | -      | - | - | 741    | 690 | -   | 521    | 508 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 498    | 502 | -   | 665    | 682 | -   |  |
|                      |        |   |   |        |   |   |        |     |     |        |     |     |  |
| Approach             | EB     |   |   | WB     |   |   | NB     |     |     | SB     |     |     |  |
| HCM Control Delay, s | 0      |   |   | 1.2    |   |   | 15.3   |     |     | 17.5   |     |     |  |

| HCM LOS               |       |       |     |     |       | С   |         |     |
|-----------------------|-------|-------|-----|-----|-------|-----|---------|-----|
|                       |       |       |     |     |       |     |         |     |
| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR SBL | _n1 |
| Capacity (veh/h)      | 410   | 1186  | -   | -   | 1273  | -   | - 3     | 309 |
| HCM Lane V/C Ratio    | 0.146 | 0.001 | -   | -   | 0.055 | -   | - 0.0   | )71 |
| HCM Control Delay (s) | 15.3  | 8     | -   | -   | 8     | -   | - 17    | 7.5 |
| HCM Lane LOS          | С     | А     | -   | -   | Α     | -   | -       | С   |

\_

0.2

-

0.2

-

0

-

0.5

### Intersection

| Movement               | EBL  | EBT         | EBR  | WBL  | WBT        | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|-------------|------|------|------------|------|------|------|------|------|------|------|--|
| Lane Configurations    | 5    | <b>≜</b> †₽ |      | 5    | <b>≜</b> ↑ | WBR( | HEE  | 4    | NBR  |      | 4    | OBIX |  |
| Traffic Vol, veh/h     | 13   | 139         | 13   | 57   | 166        | 55   | 8    | 10   | 33   | 44   | 5    | 29   |  |
| Future Vol, veh/h      | 13   | 139         | 13   | 57   | 166        | 55   | 8    | 10   | 33   | 44   | 5    | 29   |  |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0    | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free        | Free | Free | Free       | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -           | None | -    | -          | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 125  | -           | -    | 125  | -          | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0           | -    | -    | 0          | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0           | -    | -    | 0          | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 100  | 100         | 100  | 91   | 91         | 91   | 75   | 75   | 75   | 75   | 75   | 75   |  |
| Heavy Vehicles, %      | 0    | 1           | 0    | 2    | 0          | 4    | 0    | 0    | 0    | 0    | 0    | 3    |  |
| Mvmt Flow              | 13   | 139         | 13   | 63   | 182        | 60   | 11   | 13   | 44   | 59   | 7    | 39   |  |

| Major/Minor                                                    | Major1 |    | N                   | lajor2   |     | 1                    | Minor1   |       | Ν                     | 1inor2 |     |      |  |
|----------------------------------------------------------------|--------|----|---------------------|----------|-----|----------------------|----------|-------|-----------------------|--------|-----|------|--|
| Conflicting Flow All                                           | 242    | 0  | 0                   | 152      | 0   | 0                    | 393      | 540   | 76                    | 440    | 516 | 121  |  |
| Stage 1                                                        | -      | -  | -                   | -        | -   | -                    | 172      | 172   | -                     | 338    | 338 | -    |  |
| Stage 2                                                        | -      | -  | -                   | -        | -   | -                    | 221      | 368   | -                     | 102    | 178 | -    |  |
| Critical Hdwy                                                  | 4.1    | -  | -                   | 4.14     | -   | -                    | 7.5      | 6.5   | 6.9                   | 7.5    | 6.5 | 6.96 |  |
| Critical Hdwy Stg 1                                            | -      | -  | -                   | -        | -   | -                    | 6.5      | 5.5   | -                     | 6.5    | 5.5 | -    |  |
| Critical Hdwy Stg 2                                            | -      | -  | -                   | -        | -   | -                    | 6.5      | 5.5   | -                     | 6.5    | 5.5 | -    |  |
| Follow-up Hdwy                                                 | 2.2    | -  | -                   | 2.22     | -   | -                    | 3.5      | 4     | 3.3                   | 3.5    | 4   | 3.33 |  |
| Pot Cap-1 Maneuver                                             | 1336   | -  | -                   | 1426     | -   | -                    | 546      | 451   | 976                   | 505    | 466 | 904  |  |
| Stage 1                                                        | -      | -  | -                   | -        | -   | -                    | 819      | 760   | -                     | 656    | 644 | -    |  |
| Stage 2                                                        | -      | -  | -                   | -        | -   | -                    | 767      | 625   | -                     | 899    | 756 | -    |  |
| Platoon blocked, %                                             |        | -  | -                   |          | -   | -                    |          |       |                       |        |     |      |  |
| Mov Cap-1 Maneuver                                             | 1336   | -  | -                   | 1426     | -   | -                    | 496      | 427   | 976                   | 451    | 441 | 904  |  |
| Mov Cap-2 Maneuver                                             | -      | -  | -                   | -        | -   | -                    | 496      | 427   | -                     | 451    | 441 | -    |  |
| Stage 1                                                        | -      | -  | -                   | -        | -   | -                    | 811      | 752   | -                     | 649    | 616 | -    |  |
| Stage 2                                                        | -      | -  | -                   | -        | -   | -                    | 694      | 598   | -                     | 835    | 748 | -    |  |
|                                                                |        |    |                     |          |     |                      |          |       |                       |        |     |      |  |
| Approach                                                       | EB     |    |                     | WB       |     |                      | NB       |       |                       | SB     |     |      |  |
| HCM Control Delay, s                                           | 0.6    |    |                     | 1.6      |     |                      | 10.7     |       |                       | 13     |     |      |  |
| HCM LOS                                                        | 0.0    |    |                     |          |     |                      | В        |       |                       | В      |     |      |  |
|                                                                |        |    |                     |          |     |                      |          |       |                       |        |     |      |  |
| Minor Lane/Maior Myn                                           | nt NBI | n1 | FBL                 | FBT      | EBR | WBI                  | WBT      | WBR S | SBL n1                |        |     |      |  |
|                                                                |        |    |                     |          | -   |                      |          | -     |                       |        |     |      |  |
|                                                                |        |    |                     | -        |     |                      | -        | -     |                       |        |     |      |  |
| Minor Lane/Major Mvn<br>Capacity (veh/h)<br>HCM Lane V/C Ratio | (      |    | EBL<br>1336<br>0.01 | EBT<br>- |     | WBL<br>1426<br>0.044 | WBT<br>- | WBR S | SBLn1<br>553<br>0.188 |        |     |      |  |

| HCM Control Delay (s) | 10.7 | 7.7 | - | - | 7.6 | - | - | 13  |
|-----------------------|------|-----|---|---|-----|---|---|-----|
| HCM Lane LOS          | В    | А   | - | - | А   | - | - | В   |
| HCM 95th %tile Q(veh) | 0.3  | 0   | - | - | 0.1 | - | - | 0.7 |

# Intersection

| Movement               | EBL      | EBT  | EBR  | WBL      | WBT  | WBR        | NBL  | NBT  | NBR  | SBL  | SBT       | SBR   |
|------------------------|----------|------|------|----------|------|------------|------|------|------|------|-----------|-------|
| Lane Configurations    | <u> </u> | ÷    | LDIX | <u> </u> | 4    | <b>WBR</b> |      | 4    | NBR  |      | <u>्व</u> | 1     |
| Traffic Vol, veh/h     | 102      | 270  | 0    | 12       | 337  | 54         | 0    | 3    | 10   | 43   | 2         | 233   |
| Future Vol, veh/h      | 102      | 270  | 0    | 12       | 337  | 54         | 0    | 3    | 10   | 43   | 2         | 233   |
| Conflicting Peds, #/hr | 0        | 0    | 0    | 0        | 0    | 0          | 0    | 0    | 0    | 0    | 0         | 0     |
| Sign Control           | Free     | Free | Free | Free     | Free | Free       | Stop | Stop | Stop | Stop | Stop      | Stop  |
| RT Channelized         | -        | -    | None | -        | -    | None       | -    | -    | None | -    | -         | Yield |
| Storage Length         | 100      | -    | -    | 100      | -    | -          | -    | -    | -    | -    | -         | 125   |
| Veh in Median Storage, | # -      | 0    | -    | -        | 0    | -          | -    | 0    | -    | -    | 0         | -     |
| Grade, %               | -        | 0    | -    | -        | 0    | -          | -    | 0    | -    | -    | 0         | -     |
| Peak Hour Factor       | 93       | 93   | 93   | 95       | 95   | 95         | 63   | 63   | 63   | 95   | 95        | 95    |
| Heavy Vehicles, %      | 0        | 1    | 0    | 0        | 1    | 0          | 0    | 0    | 0    | 0    | 0         | 0     |
| Mvmt Flow              | 110      | 290  | 0    | 13       | 355  | 57         | 0    | 5    | 16   | 45   | 2         | 245   |

| N A . 1 /N A1        |        |         |        |     |      | A      |     |       | M' 0   |     |     |  |
|----------------------|--------|---------|--------|-----|------|--------|-----|-------|--------|-----|-----|--|
|                      | Major1 |         | Major2 |     |      | Minor1 |     |       | Minor2 |     |     |  |
| Conflicting Flow All | 412    | 0 0     | 290    | 0   | 0    | 921    | 948 | 290   |        | 920 | 384 |  |
| Stage 1              | -      |         |        | -   | -    | 510    | 510 | -     | 410    | 410 | -   |  |
| Stage 2              | -      |         | · -    | -   | -    | 411    | 438 | -     | 521    | 510 | -   |  |
| Critical Hdwy        | 4.1    |         | • 4.1  | -   | -    | 7.1    | 6.5 | 6.2   | 7.1    | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -      |         |        | -   | -    | 6.1    | 5.5 | -     | 6.1    | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      |         | · -    | -   | -    | 6.1    | 5.5 | -     | 6.1    | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    |         | 2.2    | -   | -    | 3.5    | 4   | 3.3   | 3.5    | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1158   |         | 1283   | -   | -    | 253    | 263 | 754   | 249    | 273 | 668 |  |
| Stage 1              | -      |         |        | -   | -    | 550    | 541 | -     | 623    | 599 | -   |  |
| Stage 2              | -      |         | · -    | -   | -    | 622    | 582 | -     | 542    | 541 | -   |  |
| Platoon blocked, %   |        |         | •      | -   | -    |        |     |       |        |     |     |  |
| Mov Cap-1 Maneuver   | 1158   |         | 1283   | -   | -    | 146    | 236 | 754   | 221    | 245 | 668 |  |
| Mov Cap-2 Maneuver   | -      |         |        | -   | -    | 146    | 236 | -     | 221    | 245 | -   |  |
| Stage 1              | -      |         | · -    | -   | -    | 498    | 490 | -     | 564    | 593 | -   |  |
| Stage 2              | -      |         |        | -   | -    | 388    | 576 | -     | 476    | 490 | -   |  |
|                      |        |         |        |     |      |        |     |       |        |     |     |  |
| A mana a ala         |        |         |        |     |      |        |     |       | 00     |     |     |  |
| Approach             | EB     |         | WB     |     |      | NB     |     |       | SB     |     |     |  |
| HCM Control Delay, s | 2.3    |         | 0.2    |     |      | 12.5   |     |       | 15.5   |     |     |  |
| HCM LOS              |        |         |        |     |      | В      |     |       | С      |     |     |  |
|                      |        |         |        |     |      |        |     |       |        |     |     |  |
| Minor Lane/Major Mvm | nt NBL | n1 EBL  | . EBT  | EBR | WBL  | WBT    | WBR | SBLn1 | SBLn2  |     |     |  |
| Capacity (veh/h)     |        | 00 1158 |        | -   | 1283 |        |     | 222   |        |     |     |  |
| HCM Lane V/C Ratio   | 0.0    |         |        |     | 0.01 | -      |     |       | 0 367  |     |     |  |

| HCM Lane V/C Ratio    | 0.041 ( | 0.095 | - | - | 0.01 | - | - ( | 0.213 | 0.367 |  |  |
|-----------------------|---------|-------|---|---|------|---|-----|-------|-------|--|--|
| HCM Control Delay (s) | 12.5    | 8.4   | - | - | 7.8  | - | -   | 25.6  | 13.5  |  |  |
| HCM Lane LOS          | В       | А     | - | - | А    | - | -   | D     | В     |  |  |
| HCM 95th %tile Q(veh) | 0.1     | 0.3   | - | - | 0    | - | -   | 0.8   | 1.7   |  |  |

1

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL      | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|----------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    | 1    | et   |      | <u>ک</u> | et - |      |      | \$   |      |      | \$   |      |  |
| Traffic Vol, veh/h     | 1    | 164  | 22   | 5        | 260  | 1    | 26   | 0    | 8    | 0    | 1    | 0    |  |
| Future Vol, veh/h      | 1    | 164  | 22   | 5        | 260  | 1    | 26   | 0    | 8    | 0    | 1    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free     | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None | -        | -    | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 115  | -    | -    | 120      | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -        | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -        | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 81   | 81   | 81   | 90       | 90   | 90   | 85   | 85   | 85   | 25   | 25   | 25   |  |
| Heavy Vehicles, %      | 0    | 7    | 0    | 0        | 3    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 1    | 202  | 27   | 6        | 289  | 1    | 31   | 0    | 9    | 0    | 4    | 0    |  |

| 290 0<br> | 0<br>-                                                                  | 229                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | -                                                                       |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |                                                                         | -                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | -                                                                       | -                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.1 -     | -                                                                       | 4.1                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | -                                                                       | -                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | -                                                                       | -                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | -                                                                       | 2.2                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1283 -    | -                                                                       | 1351                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | -                                                                       | -                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | -                                                                       | -                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -         | -                                                                       |                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1283 -    | -                                                                       | 1351                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | -                                                                       | -                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | -                                                                       | -                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | -                                                                       | -                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |                                                                         |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EB        |                                                                         | WB                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0         |                                                                         | 0.1                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |                                                                         |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |                                                                         |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NBLn1     | EBL                                                                     | EBT                                                                                                  | EBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WBR S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 4.1 -<br><br>2.2 -<br>1283 -<br><br>1283 -<br><br>1283 -<br><br>EB<br>0 | 4.1<br><br>2.2<br>1283<br><br>1283<br><br>1283<br><br>5 -<br><br>5 -<br><br>5 -<br>5 -<br>5 -<br>5 - | 4.1       -       4.1         -       -       -         2.2       -       2.2         1283       -       1351         -       -       -         1283       -       1351         -       -       -         1283       -       1351         -       -       -         1283       -       1351         -       -       -         1283       -       1351         -       -       -         0       0.1       -         EB       WB       0         0       0.1       -         NBLn1       EBL       EBT | 4.1       -       4.1       -         -       -       -       -       -         2.2       -       2.2       -       1351       -         1283       -       1351       -       -       -       -         -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - | 4.1       -       4.1       -       -         -       -       -       -       -       -         2.2       -       2.2       -       -       -         1283       -       1351       -       -       -         -       -       -       -       -       -         1283       -       -       -       -       -         -       -       -       -       -       -         1283       -       1351       -       -       -         1283       -       1351       -       -       -         1283       -       1351       -       -       -         -       -       -       -       -       -       -         -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td>4.1       -       4.1       -       7.1         -       -       -       -       6.1         -       -       -       -       6.1         2.2       -       2.2       -       3.5         1283       -       1351       -       468         -       -       -       789         -       -       -       710         -       -       -       710         -       -       -       789         -       -       -       710         -       -       -       789         -       -       -       -       710         -       -       -       -       710         -       -       1351       -       463         -       -       -       703       703         EB       WB       NB       NB         0       0.1       12.5       B         NBLn1       EBL       EBT       EBR       WBL</td> <td>4.1       -       -       7.1       6.5         -       -       -       -       6.1       5.5         -       -       -       -       6.1       5.5         2.2       -       2.2       -       3.5       4         1283       -       1351       -       468       463         -       -       -       710       668         -       -       -       710       668         -       -       -       710       668         -       -       -       710       668         -       -       -       -       710       668         -       -       -       -       703       665         -       -       -       -       703       665         -       -       -       -       703       665         -       -       -       -       703       665         -       -       -       -       703       665         -       -       -       -       703       665         -       -       -       -       -       8<td>4.1       -       4.1       -       -       7.1       6.5       6.2         -       -       -       -       6.1       5.5       -         -       -       2.2       -       6.1       5.5       -         2.2       -       2.2       -       3.5       4       3.3         1283       -       1351       -       468       463       829         -       -       789       726       -         -       -       -       710       668       -         -       -       -       -       710       668       -         -       -       -       -       710       668       -         -       -       -       -       710       668       -         -       -       -       -       703       665       -         -       -       -       -       703       665       -         -       -       -       703       665       -         -       -       -       -       703       665       -         -       -       -       -</td><td>4.1       -       4.1       -       -       7.1       6.5       6.2       7.1         -       -       -       -       6.1       5.5       -       6.1         -       -       -       -       6.1       5.5       -       6.1         2.2       -       2.2       -       -       3.5       4       3.3       3.5         1283       -       1351       -       -       468       463       829       467         -       -       785       -       710       668       -       712         -       -       -       -       710       668       -       785         -       -       -       -       710       668       -       785         -       -       -       -       -       703       665       -       715         1283       -       1351       -       -       463       461       829       460         -       -       703       665       -       775       711         -       -       -       -       703       665       -       775</td><td>4.1       -       4.1       -       -       7.1       6.5       6.2       7.1       6.5         -       -       -       6.1       5.5       -       6.1       5.5         -       -       -       -       6.1       5.5       -       6.1       5.5         2.2       -       2.2       -       3.5       4       3.3       3.5       4         1283       -       1351       -       468       463       829       467       456         -       -       -       710       668       785       717         -       -       -       710       668       785       717         -       -       -       710       668       785       717         -       -       -       -       710       668       785       717         -       -       -       713       665       -       775       716         1283       -       1351       -       -       463       461       829       460       454         -       -       -       703       665       -       775       716<!--</td--><td>4.1       -       4.1       -       -       7.1       6.5       6.2       7.1       6.5       6.2         -       -       -       -       6.1       5.5       -       6.1       5.5       -         -       -       2.2       -       -       6.1       5.5       -       6.1       5.5       -         2.2       -       2.2       -       3.5       4       3.3       3.5       4       3.3         1283       -       1351       -       -       468       463       829       467       456       754         -       -       -       710       668       -       785       717       -         -       -       -       -       710       668       -       785       717       -         -       -       -       -       703       665       -       775       716       -         1283       -       1351       -       -       463       461       829       460       454       -         -       -       -       703       665       -       775       716       -     </td></td></td> | 4.1       -       4.1       -       7.1         -       -       -       -       6.1         -       -       -       -       6.1         2.2       -       2.2       -       3.5         1283       -       1351       -       468         -       -       -       789         -       -       -       710         -       -       -       710         -       -       -       789         -       -       -       710         -       -       -       789         -       -       -       -       710         -       -       -       -       710         -       -       1351       -       463         -       -       -       703       703         EB       WB       NB       NB         0       0.1       12.5       B         NBLn1       EBL       EBT       EBR       WBL | 4.1       -       -       7.1       6.5         -       -       -       -       6.1       5.5         -       -       -       -       6.1       5.5         2.2       -       2.2       -       3.5       4         1283       -       1351       -       468       463         -       -       -       710       668         -       -       -       710       668         -       -       -       710       668         -       -       -       710       668         -       -       -       -       710       668         -       -       -       -       703       665         -       -       -       -       703       665         -       -       -       -       703       665         -       -       -       -       703       665         -       -       -       -       703       665         -       -       -       -       703       665         -       -       -       -       -       8 <td>4.1       -       4.1       -       -       7.1       6.5       6.2         -       -       -       -       6.1       5.5       -         -       -       2.2       -       6.1       5.5       -         2.2       -       2.2       -       3.5       4       3.3         1283       -       1351       -       468       463       829         -       -       789       726       -         -       -       -       710       668       -         -       -       -       -       710       668       -         -       -       -       -       710       668       -         -       -       -       -       710       668       -         -       -       -       -       703       665       -         -       -       -       -       703       665       -         -       -       -       703       665       -         -       -       -       -       703       665       -         -       -       -       -</td> <td>4.1       -       4.1       -       -       7.1       6.5       6.2       7.1         -       -       -       -       6.1       5.5       -       6.1         -       -       -       -       6.1       5.5       -       6.1         2.2       -       2.2       -       -       3.5       4       3.3       3.5         1283       -       1351       -       -       468       463       829       467         -       -       785       -       710       668       -       712         -       -       -       -       710       668       -       785         -       -       -       -       710       668       -       785         -       -       -       -       -       703       665       -       715         1283       -       1351       -       -       463       461       829       460         -       -       703       665       -       775       711         -       -       -       -       703       665       -       775</td> <td>4.1       -       4.1       -       -       7.1       6.5       6.2       7.1       6.5         -       -       -       6.1       5.5       -       6.1       5.5         -       -       -       -       6.1       5.5       -       6.1       5.5         2.2       -       2.2       -       3.5       4       3.3       3.5       4         1283       -       1351       -       468       463       829       467       456         -       -       -       710       668       785       717         -       -       -       710       668       785       717         -       -       -       710       668       785       717         -       -       -       -       710       668       785       717         -       -       -       713       665       -       775       716         1283       -       1351       -       -       463       461       829       460       454         -       -       -       703       665       -       775       716<!--</td--><td>4.1       -       4.1       -       -       7.1       6.5       6.2       7.1       6.5       6.2         -       -       -       -       6.1       5.5       -       6.1       5.5       -         -       -       2.2       -       -       6.1       5.5       -       6.1       5.5       -         2.2       -       2.2       -       3.5       4       3.3       3.5       4       3.3         1283       -       1351       -       -       468       463       829       467       456       754         -       -       -       710       668       -       785       717       -         -       -       -       -       710       668       -       785       717       -         -       -       -       -       703       665       -       775       716       -         1283       -       1351       -       -       463       461       829       460       454       -         -       -       -       703       665       -       775       716       -     </td></td> | 4.1       -       4.1       -       -       7.1       6.5       6.2         -       -       -       -       6.1       5.5       -         -       -       2.2       -       6.1       5.5       -         2.2       -       2.2       -       3.5       4       3.3         1283       -       1351       -       468       463       829         -       -       789       726       -         -       -       -       710       668       -         -       -       -       -       710       668       -         -       -       -       -       710       668       -         -       -       -       -       710       668       -         -       -       -       -       703       665       -         -       -       -       -       703       665       -         -       -       -       703       665       -         -       -       -       -       703       665       -         -       -       -       - | 4.1       -       4.1       -       -       7.1       6.5       6.2       7.1         -       -       -       -       6.1       5.5       -       6.1         -       -       -       -       6.1       5.5       -       6.1         2.2       -       2.2       -       -       3.5       4       3.3       3.5         1283       -       1351       -       -       468       463       829       467         -       -       785       -       710       668       -       712         -       -       -       -       710       668       -       785         -       -       -       -       710       668       -       785         -       -       -       -       -       703       665       -       715         1283       -       1351       -       -       463       461       829       460         -       -       703       665       -       775       711         -       -       -       -       703       665       -       775 | 4.1       -       4.1       -       -       7.1       6.5       6.2       7.1       6.5         -       -       -       6.1       5.5       -       6.1       5.5         -       -       -       -       6.1       5.5       -       6.1       5.5         2.2       -       2.2       -       3.5       4       3.3       3.5       4         1283       -       1351       -       468       463       829       467       456         -       -       -       710       668       785       717         -       -       -       710       668       785       717         -       -       -       710       668       785       717         -       -       -       -       710       668       785       717         -       -       -       713       665       -       775       716         1283       -       1351       -       -       463       461       829       460       454         -       -       -       703       665       -       775       716 </td <td>4.1       -       4.1       -       -       7.1       6.5       6.2       7.1       6.5       6.2         -       -       -       -       6.1       5.5       -       6.1       5.5       -         -       -       2.2       -       -       6.1       5.5       -       6.1       5.5       -         2.2       -       2.2       -       3.5       4       3.3       3.5       4       3.3         1283       -       1351       -       -       468       463       829       467       456       754         -       -       -       710       668       -       785       717       -         -       -       -       -       710       668       -       785       717       -         -       -       -       -       703       665       -       775       716       -         1283       -       1351       -       -       463       461       829       460       454       -         -       -       -       703       665       -       775       716       -     </td> | 4.1       -       4.1       -       -       7.1       6.5       6.2       7.1       6.5       6.2         -       -       -       -       6.1       5.5       -       6.1       5.5       -         -       -       2.2       -       -       6.1       5.5       -       6.1       5.5       -         2.2       -       2.2       -       3.5       4       3.3       3.5       4       3.3         1283       -       1351       -       -       468       463       829       467       456       754         -       -       -       710       668       -       785       717       -         -       -       -       -       710       668       -       785       717       -         -       -       -       -       703       665       -       775       716       -         1283       -       1351       -       -       463       461       829       460       454       -         -       -       -       703       665       -       775       716       - |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR WB | L WBI | WBR : | SBLn1 |
|-----------------------|-------|-------|-----|--------|-------|-------|-------|
| Capacity (veh/h)      | 517   | 1283  | -   | - 135  | 1 -   | -     | 454   |
| HCM Lane V/C Ratio    | 0.077 | 0.001 | -   | - 0.00 | 4 -   | -     | 0.009 |
| HCM Control Delay (s) | 12.5  | 7.8   | -   | - 7.   | 7 -   | -     | 13    |
| HCM Lane LOS          | В     | А     | -   |        | ۰ ۹   | -     | В     |
| HCM 95th %tile Q(veh) | 0.3   | 0     | -   | -      | 0 -   | -     | 0     |

| Int Delay, s/veh       | 3.1      |      |      |          |      |      |   |
|------------------------|----------|------|------|----------|------|------|---|
| Movement               | EBT      | EBR  | WBL  | WBT      | NBL  | NBR  | ł |
| Lane Configurations    | <b>↑</b> |      | - ሽ  | <b>↑</b> | ۰¥   |      |   |
| Traffic Vol, veh/h     | 146      | 0    | 3    | 252      | 104  | 1    |   |
| Future Vol, veh/h      | 146      | 0    | 3    | 252      | 104  | 1    |   |
| Conflicting Peds, #/hr | 0        | 0    | 0    | 0        | 0    | 0    | ) |
| Sign Control           | Free     | Free | Free | Free     | Stop | Stop | ) |
| RT Channelized         | -        | None | -    | None     | -    | None | ÷ |
| Storage Length         | -        | -    | 120  | -        | 0    | -    | - |
| Veh in Median Storage, | # 0      | -    | -    | 0        | 0    | -    | - |
| Grade, %               | 0        | -    | -    | 0        | 0    | -    | - |
| Peak Hour Factor       | 77       | 77   | 80   | 80       | 77   | 77   | , |
| Heavy Vehicles, %      | 4        | 2    | 3    | 0        | 1    | 2    | ) |
| Mvmt Flow              | 190      | 0    | 4    | 315      | 135  | 1    |   |

| Major/Minor          | Major1 |       | Major2 | ľ     | Minor1 |      |
|----------------------|--------|-------|--------|-------|--------|------|
|                      |        |       |        |       |        | 100  |
| Conflicting Flow All | 0      | -     | 190    | 0     | 513    | 190  |
| Stage 1              | -      | -     | -      | -     | 190    | -    |
| Stage 2              | -      |       | -      | -     | 323    | -    |
| Critical Hdwy        | -      | -     | 4.13   | -     | 6.41   | 6.22 |
| Critical Hdwy Stg 1  | -      | -     | -      | -     | 5.41   | -    |
| Critical Hdwy Stg 2  | -      |       | -      | -     | 5.41   | -    |
| Follow-up Hdwy       | -      |       | 2.227  | -     | 3.509  |      |
| Pot Cap-1 Maneuver   | -      | 0     | 1378   | -     | 523    | 852  |
| Stage 1              | -      | •     |        | -     | 845    | -    |
| Stage 2              | -      | 0     | -      | -     | 736    | -    |
| Platoon blocked, %   | -      |       |        | -     |        |      |
| Mov Cap-1 Maneuver   | · -    | -     | 1378   | -     | 521    | 852  |
| Mov Cap-2 Maneuver   | · -    | -     | -      | -     | 521    | -    |
| Stage 1              | -      | -     | -      | -     | 845    | -    |
| Stage 2              | -      | -     | -      | -     | 734    | -    |
|                      |        |       |        |       |        |      |
| Annroach             | EB     |       | WB     |       | NB     |      |
| Approach             |        |       |        |       |        |      |
| HCM Control Delay, s | ; 0    |       | 0.1    |       | 14.3   |      |
| HCM LOS              |        |       |        |       | В      |      |
|                      |        |       |        |       |        |      |
| Minor Lane/Major Mvr | mt     | NBLn1 | EBT    | WBL   | WBT    |      |
| Capacity (veh/h)     |        | 523   | -      | 1378  | -      |      |
| HCM Lane V/C Ratio   |        | 0.261 |        | 0.003 | -      |      |
| HCM Control Delay (s | 3)     | 14.3  |        |       | -      |      |
| HCM Lane LOS         | /      | В     |        | A     | -      |      |
| HCM 95th %tile Q(veh | h)     | 1     | -      | 0     | -      |      |
|                      | 1      |       |        |       |        |      |

# Intersection

| Movement               | EBL  | EBT          | EBR  | WBL  | WBT          | WBR  | NBL  | NBT  | NBR  | SBL  | SBT              | SBR  |
|------------------------|------|--------------|------|------|--------------|------|------|------|------|------|------------------|------|
|                        | EDL  |              | EDN  | VVDL |              | WDN  | INDL | INDI | NDR  | SDL  | SDI              | JDN  |
| Lane Configurations    | - ግ  | - <b>†</b> Þ |      | - ግ  | - <b>†</b> Þ |      | ገ    | ને 👘 |      |      | - <del>4</del> > |      |
| Traffic Vol, veh/h     | 0    | 232          | 20   | 73   | 342          | 3    | 16   | 1    | 39   | 5    | 0                | 1    |
| Future Vol, veh/h      | 0    | 232          | 20   | 73   | 342          | 3    | 16   | 1    | 39   | 5    | 0                | 1    |
| Conflicting Peds, #/hr | 0    | 0            | 0    | 0    | 0            | 0    | 0    | 0    | 0    | 0    | 0                | 0    |
| Sign Control           | Free | Free         | Free | Free | Free         | Free | Stop | Stop | Stop | Stop | Stop             | Stop |
| RT Channelized         | -    | -            | None | -    | -            | None | -    | -    | None | -    | -                | None |
| Storage Length         | 50   | -            | -    | 125  | -            | -    | 90   | -    | -    | -    | -                | -    |
| Veh in Median Storage, | # -  | 0            | -    | -    | 0            | -    | -    | 0    | -    | -    | 0                | -    |
| Grade, %               | -    | 0            | -    | -    | 0            | -    | -    | 0    | -    | -    | 0                | -    |
| Peak Hour Factor       | 100  | 100          | 100  | 93   | 93           | 93   | 70   | 70   | 70   | 75   | 75               | 75   |
| Heavy Vehicles, %      | 0    | 0            | 0    | 1    | 0            | 0    | 0    | 0    | 0    | 0    | 0                | 0    |
| Mvmt Flow              | 0    | 232          | 20   | 78   | 368          | 3    | 23   | 1    | 56   | 7    | 0                | 1    |

| Major/Minor          | Major1 |       | ſ     | Major2 |     | ľ   | /linor1 |     | Ν     | /linor2 |     |     |  |
|----------------------|--------|-------|-------|--------|-----|-----|---------|-----|-------|---------|-----|-----|--|
| Conflicting Flow All | 371    | 0     | 0     | 252    | 0   | 0   | 582     | 769 | 126   | 643     | 778 | 186 |  |
| Stage 1              | -      | -     | -     | -      | -   | -   | 242     | 242 | -     | 526     | 526 | -   |  |
| Stage 2              | -      | -     | -     | -      | -   | -   | 340     | 527 | -     | 117     | 252 | -   |  |
| Critical Hdwy        | 4.1    | -     | -     | 4.12   | -   | -   | 7.5     | 6.5 | 6.9   | 7.5     | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1  | -      | -     | -     | -      | -   | -   | 6.5     | 5.5 | -     | 6.5     | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | -     | -     | -      | -   | -   | 6.5     | 5.5 | -     | 6.5     | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | -     | -     | 2.21   | -   | -   | 3.5     | 4   | 3.3   | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1199   | -     | -     | 1318   | -   | -   | 401     | 334 | 907   | 362     | 330 | 831 |  |
| Stage 1              | -      | -     | -     | -      | -   | -   | 746     | 709 | -     | 508     | 532 | -   |  |
| Stage 2              | -      | -     | -     | -      | -   | -   | 654     | 532 | -     | 881     | 702 | -   |  |
| Platoon blocked, %   |        | -     | -     |        | -   | -   |         |     |       |         |     |     |  |
| Mov Cap-1 Maneuver   |        | -     | -     | 1318   | -   | -   | 382     | 314 | 907   | 323     | 311 | 831 |  |
| Mov Cap-2 Maneuver   | -      | -     | -     | -      | -   | -   | 382     | 314 | -     | 323     | 311 | -   |  |
| Stage 1              | -      | -     | -     | -      | -   | -   | 746     | 709 | -     | 508     | 501 | -   |  |
| Stage 2              | -      | -     | -     | -      | -   | -   | 614     | 501 | -     | 825     | 702 | -   |  |
|                      |        |       |       |        |     |     |         |     |       |         |     |     |  |
| Approach             | EB     |       |       | WB     |     |     | NB      |     |       | SB      |     |     |  |
| HCM Control Delay, s | 0      |       |       | 1.4    |     |     | 11.1    |     |       | 15.2    |     |     |  |
| HCM LOS              |        |       |       |        |     |     | В       |     |       | С       |     |     |  |
|                      |        |       |       |        |     |     |         |     |       |         |     |     |  |
| Minor Lane/Major Mvr | nt I   | NBLn1 | NBLn2 | EBL    | EBT | EBR | WBL     | WBT | WBR S | SBLn1   |     |     |  |
| Capacity (veh/h)     |        | 382   | 866   | 1199   | -   | -   | 1318    | -   | -     | 360     |     |     |  |
| HCM Lane V/C Ratio   |        | 0.06  | 0.066 | -      | -   | -   | 0.06    | -   | -     | 0.022   |     |     |  |
| HCM Control Delay (s | ;)     | 15    | 9.5   | 0      | -   | -   | 7.9     | -   | -     | 15.2    |     |     |  |
| HCM Lane LOS         |        | С     | А     | А      | -   | -   | А       | -   | -     | С       |     |     |  |
| HCM 95th %tile Q(veh | ר)     | 0.2   | 0.2   | 0      | -   | -   | 0.2     | -   | -     | 0.1     |     |     |  |

# Intersection

Int Delay, s/veh

|                        |      |               |      |      | WDT           |      |      | NDT  |      | 0.51 | 0.D.T |      |  |
|------------------------|------|---------------|------|------|---------------|------|------|------|------|------|-------|------|--|
| Movement               | EBL  | EBT           | EBR  | WBL  | WBT           | WBR  | NBL  | NBT  | NBR  | SBL  | SBT   | SBR  |  |
| Lane Configurations    | - ሽ  | _ <b>≜</b> î≽ |      | - ሽ  | _ <b>≜</b> î≽ |      |      | ୍ କ  | 1    |      | - 44  |      |  |
| Traffic Vol, veh/h     | 7    | 214           | 41   | 150  | 375           | 6    | 48   | 4    | 83   | 1    | 2     | 12   |  |
| Future Vol, veh/h      | 7    | 214           | 41   | 150  | 375           | 6    | 48   | 4    | 83   | 1    | 2     | 12   |  |
| Conflicting Peds, #/hr | 0    | 0             | 0    | 0    | 0             | 0    | 0    | 0    | 0    | 0    | 0     | 0    |  |
| Sign Control           | Free | Free          | Free | Free | Free          | Free | Stop | Stop | Stop | Stop | Stop  | Stop |  |
| RT Channelized         | -    | -             | None | -    | -             | None | -    | -    | None | -    | -     | None |  |
| Storage Length         | 100  | -             | -    | 100  | -             | -    | 60   | -    | -    | -    | -     | -    |  |
| Veh in Median Storage, | # -  | 0             | -    | -    | 0             | -    | -    | 0    | -    | -    | 0     | -    |  |
| Grade, %               | -    | 0             | -    | -    | 0             | -    | -    | 0    | -    | -    | 0     | -    |  |
| Peak Hour Factor       | 97   | 97            | 97   | 95   | 95            | 95   | 97   | 97   | 97   | 54   | 54    | 54   |  |
| Heavy Vehicles, %      | 0    | 0             | 2    | 1    | 3             | 0    | 8    | 0    | 1    | 0    | 0     | 0    |  |
| Mvmt Flow              | 7    | 221           | 42   | 158  | 395           | 6    | 49   | 4    | 86   | 2    | 4     | 22   |  |

| Major/Minor           | Major1 |       |       | Major2 |     |     | Minor1 |     | Ν     | /linor2 |     |     |  |
|-----------------------|--------|-------|-------|--------|-----|-----|--------|-----|-------|---------|-----|-----|--|
| Conflicting Flow All  | 401    | 0     | 0     | 263    | 0   | 0   | 772    | 973 | 132   | 841     | 991 | 201 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 256    | 256 | -     | 714     | 714 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 516    | 717 | -     | 127     | 277 | -   |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.12   | -   | -   | 7.66   | 6.5 | 6.92  | 7.5     | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -   | 6.66   | 5.5 | -     | 6.5     | 5.5 | -   |  |
| Critical Hdwy Stg 2   | -      |       | -     | -      | -   | -   | 6.66   | 5.5 | -     | 6.5     | 5.5 | -   |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.21   | -   | -   | 3.58   | 4   | 3.31  | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver    | 1169   | -     | -     | 1306   | -   | -   | 279    | 254 | 896   | 261     | 248 | 813 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 709    | 699 | -     | 393     | 438 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 495    | 437 | -     | 869     | 685 | -   |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -   |        |     |       |         |     |     |  |
| Mov Cap-1 Maneuver    | 1169   | -     | -     | 1306   | -   | -   | 242    | 222 | 896   | 210     | 217 | 813 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -   | 242    | 222 | -     | 210     | 217 | -   |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 705    | 695 | -     | 391     | 385 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 419    | 384 | -     | 777     | 681 | -   |  |
|                       |        |       |       |        |     |     |        |     |       |         |     |     |  |
| Approach              | EB     |       |       | WB     |     |     | NB     |     |       | SB      |     |     |  |
| HCM Control Delay, s  | 0.2    |       |       | 2.3    |     |     | 15.1   |     |       | 12.3    |     |     |  |
| HCM LOS               |        |       |       |        |     |     | С      |     |       | В       |     |     |  |
|                       |        |       |       |        |     |     |        |     |       |         |     |     |  |
| Minor Lane/Major Mvm  | t      | NBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT | WBR S | SBLn1   |     |     |  |
| Capacity (veh/h)      |        | 240   | 896   | 1169   | -   | -   | 1306   | -   | -     | 522     |     |     |  |
| HCM Lane V/C Ratio    |        | 0.223 | 0.095 | 0.006  | -   | -   | 0.121  | -   | -     | 0.053   |     |     |  |
| HCM Control Delay (s) |        | 24.3  | 9.4   | 8.1    | -   | -   | 8.1    | -   | -     | 12.3    |     |     |  |
| HCM Lane LOS          |        | С     | А     | А      | -   | -   | А      | -   | -     | В       |     |     |  |
| HCM 95th %tile Q(veh) | )      | 0.8   | 0.3   | 0      | -   | -   | 0.4    | -   | -     | 0.2     |     |     |  |
|                       |        |       |       |        |     |     |        |     |       |         |     |     |  |

H:\Projects\16000\16002\Traffic\Analysis\Synchro\1\_Existing\Peak Summer Conditions.syn Synchro 11 Report

### Intersection

Int Delay, s/veh

HCM Lane LOS

HCM 95th %tile Q(veh)

| Movement               | EBL  | EBT         | EBR  | WBL         | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|-------------|------|-------------|----------|------|------|------|------|------|------|------|
| Lane Configurations    | 5    | <b>≜</b> î₽ | LDIX | <u>אוטר</u> | <b>≜</b> | WBIX | NDL  | 4    | NDIX | ODL  | 4    | OBIC |
| Traffic Vol, veh/h     | 3    | 358         | 11   | 21          | 539      | 2    | 14   | 0    | 20   | 0    | 0    | 0    |
| Future Vol, veh/h      | 3    | 358         | 11   | 21          | 539      | 2    | 14   | 0    | 20   | 0    | 0    | 0    |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0           | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free        | Free | Free        | Free     | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -           | None | -           | -        | None | -    | -    | None | -    | -    | None |
| Storage Length         | 50   | -           | -    | 110         | -        | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | ,# - | 0           | -    | -           | 0        | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0           | -    | -           | 0        | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 92   | 92          | 92   | 91          | 91       | 91   | 77   | 77   | 77   | 75   | 75   | 75   |
| Heavy Vehicles, %      | 0    | 1           | 0    | 0           | 0        | 0    | 0    | 0    | 5    | 0    | 0    | 0    |
| Mvmt Flow              | 3    | 389         | 12   | 23          | 592      | 2    | 18   | 0    | 26   | 0    | 0    | 0    |

| Major/Minor           | Major1 |       | ſ     | Major2 |     |      | Minor1 |       | Ν     | 1inor2 |      |     |  |
|-----------------------|--------|-------|-------|--------|-----|------|--------|-------|-------|--------|------|-----|--|
| Conflicting Flow All  | 594    | 0     | 0     | 401    | 0   | 0    | 743    | 1041  | 201   | 840    | 1046 | 297 |  |
| Stage 1               | -      | -     | -     | -      | -   | -    | 401    | 401   | -     | 639    | 639  | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -    | 342    | 640   | -     | 201    | 407  | -   |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.1    | -   | -    | 7.5    | 6.5   | 7     | 7.5    | 6.5  | 6.9 |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -    | 6.5    | 5.5   | -     | 6.5    | 5.5  | -   |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -    | 6.5    | 5.5   | -     | 6.5    | 5.5  | -   |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.2    | -   | -    | 3.5    | 4     | 3.35  | 3.5    | 4    | 3.3 |  |
| Pot Cap-1 Maneuver    | 992    | -     | -     | 1169   | -   | -    | 307    | 232   | 797   | 262    | 230  | 705 |  |
| Stage 1               | -      | -     | -     | -      | -   | -    | 602    | 604   | -     | 436    | 474  | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -    | 652    | 473   | -     | 788    | 601  | -   |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -    |        |       |       |        |      |     |  |
| Mov Cap-1 Maneuver    | 992    | -     | -     | 1169   | -   | -    | 302    | 227   | 797   | 249    | 225  | 705 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -    | 302    | 227   | -     | 249    | 225  | -   |  |
| Stage 1               | -      | -     | -     | -      | -   | -    | 600    | 602   | -     | 435    | 465  | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -    | 639    | 464   | -     | 760    | 599  | -   |  |
|                       |        |       |       |        |     |      |        |       |       |        |      |     |  |
| Approach              | EB     |       |       | WB     |     |      | NB     |       |       | SB     |      |     |  |
| HCM Control Delay, s  | 0.1    |       |       | 0.3    |     |      | 13.3   |       |       | 0      |      |     |  |
| HCM LOS               |        |       |       |        |     |      | В      |       |       | А      |      |     |  |
|                       |        |       |       |        |     |      |        |       |       |        |      |     |  |
| Minor Lane/Major Mvn  | nt N   | VBLn1 | EBL   | EBT    | EBR | WBL  | WBT    | WBR S | SBLn1 |        |      |     |  |
| Capacity (veh/h)      |        | 476   | 992   | -      | -   | 1169 | -      | -     | -     |        |      |     |  |
| HCM Lane V/C Ratio    |        | 0.093 | 0.003 | -      | -   | 0.02 | -      | -     | -     |        |      |     |  |
| HCM Control Delay (s) | )      | 13.3  | 8.6   | -      | -   | 8.1  | -      | -     | 0     |        |      |     |  |
| HCM Lane V/C Ratio    |        | 0.093 | 0.003 | -      | -   | 0.02 | -      | -     | -     |        |      |     |  |

А

0.1

-

\_

-

-

А

-

-

\_

В

0.3

А

0

-

-

| Int Delay, s/veh       | 3.8      |      |      |              |      |      |
|------------------------|----------|------|------|--------------|------|------|
| Movement               | EBT      | EBR  | WBL  | WBT          | NBL  | NBR  |
| Lane Configurations    | el<br>el |      |      | <del>ب</del> | Y    |      |
| Traffic Vol, veh/h     | 33       | 0    | 38   | 40           | 2    | 28   |
| Future Vol, veh/h      | 33       | 0    | 38   | 40           | 2    | 28   |
| Conflicting Peds, #/hr | 0        | 0    | 0    | 0            | 0    | 0    |
| Sign Control           | Free     | Free | Free | Free         | Stop | Stop |
| RT Channelized         | -        | None | -    | None         | -    | None |
| Storage Length         | -        | -    | -    | -            | 0    | -    |
| Veh in Median Storage, | # 0      | -    | -    | 0            | 0    | -    |
| Grade, %               | 0        | -    | -    | 0            | 0    | -    |
| Peak Hour Factor       | 69       | 69   | 93   | 93           | 75   | 75   |
| Heavy Vehicles, %      | 3        | 2    | 2    | 3            | 0    | 2    |
| Mvmt Flow              | 48       | 0    | 41   | 43           | 3    | 37   |

| Major/Minor          | Major1 | Ν     | Major2 | 1   | Minor1 |       |
|----------------------|--------|-------|--------|-----|--------|-------|
| Conflicting Flow All | 0      | 0     | 48     | 0   | 173    | 48    |
| Stage 1              | -      | -     | -      | -   | 48     | -     |
| Stage 2              | -      | -     | -      | -   | 125    | -     |
| Critical Hdwy        | -      | -     | 4.12   | -   | 6.4    | 6.22  |
| Critical Hdwy Stg 1  | -      | -     | -      | -   | 5.4    | -     |
| Critical Hdwy Stg 2  | -      | -     | -      | -   | 5.4    | -     |
| Follow-up Hdwy       | _      | -     | 2.218  | -   |        | 3.318 |
| Pot Cap-1 Maneuver   | _      | -     |        | -   | 822    | 1021  |
| Stage 1              | -      | -     | -      | -   | 980    | -     |
| Stage 2              | -      | -     | -      | _   | 906    | -     |
| Platoon blocked, %   | -      | -     |        | -   | 000    |       |
| Mov Cap-1 Maneuver   |        | -     | 1559   | -   | 800    | 1021  |
| Mov Cap-2 Maneuver   |        | -     | -      | -   | 782    | -     |
| Stage 1              | -      | -     | -      | -   | 980    | -     |
| Stage 2              | -      | -     | -      | -   | 882    | -     |
| olugo L              |        |       |        |     | 002    |       |
|                      |        |       |        |     |        |       |
| Approach             | EB     |       | WB     |     | NB     |       |
| HCM Control Delay, s | 0      |       | 3.6    |     | 8.7    |       |
| HCM LOS              |        |       |        |     | А      |       |
|                      |        |       |        |     |        |       |
| Minor Lane/Major Mvr | nt N   | VBLn1 | EBT    | EBR | WBL    | WBT   |
| Capacity (veh/h)     |        | 1001  |        |     | 1559   |       |
| HCM Lane V/C Ratio   |        | 0.04  | -      |     | 0.026  | -     |
| HCM Control Delay (s | ()     | 8.7   | -      | -   | 7.4    | 0     |
| HCM Lane LOS         | ')     | A     | -      | -   | A      | Ă     |
| HCM 95th %tile Q(veh | ר)     | 0.1   | -      | _   | 0.1    | -     |

| Int Delay, s/veh       | 0    |      |      |          |          |      |
|------------------------|------|------|------|----------|----------|------|
| Movement               | EBL  | EBR  | NBL  | NBT      | SBT      | SBR  |
| Lane Configurations    |      | 1    |      | <b>↑</b> | <b>↑</b> |      |
| Traffic Vol, veh/h     | 0    | 65   | 0    | 105      | 3        | 0    |
| Future Vol, veh/h      | 0    | 65   | 0    | 105      | 3        | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0        | 0        | 0    |
| Sign Control           | Free | Free | Free | Free     | Stop     | Stop |
| RT Channelized         | -    | None | -    | None     | -        | None |
| Storage Length         | -    | 0    | -    | -        | -        | -    |
| Veh in Median Storage, | # 1  | -    | -    | 0        | 0        | -    |
| Grade, %               | 0    | -    | -    | 0        | 0        | -    |
| Peak Hour Factor       | 77   | 77   | 77   | 77       | 80       | 80   |
| Heavy Vehicles, %      | 2    | 3    | 2    | 0        | 3        | 2    |
| Mvmt Flow              | 0    | 84   | 0    | 136      | 4        | 0    |

| Major/Minor           | Major1    | Minor2  |   |
|-----------------------|-----------|---------|---|
| Conflicting Flow All  | -         | 0 136   | - |
| Stage 1               | -         | - 0     | - |
| Stage 2               | -         | - 136   | - |
| Critical Hdwy         | -         | - 6.53  | - |
| Critical Hdwy Stg 1   | -         |         | - |
| Critical Hdwy Stg 2   | -         | - 5.53  | - |
| Follow-up Hdwy        | -         | - 4.027 | - |
| Pot Cap-1 Maneuver    | 0         | - 753   | 0 |
| Stage 1               | 0         |         | 0 |
| Stage 2               | Ő         | - 782   | 0 |
| Platoon blocked, %    | U         | - 102   | U |
| Mov Cap-1 Maneuver    |           | - 0     | - |
|                       | -         |         |   |
| Mov Cap-2 Maneuver    | -         | - 0     | - |
| Stage 1               | -         | - 0     | - |
| Stage 2               | -         | - 0     | - |
|                       |           |         |   |
| Approach              | NB        | SB      |   |
| HCM Control Delay, s  | 0         |         |   |
| HCM LOS               | 0         | -       |   |
|                       |           | -       |   |
|                       |           |         |   |
| Minor Lane/Major Mvmt | NBT SBLn1 |         |   |
| Capacity (veh/h)      |           |         |   |
| HCM Lane V/C Ratio    |           |         |   |

|                       | - | - |  |
|-----------------------|---|---|--|
| HCM Control Delay (s) | - | - |  |
| HCM Lane LOS          | - | - |  |
| HCM 95th %tile Q(veh) | - | - |  |

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    | ۲    | ef 👘 |      | ۲    | ef 👘 |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h     | 0    | 382  | 8    | 12   | 152  | 8    | 8    | 0    | 38   | 46   | 7    | 0    |  |
| Future Vol, veh/h      | 0    | 382  | 8    | 12   | 152  | 8    | 8    | 0    | 38   | 46   | 7    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 100  | -    | -    | 115  | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 5    | 17   | 0    | 19   | 17   | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 0    | 424  | 9    | 13   | 169  | 9    | 9    | 0    | 42   | 51   | 8    | 0    |  |

| Major/Minor          | Major1 |   | Ν | /lajor2 |   | Ν | linor1 |     | Ν   | linor2 |     |     |  |
|----------------------|--------|---|---|---------|---|---|--------|-----|-----|--------|-----|-----|--|
| Conflicting Flow All | 178    | 0 | 0 | 433     | 0 | 0 | 633    | 633 | 429 | 650    | 633 | 174 |  |
| Stage 1              | -      | - | - | -       | - | - | 429    | 429 | -   | 200    | 200 | -   |  |
| Stage 2              | -      | - | - | -       | - | - | 204    | 204 | -   | 450    | 433 | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.1     | - | - | 7.1    | 6.5 | 6.2 | 7.1    | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | - | -       | - | - | 6.1    | 5.5 | -   | 6.1    | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -       | - | - | 6.1    | 5.5 | -   | 6.1    | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2     | - | - | 3.5    | 4   | 3.3 | 3.5    | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1410   | - | - | 1137    | - | - | 395    | 400 | 630 | 385    | 400 | 875 |  |
| Stage 1              | -      | - | - | -       | - | - | 608    | 587 | -   | 806    | 739 | -   |  |
| Stage 2              | -      | - | - | -       | - | - | 803    | 737 | -   | 592    | 585 | -   |  |
| Platoon blocked, %   |        | - | - |         | - | - |        |     |     |        |     |     |  |
| Mov Cap-1 Maneuver   | 1410   | - | - | 1137    | - | - | 386    | 396 | 630 | 356    | 396 | 875 |  |
| Mov Cap-2 Maneuver   | -      | - | - | -       | - | - | 386    | 396 | -   | 356    | 396 | -   |  |
| Stage 1              | -      | - | - | -       | - | - | 608    | 587 | -   | 806    | 731 | -   |  |
| Stage 2              | -      | - | - | -       | - | - | 785    | 729 | -   | 552    | 585 | -   |  |
|                      |        |   |   |         |   |   |        |     |     |        |     |     |  |
| Approach             | EB     |   |   | WB      |   |   | NB     |     |     | SB     |     |     |  |
| HCM Control Delay, s | 0      |   |   | 0.6     |   |   | 12     |     |     | 16.9   |     |     |  |
| HCM LOS              |        |   |   |         |   |   | В      |     |     | С      |     |     |  |
|                      |        |   |   |         |   |   |        |     |     |        |     |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR S | SBLn1 |
|-----------------------|-------|------|-----|-----|-------|-----|-------|-------|
| Capacity (veh/h)      | 568   | 1410 | -   | -   | 1137  | -   | -     | 361   |
| HCM Lane V/C Ratio    | 0.09  | -    | -   | -   | 0.012 | -   | -     | 0.163 |
| HCM Control Delay (s) | 12    | 0    | -   | -   | 8.2   | -   | -     | 16.9  |
| HCM Lane LOS          | В     | А    | -   | -   | А     | -   | -     | С     |
| HCM 95th %tile Q(veh) | 0.3   | 0    | -   | -   | 0     | -   | -     | 0.6   |

### Intersection

| Movement               | EBL  | EBT           | EBR  | WBL  | WBT           | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|---------------|------|------|---------------|------|------|------|------|------|------|------|
| Lane Configurations    | ٦    | _ <b>≜</b> ∱₽ |      | ኘ    | _ <b>≜</b> î≽ |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h     | 17   | 112           | 3    | 18   | 59            | 14   | 1    | 0    | 7    | 56   | 1    | 3    |
| Future Vol, veh/h      | 17   | 112           | 3    | 18   | 59            | 14   | 1    | 0    | 7    | 56   | 1    | 3    |
| Conflicting Peds, #/hr | 0    | 0             | 0    | 0    | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free          | Free | Free | Free          | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -             | None | -    | -             | None | -    | -    | None | -    | -    | None |
| Storage Length         | 125  | -             | -    | 125  | -             | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0             | -    | -    | 0             | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0             | -    | -    | 0             | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90            | 90   | 90   | 90            | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 1             | 0    | 0    | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 19   | 124           | 3    | 20   | 66            | 16   | 1    | 0    | 8    | 62   | 1    | 3    |

| Major/Minor          | Major1 |   | Ν | /lajor2 |   | Ν | linor1 |     | Ν   | linor2 |     |      |  |
|----------------------|--------|---|---|---------|---|---|--------|-----|-----|--------|-----|------|--|
| Conflicting Flow All | 82     | 0 | 0 | 127     | 0 | 0 | 238    | 286 | 64  | 214    | 279 | 41   |  |
| Stage 1              | -      | - | - | -       | - | - | 164    | 164 | -   | 114    | 114 | -    |  |
| Stage 2              | -      | - | - | -       | - | - | 74     | 122 | -   | 100    | 165 | -    |  |
| Critical Hdwy        | 4.1    | - | - | 4.1     | - | - | 7.5    | 6.5 | 6.9 | 7.5    | 6.5 | 6.9  |  |
| Critical Hdwy Stg 1  | -      | - | - | -       | - | - | 6.5    | 5.5 | -   | 6.5    | 5.5 | -    |  |
| Critical Hdwy Stg 2  | -      | - | - | -       | - | - | 6.5    | 5.5 | -   | 6.5    | 5.5 | -    |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2     | - | - | 3.5    | 4   | 3.3 | 3.5    | 4   | 3.3  |  |
| Pot Cap-1 Maneuver   | 1528   | - | - | 1472    | - | - | 702    | 627 | 994 | 729    | 632 | 1028 |  |
| Stage 1              | -      | - | - | -       | - | - | 828    | 766 | -   | 884    | 805 | -    |  |
| Stage 2              | -      | - | - | -       | - | - | 933    | 799 | -   | 901    | 766 | -    |  |
| Platoon blocked, %   |        | - | - |         | - | - |        |     |     |        |     |      |  |
| Mov Cap-1 Maneuver   | 1528   | - | - | 1472    | - | - | 685    | 611 | 994 | 709    | 616 | 1028 |  |
| Mov Cap-2 Maneuver   | -      | - | - | -       | - | - | 685    | 611 | -   | 709    | 616 | -    |  |
| Stage 1              | -      | - | - | -       | - | - | 818    | 757 | -   | 873    | 794 | -    |  |
| Stage 2              | -      | - | - | -       | - | - | 916    | 788 | -   | 883    | 757 | -    |  |
|                      |        |   |   |         |   |   |        |     |     |        |     |      |  |
| Approach             | EB     |   |   | WB      |   |   | NB     |     |     | SB     |     |      |  |
| HCM Control Delay, s | 1      |   |   | 1.5     |   |   | 8.9    |     |     | 10.5   |     |      |  |
| HCM LOS              |        |   |   |         |   |   | А      |     |     | В      |     |      |  |
|                      |        |   |   |         |   |   |        |     |     |        |     |      |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR \$ | SBLn1 |
|-----------------------|-------|-------|-----|-----|-------|-----|--------|-------|
| Capacity (veh/h)      | 941   | 1528  | -   | -   | 1472  | -   | -      | 718   |
| HCM Lane V/C Ratio    | 0.009 | 0.012 | -   | -   | 0.014 | -   | -      | 0.093 |
| HCM Control Delay (s) | 8.9   | 7.4   | -   | -   | 7.5   | -   | -      | 10.5  |
| HCM Lane LOS          | А     | А     | -   | -   | А     | -   | -      | В     |
| HCM 95th %tile Q(veh) | 0     | 0     | -   | -   | 0     | -   | -      | 0.3   |

### Intersection

Int Delay, s/veh

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR   |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Lane Configurations    | ኘ    | 4    |      | ٦    | 4    |      |      | 4    |      |      | र्स  | 1     |
| Traffic Vol, veh/h     | 196  | 347  | 0    | 4    | 132  | 75   | 0    | 8    | 8    | 73   | 0    | 80    |
| Future Vol, veh/h      | 196  | 347  | 0    | 4    | 132  | 75   | 0    | 8    | 8    | 73   | 0    | 80    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop  |
| RT Channelized         | -    | -    | None | -    | -    | None | -    | -    | None | -    | -    | Yield |
| Storage Length         | 100  | -    | -    | 100  | -    | -    | -    | -    | -    | -    | -    | 125   |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90    |
| Heavy Vehicles, %      | 0    | 1    | 2    | 0    | 5    | 16   | 0    | 0    | 0    | 11   | 0    | 5     |
| Mvmt Flow              | 218  | 386  | 0    | 4    | 147  | 83   | 0    | 9    | 9    | 81   | 0    | 89    |

| Major/Minor           | Major1 |       | 1     | Major2 |     |       | Minor1 |      |       | Minor2 |      |       |  |
|-----------------------|--------|-------|-------|--------|-----|-------|--------|------|-------|--------|------|-------|--|
| Conflicting Flow All  | 230    | 0     | 0     | 386    | 0   | 0     | 1019   | 1060 | 386   | 1028   | 1019 | 189   |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 822    | 822  | -     | 197    | 197  | -     |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 197    | 238  | -     | 831    | 822  | -     |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.1    | -   | -     | 7.1    | 6.5  | 6.2   | 7.21   | 6.5  | 6.25  |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -     | 6.1    | 5.5  | -     | 6.21   | 5.5  | -     |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -     | 6.1    | 5.5  | -     | 6.21   | 5.5  | -     |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.2    | -   | -     | 3.5    | 4    | 3.3   | 3.599  | 4    | 3.345 |  |
| Pot Cap-1 Maneuver    | 1350   | -     | -     | 1184   | -   | -     | 217    | 226  | 666   | 204    | 239  | 845   |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 371    | 391  | -     | 785    | 742  | -     |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 809    | 712  | -     | 351    | 391  | -     |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -     |        |      |       |        |      |       |  |
| Mov Cap-1 Maneuver    | 1350   | -     | -     | 1184   | -   | -     | 170    | 189  | 666   | 170    | 200  | 845   |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -     | 170    | 189  | -     | 170    | 200  | -     |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 311    | 328  | -     |        | 740  | -     |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 721    | 710  | -     | 283    | 328  | -     |  |
|                       |        |       |       |        |     |       |        |      |       |        |      |       |  |
| Approach              | EB     |       |       | WB     |     |       | NB     |      |       | SB     |      |       |  |
| HCM Control Delay, s  | 3      |       |       | 0.2    |     |       | 18     |      |       | 26.2   |      |       |  |
| HCM LOS               |        |       |       |        |     |       | С      |      |       | D      |      |       |  |
|                       |        |       |       |        |     |       |        |      |       |        |      |       |  |
| Minor Lane/Major Mvm  | nt     | NBLn1 | EBL   | EBT    | EBR | WBL   | WBT    | WBR  | SBLn1 | SBLn2  |      |       |  |
| Capacity (veh/h)      |        | 294   | 1350  | -      | -   | 1184  | -      | -    | 170   | 845    |      |       |  |
| HCM Lane V/C Ratio    |        | 0.06  | 0.161 | -      | -   | 0.004 | -      | -    | 0.477 | 0.105  |      |       |  |
| HCM Control Delay (s) |        | 18    | 8.2   | -      | -   | 8.1   | -      | -    | 44.1  | 9.8    |      |       |  |

А

0

-

-

-

-

Е

2.3

-

-

А

0.4

H:\Projects\16000\16002\Traffic\Analysis\Synchro\2\_2035\1\_5 lane (existing)\Updated\2035 (Typ) Conditions.syn Synchro 11 Report

С

0.2

А

0.6

-

-

HCM Lane LOS

HCM 95th %tile Q(veh)

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|----------|------|------|------|------|------|------|------|--|
| Lane Configurations    | 5    | et   |      | 5    | el<br>el |      |      | ÷    |      |      | ÷    |      |  |
| Traffic Vol, veh/h     | 0    | 290  | 9    | 3    | 145      | 1    | 21   | 0    | 10   | 1    | 0    | 0    |  |
| Future Vol, veh/h      | 0    | 290  | 9    | 3    | 145      | 1    | 21   | 0    | 10   | 1    | 0    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free     | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None | -    | -        | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 115  | -    | -    | 120  | -        | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0        | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0        | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90       | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 6    | 0    | 0    | 19       | 0    | 0    | 0    | 13   | 0    | 0    | 0    |  |
| Mvmt Flow              | 0    | 322  | 10   | 3    | 161      | 1    | 23   | 0    | 11   | 1    | 0    | 0    |  |

| Major/Minor          | Major1 |   | Ν | /lajor2 |   | Ν | linor1 |     | Ν     | linor2 |     |     |  |
|----------------------|--------|---|---|---------|---|---|--------|-----|-------|--------|-----|-----|--|
| Conflicting Flow All | 162    | 0 | 0 | 332     | 0 | 0 | 495    | 495 | 327   | 501    | 500 | 162 |  |
| Stage 1              | -      | - | - | -       | - | - | 327    | 327 | -     | 168    | 168 | -   |  |
| Stage 2              | -      | - | - | -       | - | - | 168    | 168 | -     | 333    | 332 | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.1     | - | - | 7.1    | 6.5 | 6.33  | 7.1    | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | - | -       | - | - | 6.1    | 5.5 | -     | 6.1    | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -       | - | - | 6.1    | 5.5 | -     | 6.1    | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2     | - | - | 3.5    | 4   | 3.417 | 3.5    | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1429   | - | - | 1239    | - | - | 488    | 479 | 690   | 484    | 476 | 888 |  |
| Stage 1              | -      | - | - | -       | - | - | 690    | 651 | -     | 839    | 763 | -   |  |
| Stage 2              | -      | - | - | -       | - | - | 839    | 763 | -     | 685    | 648 | -   |  |
| Platoon blocked, %   |        | - | - |         | - | - |        |     |       |        |     |     |  |
| Mov Cap-1 Maneuver   | 1429   | - | - | 1239    | - | - | 487    | 478 | 690   | 475    | 475 | 888 |  |
| Mov Cap-2 Maneuver   | -      | - | - | -       | - | - | 487    | 478 | -     | 475    | 475 | -   |  |
| Stage 1              | -      | - | - | -       | - | - | 690    | 651 | -     | 839    | 761 | -   |  |
| Stage 2              | -      | - | - | -       | - | - | 837    | 761 | -     | 674    | 648 | -   |  |
|                      |        |   |   |         |   |   |        |     |       |        |     |     |  |
| Approach             | EB     |   |   | WB      |   |   | NB     |     |       | SB     |     |     |  |
| HCM Control Delay, s | 0      |   |   | 0.2     |   |   | 12.1   |     |       | 12.6   |     |     |  |
| HCM LOS              |        |   |   |         |   |   | В      |     |       | В      |     |     |  |
|                      |        |   |   |         |   |   |        |     |       |        |     |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR S | SBLn1 |
|-----------------------|-------|------|-----|-----|-------|-----|-------|-------|
| Capacity (veh/h)      | 538   | 1429 | -   | -   | 1239  | -   | -     | 475   |
| HCM Lane V/C Ratio    | 0.064 | -    | -   | -   | 0.003 | -   | -     | 0.002 |
| HCM Control Delay (s) | 12.1  | 0    | -   | -   | 7.9   | -   | -     | 12.6  |
| HCM Lane LOS          | В     | А    | -   | -   | А     | -   | -     | В     |
| HCM 95th %tile Q(veh) | 0.2   | 0    | -   | -   | 0     | -   | -     | 0     |

| Int Delay, s/veh       | 1.5  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | 1    |      | ٦    | 1    | Y    |      |
| Traffic Vol, veh/h     | 255  | 0    | 1    | 115  | 48   | 4    |
| Future Vol, veh/h      | 255  | 0    | 1    | 115  | 48   | 4    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | 120  | -    | 0    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 6    | 0    | 0    | 2    | 19   | 0    |
| Mvmt Flow              | 283  | 0    | 1    | 128  | 53   | 4    |

| Major/Minor          | Major1 |       | Major2 |          | Minor1 |     |
|----------------------|--------|-------|--------|----------|--------|-----|
| Conflicting Flow All | C      |       | 283    | 0        | 413    | 283 |
| Stage 1              | -      |       | -      | -        | 283    |     |
| Stage 2              |        |       | -      | -        | 130    | -   |
| Critical Hdwy        | -      |       | 4.1    | -        | 6.59   | 6.2 |
| Critical Hdwy Stg 1  | -      |       | -      | -        | 5.59   | -   |
| Critical Hdwy Stg 2  |        |       | -      | -        | 5.59   | -   |
| Follow-up Hdwy       | -      |       | 2.2    | -        | 3.671  | 3.3 |
| Pot Cap-1 Maneuver   | -      | - 0   | 1291   | -        | •••    | 761 |
| Stage 1              | -      | - 0   | -      | -        | 727    | -   |
| Stage 2              |        | - 0   | -      | -        | 856    | -   |
| Platoon blocked, %   | -      | -     |        | -        |        |     |
| Mov Cap-1 Maneuver   |        |       | 1291   | -        | 563    | 761 |
| Mov Cap-2 Maneuver   |        |       | -      | -        | 563    | -   |
| Stage 1              | -      |       | -      | -        | 727    | -   |
| Stage 2              | -      |       | -      | -        | 855    | -   |
|                      |        |       |        |          |        |     |
| Approach             | EB     | }     | WB     |          | NB     |     |
| HCM Control Delay, s | ; C    | )     | 0.1    |          | 12     |     |
| HCM LOS              |        |       |        |          | В      |     |
|                      |        |       |        |          |        |     |
| Minor Lane/Major Mvi | mt     | NBLn1 | EBT    | WBL      | WBT    |     |
| Capacity (veh/h)     |        | 574   | -      |          | -      |     |
| HCM Lane V/C Ratio   |        | 0.101 |        | 0.001    | -      |     |
| HCM Control Delay (s | :)     | 12    | _      |          | -      |     |
| HCM Lane LOS         | )      | B     | _      | 7.0<br>A | -      |     |
| HCM 95th %tile Q(vel | h)     | 0.3   | -      | 0        | _      |     |
|                      | 7      | 0.0   |        | 0        |        |     |

# Intersection

| Movement               | EBL  | EBT         | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|-------------|------|------|-------------|------|------|------|------|------|------|------|
| Lane Configurations    | ٦    | <b>∱</b> î≽ |      | ۲    | <b>∱</b> î≽ |      | ٦    | eî 👘 |      |      | 4    |      |
| Traffic Vol, veh/h     | 0    | 239         | 9    | 12   | 97          | 0    | 5    | 0    | 9    | 3    | 0    | 1    |
| Future Vol, veh/h      | 0    | 239         | 9    | 12   | 97          | 0    | 5    | 0    | 9    | 3    | 0    | 1    |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free        | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -           | None | -    | -           | None | -    | -    | None | -    | -    | None |
| Storage Length         | 50   | -           | -    | 125  | -           | -    | 90   | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90          | 90   | 90   | 90          | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 0           | 14   | 11   | 4           | 0    | 25   | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 0    | 266         | 10   | 13   | 108         | 0    | 6    | 0    | 10   | 3    | 0    | 1    |

| Major/Minor I         | Major1 |       | 1     | Major2 |     |     | Minor1 |     | Ν     | Minor2 |     |      |  |
|-----------------------|--------|-------|-------|--------|-----|-----|--------|-----|-------|--------|-----|------|--|
| Conflicting Flow All  | 108    | 0     | 0     | 276    | 0   | 0   | 351    | 405 | 138   | 267    | 410 | 54   |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 271    | 271 | -     | 134    | 134 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 80     | 134 | -     | 133    | 276 | -    |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.32   | -   | -   | 8      | 6.5 | 6.9   | 7.5    | 6.5 | 6.9  |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -   | 7      | 5.5 | -     | 6.5    | 5.5 | -    |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -   | 7      | 5.5 | -     | 6.5    | 5.5 | -    |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.31   | -   | -   | 3.75   | 4   | 3.3   | 3.5    | 4   | 3.3  |  |
| Pot Cap-1 Maneuver    | 1495   | -     | -     | 1221   | -   | -   | 525    | 538 | 891   | 670    | 534 | 1008 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 651    | 689 | -     | 861    | 789 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 856    | 789 | -     | 862    | 685 | -    |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -   |        |     |       |        |     |      |  |
| Mov Cap-1 Maneuver    | 1495   | -     | -     | 1221   | -   | -   | 520    | 532 | 891   | 657    | 528 | 1008 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -   | 520    | 532 | -     | 657    | 528 | -    |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 651    | 689 | -     | 861    | 780 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 846    | 780 | -     | 852    | 685 | -    |  |
|                       |        |       |       |        |     |     |        |     |       |        |     |      |  |
| Approach              | EB     |       |       | WB     |     |     | NB     |     |       | SB     |     |      |  |
| HCM Control Delay, s  | 0      |       |       | 0.9    |     |     | 10.1   |     |       | 10     |     |      |  |
| HCM LOS               |        |       |       |        |     |     | В      |     |       | В      |     |      |  |
|                       |        |       |       |        |     |     |        |     |       |        |     |      |  |
| Minor Lane/Major Mvm  | t      | NBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT | WBR S | SBLn1  |     |      |  |
| Capacity (veh/h)      |        | 520   | 891   | 1495   | -   | -   | 1221   | -   | -     | 720    |     |      |  |
| HCM Lane V/C Ratio    |        | 0.011 | 0.011 | -      | -   | -   | 0.011  | -   | -     | 0.006  |     |      |  |
| HCM Control Delay (s) |        | 12    | 9.1   | 0      | -   | -   | 8      | -   | -     | 10     |     |      |  |
| HCM Lane LOS          |        | В     | А     | А      | -   | -   | А      | -   | -     | В      |     |      |  |
| HCM 95th %tile Q(veh) | )      | 0     | 0     | 0      | -   | -   | 0      | -   | -     | 0      |     |      |  |
|                       |        |       |       |        |     |     |        |     |       |        |     |      |  |

# Intersection

| Movement               | EBL      | EBT         | EBR  | WBL      | WBT        | WBR   | NBL  | NBT         | NBR  | SBL  | SBT  | SBR  |
|------------------------|----------|-------------|------|----------|------------|-------|------|-------------|------|------|------|------|
| Lane Configurations    | <u> </u> | <b>≜</b> ↑₽ |      | <u> </u> | <b>≜</b> ↑ | TIBI( | HDL  | <u>اير،</u> | 1    |      | 4    | OBIT |
| Traffic Vol, veh/h     | 9        | 184         | 24   | 56       | 90         | 5     | 14   | 3           | 183  | 5    | 1    | 4    |
| Future Vol, veh/h      | 9        | 184         | 24   | 56       | 90         | 5     | 14   | 3           | 183  | 5    | 1    | 4    |
| Conflicting Peds, #/hr | 0        | 0           | 0    | 0        | 0          | 0     | 0    | 0           | 0    | 0    | 0    | 0    |
| Sign Control           | Free     | Free        | Free | Free     | Free       | Free  | Stop | Stop        | Stop | Stop | Stop | Stop |
| RT Channelized         | -        | -           | None | -        | -          | None  | -    | -           | None | -    | -    | None |
| Storage Length         | 100      | -           | -    | 100      | -          | -     | 60   | -           | -    | -    | -    | -    |
| Veh in Median Storage, | # -      | 0           | -    | -        | 0          | -     | -    | 0           | -    | -    | 0    | -    |
| Grade, %               | -        | 0           | -    | -        | 0          | -     | -    | 0           | -    | -    | 0    | -    |
| Peak Hour Factor       | 90       | 90          | 90   | 90       | 90         | 90    | 90   | 90          | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0        | 1           | 8    | 3        | 1          | 0     | 0    | 0           | 0    | 25   | 0    | 0    |
| Mvmt Flow              | 10       | 204         | 27   | 62       | 100        | 6     | 16   | 3           | 203  | 6    | 1    | 4    |

| Major/Minor I         | Major1 |       |       | Major2 |     |     | Minor1 |     | Ν     | /linor2 |     |      |  |
|-----------------------|--------|-------|-------|--------|-----|-----|--------|-----|-------|---------|-----|------|--|
| Conflicting Flow All  | 106    | 0     | 0     | 231    | 0   | 0   | 413    | 468 | 116   | 351     | 478 | 53   |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 238    | 238 | -     | 227     | 227 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 175    | 230 | -     | 124     | 251 | -    |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.16   | -   | -   | 7.5    | 6.5 | 6.9   | 8       | 6.5 | 6.9  |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -   | 6.5    | 5.5 | -     | 7       | 5.5 | -    |  |
| Critical Hdwy Stg 2   | -      |       | -     | -      | -   | -   | 6.5    | 5.5 | -     | 7       | 5.5 | -    |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.23   | -   | -   | 3.5    | 4   | 3.3   | 3.75    | 4   | 3.3  |  |
| Pot Cap-1 Maneuver    | 1498   | -     | -     | 1327   | -   | -   | 528    | 496 | 921   | 525     | 489 | 1010 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 750    | 712 | -     | 693     | 720 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 816    | 718 | -     | 804     | 703 | -    |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -   |        |     |       |         |     |      |  |
| Mov Cap-1 Maneuver    | 1498   | -     | -     | 1327   | -   | -   | 503    | 469 | 921   | 391     | 463 | 1010 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -   | 503    | 469 | -     | 391     | 463 | -    |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 745    | 707 | -     | 688     | 686 | -    |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 773    | 684 | -     | 619     | 698 | -    |  |
|                       |        |       |       |        |     |     |        |     |       |         |     |      |  |
| Approach              | EB     |       |       | WB     |     |     | NB     |     |       | SB      |     |      |  |
| HCM Control Delay, s  | 0.3    |       |       | 2.9    |     |     | 10.2   |     |       | 12      |     |      |  |
| HCM LOS               |        |       |       |        |     |     | В      |     |       | В       |     |      |  |
|                       |        |       |       |        |     |     |        |     |       |         |     |      |  |
| Minor Lane/Major Mvm  | nt     | NBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT | WBR S | SBLn1   |     |      |  |
| Capacity (veh/h)      |        | 497   | 921   | 1498   | -   | -   | 1327   | -   | -     | 529     |     |      |  |
| HCM Lane V/C Ratio    |        | 0.038 | 0.221 | 0.007  | -   | -   | 0.047  | -   | -     | 0.021   |     |      |  |
| HCM Control Delay (s) |        | 12.5  | 10    | 7.4    | -   | -   | 7.8    | -   | -     | 12      |     |      |  |
| HCM Lane LOS          |        | В     | В     | А      | -   | -   | А      | -   | -     | В       |     |      |  |
| HCM 95th %tile Q(veh) | )      | 0.1   | 0.8   | 0      | -   | -   | 0.1    | -   | -     | 0.1     |     |      |  |
| HCM Lane LOS          |        | В     | В     | А      |     |     | А      |     |       | В       |     |      |  |

### Intersection

| Movement               | EBL  | EBT         | EBR  | WBL      | WBT        | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|-------------|------|----------|------------|------|------|------|------|------|------|------|
| Lane Configurations    | 5    | <b>≜</b> †₽ |      | <u> </u> | <b>†</b> Ъ |      | NDL  | 4    |      |      | 4    |      |
| Traffic Vol, veh/h     | 0    | 388         | 14   | 34       | 171        | 4    | 12   | 0    | 118  | 3    | 0    | 1    |
| Future Vol, veh/h      | 0    | 388         | 14   | 34       | 171        | 4    | 12   | 0    | 118  | 3    | 0    | 1    |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0        | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free        | Free | Free     | Free       | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -           | None | -        | -          | None | -    | -    | None | -    | -    | None |
| Storage Length         | 50   | -           | -    | 110      | -          | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0           | -    | -        | 0          | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0           | -    | -        | 0          | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90          | 90   | 90       | 90         | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 1           | 0    | 0        | 4          | 0    | 25   | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 0    | 431         | 16   | 38       | 190        | 4    | 13   | 0    | 131  | 3    | 0    | 1    |

| Major/Minor I        | Major1   |      | Major2 |     |      | Minor1 |       | Ν    | /linor2 |     |     |  |
|----------------------|----------|------|--------|-----|------|--------|-------|------|---------|-----|-----|--|
| Conflicting Flow All |          |      | 447    | 0   | 0    | 610    | 709   | 224  | 484     | 715 | 97  |  |
| Stage 1              |          |      | -      | -   | -    | 439    | 439   | -    | 268     | 268 | -   |  |
| Stage 2              |          | -    | -      | -   | -    | 171    | 270   | -    | 216     | 447 | -   |  |
| Critical Hdwy        | 4.1 -    |      | 4.1    | -   | -    | 8      | 6.5   | 6.9  | 7.5     | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1  |          | -    | -      | -   | -    | 7      | 5.5   | -    | 6.5     | 5.5 | -   |  |
| Critical Hdwy Stg 2  |          |      | -      | -   | -    | 7      | 5.5   | -    | 6.5     | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2 -    | -    | 2.2    | -   | -    | 3.75   | 4     | 3.3  | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1391 -   | -    | 1124   | -   | -    | 334    | 362   | 786  | 470     | 359 | 947 |  |
| Stage 1              |          | -    | -      | -   | -    | 509    | 582   | -    | 720     | 691 | -   |  |
| Stage 2              |          | -    | -      | -   | -    | 752    | 690   | -    | 772     | 577 | -   |  |
| Platoon blocked, %   | -        | -    |        | -   | -    |        |       |      |         |     |     |  |
| Mov Cap-1 Maneuver   | 1391 -   |      | 1124   | -   | -    | 325    | 350   | 786  | 382     | 347 | 947 |  |
| Mov Cap-2 Maneuver   |          | -    | -      | -   | -    | 325    | 350   | -    | 382     | 347 | -   |  |
| Stage 1              |          | -    | -      | -   | -    | 509    | 582   | -    | 720     | 668 | -   |  |
| Stage 2              |          | -    | -      | -   | -    | 726    | 667   | -    | 643     | 577 | -   |  |
|                      |          |      |        |     |      |        |       |      |         |     |     |  |
| Approach             | EB       |      | WB     |     |      | NB     |       |      | SB      |     |     |  |
| HCM Control Delay, s | 0        |      | 1.4    |     |      | 11.5   |       |      | 13.1    |     |     |  |
| HCM LOS              | 0        |      | 1.4    |     |      | B      |       |      | B       |     |     |  |
|                      |          |      |        |     |      | U      |       |      | U       |     |     |  |
|                      |          |      |        |     |      |        |       |      |         |     |     |  |
| Minor Lane/Major Mvm | nt NBLn1 | EBL  | EBT    | EBR | WBL  | WBT    | WBR S | BLn1 |         |     |     |  |
| Canadity (yeh/h)     | 605      | 1201 |        |     | 110/ |        |       | 110  |         |     |     |  |

| Capacity (veh/h)      | 695   | 1391 | - | - | 1124  | - | - | 449  |
|-----------------------|-------|------|---|---|-------|---|---|------|
| HCM Lane V/C Ratio    | 0.208 | -    | - | - | 0.034 | - | - | 0.01 |
| HCM Control Delay (s) | 11.5  | 0    | - | - | 8.3   | - | - | 13.1 |
| HCM Lane LOS          | В     | Α    | - | - | А     | - | - | В    |
| HCM 95th %tile Q(veh) | 0.8   | 0    | - | - | 0.1   | - | - | 0    |

| Int Delay, s/veh       | 4    |      |      |                |      |      |
|------------------------|------|------|------|----------------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT            | NBL  | NBR  |
| Lane Configurations    | 4    |      |      | <del>ب</del> ا | Y    |      |
| Traffic Vol, veh/h     | 25   | 1    | 14   | 20             | 3    | 27   |
| Future Vol, veh/h      | 25   | 1    | 14   | 20             | 3    | 27   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0              | 0    | 0    |
| Sign Control           | Free | Free | Free | Free           | Stop | Stop |
| RT Channelized         | -    | None | -    | None           | -    | None |
| Storage Length         | -    | -    | -    | -              | 0    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0              | 0    | -    |
| Grade, %               | 0    | -    | -    | 0              | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90             | 90   | 90   |
| Heavy Vehicles, %      | 0    | 0    | 0    | 0              | 0    | 5    |
| Mvmt Flow              | 28   | 1    | 16   | 22             | 3    | 30   |

| Major/Minor           | Major1   | Ν     | /lajor2 | Ν   | /linor1 |       |
|-----------------------|----------|-------|---------|-----|---------|-------|
| Conflicting Flow All  | 0        | 0     | 29      | 0   | 83      | 29    |
| Stage 1               | -        | -     | -       | -   | 29      | -     |
| Stage 2               | -        | -     | -       | -   | 54      | -     |
| Critical Hdwy         | -        | -     | 4.1     | -   | 6.4     | 6.25  |
| Critical Hdwy Stg 1   | -        | -     | -       | -   | 5.4     | -     |
| Critical Hdwy Stg 2   | -        | -     | -       | -   | 5.4     | -     |
| Follow-up Hdwy        | -        | -     | 2.2     | -   | 3.5     | 3.345 |
| Pot Cap-1 Maneuver    | -        | -     | 1597    | -   | 924     | 1037  |
| Stage 1               | -        | -     | -       | -   | 999     | -     |
| Stage 2               | -        | -     | -       | -   | 974     | -     |
| Platoon blocked, %    | -        | -     |         | -   |         |       |
| Mov Cap-1 Maneuver    | -        | -     | 1597    | -   | 915     | 1037  |
| Mov Cap-2 Maneuver    | -        | -     | -       | -   | 863     | -     |
| Stage 1               | -        | -     | -       | -   | 999     | -     |
| Stage 2               | -        | -     | -       | -   | 964     | -     |
|                       |          |       |         |     |         |       |
| Approach              | EB       |       | WB      |     | NB      |       |
| HCM Control Delay, s  | 0        |       | 3       |     | 8.7     |       |
| HCM LOS               |          |       | •       |     | A       |       |
|                       |          |       |         |     |         |       |
|                       |          |       | FDT     |     |         | WDT   |
| Minor Lane/Major Mvn  | nt I     | NBLn1 | EBT     | EBR | WBL     | WBT   |
| Capacity (veh/h)      |          | 1017  | -       | -   | 1597    | -     |
| HCM Lane V/C Ratio    |          | 0.033 | -       | -   | 0.01    | -     |
| HCM Control Delay (s) | )        | 8.7   | -       | -   | 7.3     | 0     |
| HCM Lane LOS          | <u>۱</u> | A     | -       | -   | A       | А     |
| HCM 95th %tile Q(veh  | )        | 0.1   | -       | -   | 0       | -     |

| Int Delay, s/veh       | 0    |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    |      | 1    |      | 1    | 1    |      |
| Traffic Vol, veh/h     | 0    | 207  | 0    | 52   | 1    | 0    |
| Future Vol, veh/h      | 0    | 207  | 0    | 52   | 1    | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | 0    | -    | -    | -    | -    |
| Veh in Median Storage, | # 1  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 3    | 0    | 20   | 0    | 0    |
| Mvmt Flow              | 0    | 230  | 0    | 58   | 1    | 0    |

| Major/Minor             | Major1    | Ν | linor2 |   |
|-------------------------|-----------|---|--------|---|
| Conflicting Flow All    | <u> </u>  | 0 | 58     | - |
| Stage 1                 | -         | - | 0      | - |
| Stage 2                 | -         | - | 58     | - |
| Critical Hdwy           | -         | - | 6.5    | - |
| Critical Hdwy Stg 1     | -         | - | -      | - |
| Critical Hdwy Stg 2     | -         | - | 5.5    | - |
| Follow-up Hdwy          | -         | - | 4      | - |
| Pot Cap-1 Maneuver      | 0         | - | 837    | 0 |
| Stage 1                 | 0         | - | -      | 0 |
| Stage 2                 | 0         | - | 851    | 0 |
| Platoon blocked, %      |           | - |        |   |
| Mov Cap-1 Maneuver      | -         | - | 0      | - |
| Mov Cap-2 Maneuver      | -         | - | 0      | - |
| Stage 1                 | -         | - | 0      | - |
| Stage 2                 | -         | - | 0      | - |
|                         |           |   |        |   |
| Approach                | NB        |   | SB     |   |
| HCM Control Delay, s    | 0         |   |        |   |
| HCM LOS                 | •         |   | -      |   |
|                         |           |   |        |   |
| Miner Leve /Meier Muret |           |   |        |   |
| Minor Lane/Major Mvmt   | NBT SBLn1 |   |        |   |
| Capacity (veh/h)        |           |   |        |   |
| HCM Lane V/C Ratio      |           |   |        |   |
| HCM Control Delay (s)   |           |   |        |   |
| HCM Lane LOS            |           |   |        |   |
| HCM 95th %tile Q(veh)   |           |   |        |   |

2

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|----------|------|------|------|------|------|------|------|--|
| Lane Configurations    | 5    | et   |      | 5    | el<br>el |      |      | \$   |      |      | ÷    |      |  |
| Traffic Vol, veh/h     | 3    | 247  | 17   | 47   | 364      | 48   | 14   | 7    | 35   | 12   | 4    | 5    |  |
| Future Vol, veh/h      | 3    | 247  | 17   | 47   | 364      | 48   | 14   | 7    | 35   | 12   | 4    | 5    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free     | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None | -    | -        | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 100  | -    | -    | 115  | -        | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0        | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0        | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90       | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 8    | 0    | 0    | 3        | 0    | 0    | 0    | 0    | 11   | 33   | 0    |  |
| Mvmt Flow              | 3    | 274  | 19   | 52   | 404      | 53   | 16   | 8    | 39   | 13   | 4    | 6    |  |

| Major/Minor          | Major1 |       | 1     | Major2 |     | I     | Minor1 |       |       | Minor2 |       |     |
|----------------------|--------|-------|-------|--------|-----|-------|--------|-------|-------|--------|-------|-----|
| Conflicting Flow All | 457    | 0     | 0     | 293    | 0   | 0     | 830    | 851   | 284   | 848    |       | 834 |
| Stage 1              | -      | -     | -     | -      | -   | -     | 290    | 290   | -     | 535    |       | 535 |
| Stage 2              | -      | -     | -     | -      | -   | -     | 540    | 561   | -     | 313    |       | 299 |
| Critical Hdwy        | 4.1    | -     | -     | 4.1    | -   | -     | 7.1    | 6.5   | 6.2   | 7.21   | 6     | .83 |
| Critical Hdwy Stg 1  | -      | -     | -     | -      | -   | -     | 6.1    | 5.5   | -     | 6.21   | 5.    | 83  |
| Critical Hdwy Stg 2  | -      | -     | -     | -      | -   | -     | 6.1    | 5.5   | -     | 6.21   | 5.8   | 3   |
| Follow-up Hdwy       | 2.2    | -     | -     | 2.2    | -   | -     | 3.5    | 4     | 3.3   | 3.599  | 4.297 | 7   |
| Pot Cap-1 Maneuver   | 1114   | -     | -     | 1280   | -   | -     | 292    | 299   | 760   | 271    | 272   |     |
| Stage 1              | -      | -     | -     | -      | -   | -     | 722    | 676   | -     | 010    | 477   |     |
| Stage 2              | -      | -     | -     | -      | -   | -     | 530    | 513   | -     | 679    | 614   |     |
| Platoon blocked, %   |        | -     | -     |        | -   | -     |        |       |       |        |       |     |
| Mov Cap-1 Maneuve    |        | -     | -     | 1280   | -   | -     | 276    | 286   | 760   | 244    | 260   |     |
| Mov Cap-2 Maneuve    | r -    | -     | -     | -      | -   | -     | 276    | 286   | -     |        | 260   |     |
| Stage 1              | -      | -     | -     | -      | -   | -     | 720    | 674   | -     | • • •  | 457   |     |
| Stage 2              | -      | -     | -     | -      | -   | -     | 499    | 492   | -     | 635    | 612   |     |
|                      |        |       |       |        |     |       |        |       |       |        |       |     |
| Approach             | EB     |       |       | WB     |     |       | NB     |       |       | SB     |       |     |
| HCM Control Delay, s | s 0.1  |       |       | 0.8    |     |       | 14     |       |       | 18.5   |       |     |
| HCM LOS              |        |       |       |        |     |       | В      |       |       | С      |       |     |
|                      |        |       |       |        |     |       |        |       |       |        |       |     |
| Minor Lane/Major Mv  | mt     | NBLn1 | EBL   | EBT    | EBR | WBL   | WBT    | WBR S | SBLn1 |        |       |     |
| Capacity (veh/h)     |        | 462   | 1114  | -      | -   | 1280  | -      | -     | 290   |        |       |     |
| HCM Lane V/C Ratio   |        | 0.135 | 0.003 | -      | -   | 0.041 | -      | -     | 0.08  |        |       |     |
| HCM Control Delay (s | s)     | 14    | 8.2   | -      | -   | 7.9   | -      | -     | 18.5  |        |       |     |

| HCM Control Delay (s) | 14  | 8.2 | - | - | 7.9 | - | - | 18.5 |
|-----------------------|-----|-----|---|---|-----|---|---|------|
| HCM Lane LOS          | В   | А   | - | - | А   | - | - | С    |
| HCM 95th %tile Q(veh) | 0.5 | 0   | - | - | 0.1 | - | - | 0.3  |
|                       |     |     |   |   |     |   |   |      |

### Intersection

| Movement               | EBL      | EBT          | EBR  | WBL      | WBT          | WBR   | NBL  | NBT              | NBR  | SBL  | SBT              | SBR  |  |
|------------------------|----------|--------------|------|----------|--------------|-------|------|------------------|------|------|------------------|------|--|
|                        |          |              | LDIX |          |              | VUDIN | NDL  |                  | NDIN | JDL  |                  | JUIN |  |
| Lane Configurations    | <u> </u> | _ <b>†</b> ₽ |      | <u> </u> | _ <b>†</b> ₽ |       |      | - <del>4</del> > |      |      | - <del>4</del> > |      |  |
| Traffic Vol, veh/h     | 10       | 146          | 7    | 24       | 158          | 43    | 8    | 7                | 22   | 47   | 3                | 17   |  |
| Future Vol, veh/h      | 10       | 146          | 7    | 24       | 158          | 43    | 8    | 7                | 22   | 47   | 3                | 17   |  |
| Conflicting Peds, #/hr | 0        | 0            | 0    | 0        | 0            | 0     | 0    | 0                | 0    | 0    | 0                | 0    |  |
| Sign Control           | Free     | Free         | Free | Free     | Free         | Free  | Stop | Stop             | Stop | Stop | Stop             | Stop |  |
| RT Channelized         | -        | -            | None | -        | -            | None  | -    | -                | None | -    | -                | None |  |
| Storage Length         | 125      | -            | -    | 125      | -            | -     | -    | -                | -    | -    | -                | -    |  |
| Veh in Median Storage, | # -      | 0            | -    | -        | 0            | -     | -    | 0                | -    | -    | 0                | -    |  |
| Grade, %               | -        | 0            | -    | -        | 0            | -     | -    | 0                | -    | -    | 0                | -    |  |
| Peak Hour Factor       | 90       | 90           | 90   | 90       | 90           | 90    | 90   | 90               | 90   | 90   | 90               | 90   |  |
| Heavy Vehicles, %      | 0        | 2            | 20   | 0        | 3            | 3     | 0    | 0                | 0    | 3    | 0                | 0    |  |
| Mvmt Flow              | 11       | 162          | 8    | 27       | 176          | 48    | 9    | 8                | 24   | 52   | 3                | 19   |  |

| Major/Minor          | Major1 |   | Ν | /lajor2 |   |   | Minor1 |     | Ν   | /linor2 |     |     |  |
|----------------------|--------|---|---|---------|---|---|--------|-----|-----|---------|-----|-----|--|
| Conflicting Flow All | 224    | 0 | 0 | 170     | 0 | 0 | 332    | 466 | 85  | 361     | 446 | 112 |  |
| Stage 1              | -      | - | - | -       | - | - | 188    | 188 | -   | 254     | 254 | -   |  |
| Stage 2              | -      | - | - | -       | - | - | 144    | 278 | -   | 107     | 192 | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.1     | - | - | 7.5    | 6.5 | 6.9 | 7.56    | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1  | -      | - | - | -       | - | - | 6.5    | 5.5 | -   | 6.56    | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -       | - | - | 6.5    | 5.5 | -   | 6.56    | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2     | - | - | 3.5    | 4   | 3.3 | 3.53    | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1357   | - | - | 1420    | - | - | 603    | 497 | 963 | 567     | 510 | 926 |  |
| Stage 1              | -      | - | - | -       | - | - | 801    | 748 | -   | 725     | 701 | -   |  |
| Stage 2              | -      | - | - | -       | - | - | 850    | 684 | -   | 884     | 745 | -   |  |
| Platoon blocked, %   |        | - | - |         | - | - |        |     |     |         |     |     |  |
| Mov Cap-1 Maneuver   |        | - | - | 1420    | - | - | 576    | 484 | 963 | 535     | 496 | 926 |  |
| Mov Cap-2 Maneuver   | -      | - | - | -       | - | - | 576    | 484 | -   | 535     | 496 | -   |  |
| Stage 1              | -      | - | - | -       | - | - | 795    | 742 | -   | 719     | 688 | -   |  |
| Stage 2              | -      | - | - | -       | - | - | 813    | 671 | -   | 846     | 739 | -   |  |
|                      |        |   |   |         |   |   |        |     |     |         |     |     |  |
| Approach             | EB     |   |   | WB      |   |   | NB     |     |     | SB      |     |     |  |
| HCM Control Delay, s | 0.5    |   |   | 0.8     |   |   | 10.3   |     |     | 11.9    |     |     |  |
| HCM LOS              |        |   |   |         |   |   | В      |     |     | В       |     |     |  |
|                      |        |   |   |         |   |   |        |     |     |         |     |     |  |
|                      |        |   |   |         |   |   |        |     |     |         |     |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR \$ | SBLn1 |  |
|-----------------------|-------|-------|-----|-----|-------|-----|--------|-------|--|
| Capacity (veh/h)      | 723   | 1357  | -   | -   | 1420  | -   | -      | 597   |  |
| HCM Lane V/C Ratio    | 0.057 | 0.008 | -   | -   | 0.019 | -   | -      | 0.125 |  |
| HCM Control Delay (s) | 10.3  | 7.7   | -   | -   | 7.6   | -   | -      | 11.9  |  |
| HCM Lane LOS          | В     | А     | -   | -   | А     | -   | -      | В     |  |
| HCM 95th %tile Q(veh) | 0.2   | 0     | -   | -   | 0.1   | -   | -      | 0.4   |  |

### Intersection

Int Delay, s/veh

HCM Lane LOS

HCM 95th %tile Q(veh)

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR   |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Lane Configurations    | ۲    | 4    |      | ኘ    | 4    |      |      | 4    |      | -    | र्स  | 1     |
| Traffic Vol, veh/h     | 90   | 241  | 0    | 10   | 314  | 71   | 0    | 4    | 8    | 56   | 3    | 217   |
| Future Vol, veh/h      | 90   | 241  | 0    | 10   | 314  | 71   | 0    | 4    | 8    | 56   | 3    | 217   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop  |
| RT Channelized         | -    | -    | None | -    | -    | None | -    | -    | None | -    | -    | Yield |
| Storage Length         | 100  | -    | -    | 100  | -    | -    | -    | -    | -    | -    | -    | 125   |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90    |
| Heavy Vehicles, %      | 2    | 3    | 0    | 0    | 2    | 4    | 0    | 0    | 0    | 7    | 0    | 3     |
| Mvmt Flow              | 100  | 268  | 0    | 11   | 349  | 79   | 0    | 4    | 9    | 62   | 3    | 241   |

| Major/Minor           | Major1 |       | N     | /lajor2 |     | 1     | Minor1 |     |       | Minor2    |     |       |  |
|-----------------------|--------|-------|-------|---------|-----|-------|--------|-----|-------|-----------|-----|-------|--|
| Conflicting Flow All  | 428    | 0     | 0     | 268     | 0   | 0     | 880    | 918 | 268   | 886       | 879 | 389   |  |
| Stage 1               | -      | -     | -     | -       | -   | -     | 468    | 468 | -     | 411       | 411 | -     |  |
| Stage 2               | -      | -     | -     | -       | -   | -     | 412    | 450 | -     | 475       | 468 | -     |  |
| Critical Hdwy         | 4.12   | -     | -     | 4.1     | -   | -     | 7.1    | 6.5 | 6.2   | 7.17      | 6.5 | 6.23  |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -       | -   | -     | 6.1    | 5.5 | -     | 6.17      | 5.5 | -     |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -       | -   | -     | 6.1    | 5.5 | -     | • • • • • | 5.5 | -     |  |
| Follow-up Hdwy        | 2.218  | -     | -     | 2.2     | -   | -     | 3.5    | 4   | 3.3   | 3.563     | 4   | 3.327 |  |
| Pot Cap-1 Maneuver    | 1131   | -     | -     | 1307    | -   | -     | 270    | 274 | 776   | 260       | 288 | 657   |  |
| Stage 1               | -      | -     | -     | -       | -   | -     | 579    | 565 | -     | 608       | 598 | -     |  |
| Stage 2               | -      | -     | -     | -       | -   | -     | 621    | 575 | -     | 561       | 565 | -     |  |
| Platoon blocked, %    |        | -     | -     |         | -   | -     |        |     |       |           |     |       |  |
| Mov Cap-1 Maneuver    | 1131   | -     | -     | 1307    | -   | -     | 157    | 248 | 776   | 235       | 261 | 657   |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -       | -   | -     | 157    | 248 | -     | 235       | 261 | -     |  |
| Stage 1               | -      | -     | -     | -       | -   | -     | 528    | 515 | -     | •••       | 593 | -     |  |
| Stage 2               | -      | -     | -     | -       | -   | -     | 388    | 570 | -     | 501       | 515 | -     |  |
|                       |        |       |       |         |     |       |        |     |       |           |     |       |  |
| Approach              | EB     |       |       | WB      |     |       | NB     |     |       | SB        |     |       |  |
| HCM Control Delay, s  | 2.3    |       |       | 0.2     |     |       | 13.2   |     |       | 16.3      |     |       |  |
| HCM LOS               |        |       |       |         |     |       | В      |     |       | С         |     |       |  |
|                       |        |       |       |         |     |       |        |     |       |           |     |       |  |
| Minor Lane/Major Mvm  | nt     | NBLn1 | EBL   | EBT     | EBR | WBL   | WBT    | WBR | SBLn1 | SBLn2     |     |       |  |
| Capacity (veh/h)      |        | 454   | 1131  | -       | -   | 1307  | -      | -   | 236   | 657       |     |       |  |
| HCM Lane V/C Ratio    |        | 0.029 | 0.088 | -       | -   | 0.009 | -      | -   | 0.278 | 0.367     |     |       |  |
| HCM Control Delay (s) | )      | 13.2  | 8.5   | -       | -   | 7.8   | -      | -   | 26    | 13.6      |     |       |  |

-

-

А

0

-

-

D

1.1

-

-

В

1.7

В

0.1

А

0.3

-

-

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    | ٦    | 4    |      | ۲.   | ¢Î,  |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h     | 0    | 209  | 12   | 8    | 326  | 3    | 14   | 0    | 9    | 0    | 0    | 0    |  |
| Future Vol, veh/h      | 0    | 209  | 12   | 8    | 326  | 3    | 14   | 0    | 9    | 0    | 0    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 115  | -    | -    | 120  | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 9    | 0    | 0    | 3    | 50   | 9    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 0    | 232  | 13   | 9    | 362  | 3    | 16   | 0    | 10   | 0    | 0    | 0    |  |

| Major/Minor          | Major1 |   | ľ | Major2 |   |   | Minor1 |     | Ν   | /linor2 |     |     |  |
|----------------------|--------|---|---|--------|---|---|--------|-----|-----|---------|-----|-----|--|
| Conflicting Flow All | 365    | 0 | 0 | 245    | 0 | 0 | 621    | 622 | 239 | 626     | 627 | 364 |  |
| Stage 1              | -      | - | - | -      | - | - | 239    | 239 | -   | 382     | 382 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 382    | 383 | -   | 244     | 245 | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.1    | - | - | 1.10   | 6.5 | 6.2 | 7.1     | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 0.10   | 5.5 | -   | 6.1     | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.19   | 5.5 | -   | 6.1     | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2    | - | - | 0.001  | 4   | 3.3 | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1205   | - | - | 1333   | - | - | 390    | 405 | 805 | 400     | 403 | 685 |  |
| Stage 1              | -      | - | - | -      | - | - | 110    | 711 | -   | 645     | 616 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 627    | 616 | -   | 764     | 707 | -   |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |     |     |         |     |     |  |
| Mov Cap-1 Maneuver   |        | - | - | 1333   | - | - | 000    | 402 | 805 | 393     | 400 | 685 |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 388    | 402 | -   | 393     | 400 | -   |  |
| Stage 1              | -      | - | - | -      | - | - | 1.10   | 711 | -   | 645     | 612 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 623    | 612 | -   | 755     | 707 | -   |  |
|                      |        |   |   |        |   |   |        |     |     |         |     |     |  |
| Approach             | EB     |   |   | WB     |   |   | NB     |     |     | SB      |     |     |  |
| HCM Control Delay, s | 0      |   |   | 0.2    |   |   | 12.8   |     |     | 0       |     |     |  |
| HCM LOS              |        |   |   |        |   |   | В      |     |     | А       |     |     |  |
|                      |        |   |   |        |   |   |        |     |     |         |     |     |  |
| A'                   |        |   |   | EDT    |   |   |        |     | /   |         |     |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR S | BLn1 |  |
|-----------------------|-------|------|-----|-----|-------|-----|-------|------|--|
| Capacity (veh/h)      | 487   | 1205 | -   | -   | 1333  | -   | -     | -    |  |
| HCM Lane V/C Ratio    | 0.052 | -    | -   | -   | 0.007 | -   | -     | -    |  |
| HCM Control Delay (s) | 12.8  | 0    | -   | -   | 7.7   | -   | -     | 0    |  |
| HCM Lane LOS          | В     | А    | -   | -   | А     | -   | -     | А    |  |
| HCM 95th %tile Q(veh) | 0.2   | 0    | -   | -   | 0     | -   | -     | -    |  |

| Int Delay, s/veh       | 2.5  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | 1    |      | ٦    | 1    | Y    |      |
| Traffic Vol, veh/h     | 208  | 0    | 1    | 350  | 106  | 0    |
| Future Vol, veh/h      | 208  | 0    | 1    | 350  | 106  | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | 120  | -    | 0    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 4    | 2    | 3    | 3    | 1    | 0    |
| Mvmt Flow              | 231  | 0    | 1    | 389  | 118  | 0    |

| Major/Minor                          | Major1     |           | Major2 |        | Minor1 |     |
|--------------------------------------|------------|-----------|--------|--------|--------|-----|
| Conflicting Flow All                 | 0          |           |        | 0      | 622    | 231 |
| Stage 1                              | -          | -         | -      | -      | 231    | -   |
| Stage 2                              | -          | -         | -      | -      | 391    | -   |
| Critical Hdwy                        | -          | -         | 4.13   | -      | 6.41   | 6.2 |
| Critical Hdwy Stg 1                  | -          | -         | -      | -      | 5.41   | -   |
| Critical Hdwy Stg 2                  | -          | -         | -      | -      | 5.41   | -   |
| Follow-up Hdwy                       | -          | -         | 2.227  | -      | 3.509  | 3.3 |
| Pot Cap-1 Maneuver                   | -          | 0         | 1331   | -      | 452    | 813 |
| Stage 1                              | -          | •         | -      | -      | 810    | -   |
| Stage 2                              | -          | 0         | -      | -      | 686    | -   |
| Platoon blocked, %                   | -          |           |        | -      |        |     |
| Mov Cap-1 Maneuver                   |            | -         | 1331   | -      | 452    | 813 |
| Mov Cap-2 Maneuver                   | -          | -         | -      | -      | 452    | -   |
| Stage 1                              | -          | -         | -      | -      | 810    | -   |
| Stage 2                              | -          | -         | -      | -      | 685    | -   |
|                                      |            |           |        |        |        |     |
| Approach                             | EB         |           | WB     |        | NB     |     |
| HCM Control Delay, s                 | 0          |           | 0      |        | 15.7   |     |
| HCM LOS                              |            |           |        |        | С      |     |
|                                      |            |           |        |        |        |     |
| Miner Lene (Meier Mu                 |            |           | грт    |        |        |     |
| Minor Lane/Major Mvr                 | nt         | NBLn1     | EBT    | WBL    | WBT    |     |
| Capacity (veh/h)                     |            | 452       | -      |        | -      |     |
| HCM Lane V/C Ratio                   |            | 0.261     |        | 0.001  | -      |     |
| HCM Control Delay (s<br>HCM Lane LOS | 5)         | 15.7<br>C | -      |        | -      |     |
|                                      | <b>a</b> ) | 1         | -      | A<br>0 | -      |     |
| HCM 95th %tile Q(veh                 | 1)         | 1         | -      | U      | -      |     |

# Intersection

| Movement               | EBL  | EBT         | EBR  | WBL  | WBT         | WBR  | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|-------------|------|------|-------------|------|------|----------|------|------|------|------|
| Lane Configurations    | ľ    | <b>↑</b> ĵ≽ |      | ľ    | <b>∱î</b> ∌ |      | 1    | el<br>el |      |      | ÷    |      |
| Traffic Vol, veh/h     | 3    | 160         | 3    | 21   | 260         | 3    | 3    | 1        | 25   | 3    | 0    | 5    |
| Future Vol, veh/h      | 3    | 160         | 3    | 21   | 260         | 3    | 3    | 1        | 25   | 3    | 0    | 5    |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0    | 0           | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free        | Free | Free | Free        | Free | Stop | Stop     | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -           | None | -    | -           | None | -    | -        | None | -    | -    | None |
| Storage Length         | 50   | -           | -    | 125  | -           | -    | 90   | -        | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0           | -    | -    | 0           | -    | -    | 0        | -    | -    | 0    | -    |
| Grade, %               | -    | 0           | -    | -    | 0           | -    | -    | 0        | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90          | 90   | 90   | 90          | 90   | 90   | 90       | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 0           | 0    | 0    | 1           | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 3    | 178         | 3    | 23   | 289         | 3    | 3    | 1        | 28   | 3    | 0    | 6    |

| Major/Minor           | Major1 |       |       | Major2 |     |     | Minor1 |     | Ν     | /linor2 |     |     |  |
|-----------------------|--------|-------|-------|--------|-----|-----|--------|-----|-------|---------|-----|-----|--|
| Conflicting Flow All  | 292    | 0     | 0     | 181    | 0   | 0   | 377    | 524 | 91    | 433     | 524 | 146 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 186    | 186 | -     | 337     | 337 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 191    | 338 | -     | 96      | 187 | -   |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.1    | -   | -   | 7.5    | 6.5 | 6.9   | 7.5     | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -   | 6.5    | 5.5 | -     | 6.5     | 5.5 | -   |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -   | 6.5    | 5.5 | -     | 6.5     | 5.5 | -   |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.2    | -   | -   | 3.5    | 4   | 3.3   | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver    | 1281   | -     | -     | 1407   | -   | -   | 560    | 461 | 955   | 511     | 461 | 881 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 804    | 750 | -     | 656     | 645 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 798    | 644 | -     | 906     | 749 | -   |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -   |        |     |       |         |     |     |  |
| Mov Cap-1 Maneuver    | 1281   | -     | -     | 1407   | -   | -   | 549    | 453 | 955   | 488     | 453 | 881 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -   | 549    | 453 | -     | 488     | 453 | -   |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 802    | 749 | -     | 655     | 635 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 780    | 634 | -     | 876     | 748 | -   |  |
|                       |        |       |       |        |     |     |        |     |       |         |     |     |  |
| Approach              | EB     |       |       | WB     |     |     | NB     |     |       | SB      |     |     |  |
| HCM Control Delay, s  | 0.1    |       |       | 0.6    |     |     | 9.4    |     |       | 10.4    |     |     |  |
| HCM LOS               |        |       |       |        |     |     | А      |     |       | В       |     |     |  |
|                       |        |       |       |        |     |     |        |     |       |         |     |     |  |
| Minor Lane/Major Mvm  | nt     | NBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT | WBR S | SBLn1   |     |     |  |
| Capacity (veh/h)      |        | 549   | 916   | 1281   | -   | -   | 1407   | -   | -     | 677     |     |     |  |
| HCM Lane V/C Ratio    |        | 0.006 | 0.032 | 0.003  | -   | -   | 0.017  | -   | -     | 0.013   |     |     |  |
| HCM Control Delay (s) |        | 11.6  | 9.1   | 7.8    | -   | -   | 7.6    | -   | -     | 10.4    |     |     |  |
| HCM Lane LOS          |        | В     | А     | А      | -   | -   | А      | -   | -     | В       |     |     |  |
| HCM 95th %tile Q(veh  | )      | 0     | 0.1   | 0      | -   | -   | 0.1    | -   | -     | 0       |     |     |  |

# Intersection

| Movement               | EBL  | EBT           | EBR  | WBL      | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|---------------|------|----------|------|------|------|------|------|------|------|------|
| Lane Configurations    | ۲.   | _ <b>≜</b> î⊮ |      | <u> </u> | A    |      |      | र्भ  | 1    |      | 4    |      |
| Traffic Vol, veh/h     | 7    | 210           | 51   | 229      | 282  | 7    | 28   | 5    | 107  | 1    | 8    | 7    |
| Future Vol, veh/h      | 7    | 210           | 51   | 229      | 282  | 7    | 28   | 5    | 107  | 1    | 8    | 7    |
| Conflicting Peds, #/hr | 0    | 0             | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free          | Free | Free     | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -             | None | -        | -    | None | -    | -    | None | -    | -    | None |
| Storage Length         | 100  | -             | -    | 100      | -    | -    | 60   | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0             | -    | -        | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0             | -    | -        | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90            | 90   | 90       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 2             | 3    | 0        | 4    | 20   | 12   | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 8    | 233           | 57   | 254      | 313  | 8    | 31   | 6    | 119  | 1    | 9    | 8    |

| Major/Minor           | Major1 |       |       | Major2 |     |     | Minor1 |      | Ν     | /linor2 |      |     |  |
|-----------------------|--------|-------|-------|--------|-----|-----|--------|------|-------|---------|------|-----|--|
| Conflicting Flow All  | 321    |       | 0     | 290    | 0   | 0   | 947    | 1107 | 145   | 961     | 1131 | 161 |  |
| Stage 1               | -      |       | -     | -      | -   | -   | 278    | 278  | -     | 825     | 825  | -   |  |
| Stage 2               | -      | · _   | -     | -      | -   | -   | 669    | 829  | -     | 136     | 306  | -   |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.1    | -   | -   | 7.74   | 6.5  | 6.9   | 7.5     | 6.5  | 6.9 |  |
| Critical Hdwy Stg 1   | -      | · -   | -     | -      | -   | -   | 6.74   | 5.5  | -     | 6.5     | 5.5  | -   |  |
| Critical Hdwy Stg 2   | -      | · -   | -     | -      | -   | -   | 6.74   | 5.5  | -     | 6.5     | 5.5  | -   |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.2    | -   | -   | 3.62   | 4    | 3.3   | 3.5     | 4    | 3.3 |  |
| Pot Cap-1 Maneuver    | 1250   | -     | -     | 1283   | -   | -   | 201    | 212  | 882   | 214     | 205  | 862 |  |
| Stage 1               | -      | · -   | -     | -      | -   | -   | 677    | 684  | -     | 337     | 390  | -   |  |
| Stage 2               | -      |       | -     | -      | -   | -   | 390    | 388  | -     | 859     | 665  | -   |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -   |        |      |       |         |      |     |  |
| Mov Cap-1 Maneuver    | 1250   | -     | -     | 1283   | -   | -   | 161    | 169  | 882   | 152     | 163  | 862 |  |
| Mov Cap-2 Maneuver    | -      |       | -     | -      | -   | -   | 161    | 169  | -     | 152     | 163  | -   |  |
| Stage 1               | -      |       | -     | -      | -   | -   | 673    | 680  | -     | 335     | 313  | -   |  |
| Stage 2               | -      |       | -     | -      | -   | -   | 301    | 311  | -     | 732     | 661  | -   |  |
|                       |        |       |       |        |     |     |        |      |       |         |      |     |  |
| Approach              | EB     |       |       | WB     |     |     | NB     |      |       | SB      |      |     |  |
| HCM Control Delay, s  | 0.2    |       |       | 3.8    |     |     | 15.3   |      |       | 20.4    |      |     |  |
| HCM LOS               |        |       |       |        |     |     | С      |      |       | С       |      |     |  |
|                       |        |       |       |        |     |     |        |      |       |         |      |     |  |
| Minor Lane/Major Mvn  | nt     | NBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT  | WBR S | SBLn1   |      |     |  |
| Capacity (veh/h)      |        | 162   | 882   | 1250   | -   | -   | 1283   | -    | -     | 251     |      |     |  |
| HCM Lane V/C Ratio    |        | 0.226 | 0.135 | 0.006  | -   | -   | 0.198  | -    | -     | 0.071   |      |     |  |
| HCM Control Delay (s) | )      | 33.6  | 9.7   | 7.9    | -   | -   | 8.5    | -    | -     | 20.4    |      |     |  |
| HCM Lane LOS          |        | D     | А     | А      | -   | -   | А      | -    | -     | С       |      |     |  |
| HCM 95th %tile Q(veh  | )      | 0.8   | 0.5   | 0      | -   | -   | 0.7    | -    | -     | 0.2     |      |     |  |

### Intersection

| Movement               | EBL  | EBT           | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|---------------|------|------|-------------|------|------|------|------|------|------|------|
| Lane Configurations    | ٦    | _ <b>≜</b> î≽ |      | ٦    | <b>≜</b> †₽ |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h     | 1    | 217           | 37   | 94   | 414         | 5    | 17   | 0    | 77   | 0    | 0    | 0    |
| Future Vol, veh/h      | 1    | 217           | 37   | 94   | 414         | 5    | 17   | 0    | 77   | 0    | 0    | 0    |
| Conflicting Peds, #/hr | 0    | 0             | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free          | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -             | None | -    | -           | None | -    | -    | None | -    | -    | None |
| Storage Length         | 50   | -             | -    | 110  | -           | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0             | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0             | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90            | 90   | 90   | 90          | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 0             | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 1    | 241           | 41   | 104  | 460         | 6    | 19   | 0    | 86   | 0    | 0    | 0    |

| Major/Minor          | Major1 |       | Ν    | /lajor2 |     | 1    | Minor1 |     | Ν     | linor2 |     |     |  |
|----------------------|--------|-------|------|---------|-----|------|--------|-----|-------|--------|-----|-----|--|
| Conflicting Flow All | 466    | 0     | 0    | 282     | 0   | 0    | 702    | 938 | 141   | 794    | 955 | 233 |  |
| Stage 1              | -      | -     | -    | -       | -   | -    | 264    | 264 | -     | 671    | 671 | -   |  |
| Stage 2              | -      | -     | -    | -       | -   | -    | 438    | 674 | -     | 123    | 284 | -   |  |
| Critical Hdwy        | 4.1    | -     | -    | 4.1     | -   | -    | 7.5    | 6.5 | 6.9   | 7.5    | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1  | -      | -     | -    | -       | -   | -    | 6.5    | 5.5 | -     | 6.5    | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | -     | -    | -       | -   | -    | 6.5    | 5.5 | -     | 6.5    | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | -     | -    | 2.2     | -   | -    | 3.5    | 4   | 3.3   | 3.5    | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1106   | -     | -    | 1292    | -   | -    | 329    | 266 | 888   | 282    | 260 | 775 |  |
| Stage 1              | -      | -     | -    | -       | -   | -    | 724    | 694 | -     | 417    | 458 | -   |  |
| Stage 2              | -      | -     | -    | -       | -   | -    | 573    | 457 | -     | 874    | 680 | -   |  |
| Platoon blocked, %   |        | -     | -    |         | -   | -    |        |     |       |        |     |     |  |
| Mov Cap-1 Maneuver   | 1106   | -     | -    | 1292    | -   | -    | 309    | 244 | 888   | 239    | 239 | 775 |  |
| Mov Cap-2 Maneuver   | -      | -     | -    | -       | -   | -    | 309    | 244 | -     | 239    | 239 | -   |  |
| Stage 1              | -      | -     | -    | -       | -   | -    | 723    | 693 | -     | 417    | 421 | -   |  |
| Stage 2              | -      | -     | -    | -       | -   | -    | 527    | 420 | -     | 789    | 679 | -   |  |
|                      |        |       |      |         |     |      |        |     |       |        |     |     |  |
| Approach             | EB     |       |      | WB      |     |      | NB     |     |       | SB     |     |     |  |
| HCM Control Delay, s | 0      |       |      | 1.5     |     |      | 11.4   |     |       | 0      |     |     |  |
| HCM LOS              |        |       |      | -       |     |      | В      |     |       | A      |     |     |  |
|                      |        |       |      |         |     |      |        |     |       |        |     |     |  |
| Minor Lane/Major Mvn | nt N   | IBLn1 | EBL  | EBT     | EBR | WBL  | WBT    | WBR | SBLn1 |        |     |     |  |
| Capacity (veh/h)     |        | 663   | 1106 | -       | -   | 1292 | -      | -   | -     |        |     |     |  |

| HCM Lane V/C Ratio    | 0.158 ( | 0.001 | - | - ( | 0.081 | - | - | - |  |
|-----------------------|---------|-------|---|-----|-------|---|---|---|--|
| HCM Control Delay (s) | 11.4    | 8.3   | - | -   | 8     | - | - | 0 |  |
| HCM Lane LOS          | В       | А     | - | -   | Α     | - | - | А |  |
| HCM 95th %tile Q(veh) | 0.6     | 0     | - | -   | 0.3   | - | - | - |  |

| Int Delay, s/veh       | 3    |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | et - |      |      | ÷    | Y    |      |
| Traffic Vol, veh/h     | 20   | 4    | 26   | 34   | 3    | 8    |
| Future Vol, veh/h      | 20   | 4    | 26   | 34   | 3    | 8    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | -    | -    | 0    | -    |
| Veh in Median Storage  | ,# 0 | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 22   | 4    | 29   | 38   | 3    | 9    |

| Major/Minor           | Major1 | Ν     | /lajor2 | ľ   | Minor1 |      |
|-----------------------|--------|-------|---------|-----|--------|------|
| Conflicting Flow All  | 0      | 0     | 26      | 0   | 120    | 24   |
| Stage 1               | -      | -     | -       | -   | 24     | -    |
| Stage 2               | -      | -     | -       | -   | 96     | -    |
| Critical Hdwy         | -      | -     | 4.1     | -   | 6.4    | 6.2  |
| Critical Hdwy Stg 1   | -      | -     | -       | -   | 5.4    | -    |
| Critical Hdwy Stg 2   | -      | -     | -       | -   | 5.4    | -    |
| Follow-up Hdwy        | -      | -     | 2.2     | -   | 3.5    | 3.3  |
| Pot Cap-1 Maneuver    | -      | -     | 1601    | -   | 880    | 1058 |
| Stage 1               | -      | -     | -       | -   | 1004   | -    |
| Stage 2               | -      | -     | -       | -   | 933    | -    |
| Platoon blocked, %    | -      | -     |         | -   |        |      |
| Mov Cap-1 Maneuver    | -      | -     | 1601    | -   | 863    | 1058 |
| Mov Cap-2 Maneuver    | -      | -     | -       | -   | 822    | -    |
| Stage 1               | -      | -     | -       | -   | 1004   | -    |
| Stage 2               | -      | -     | -       | -   | 915    | -    |
|                       |        |       |         |     |        |      |
| Approach              | EB     |       | WB      |     | NB     |      |
| HCM Control Delay, s  | 0      |       | 3.2     |     | 8.7    |      |
| HCM LOS               |        |       |         |     | А      |      |
|                       |        |       |         |     |        |      |
| Minor Lane/Major Mvn  | nt N   | NBLn1 | EBT     | EBR | WBL    | WBT  |
| Capacity (veh/h)      |        | 981   | -       | -   | 1601   | -    |
| HCM Lane V/C Ratio    |        | 0.012 | -       | -   | 0.018  | -    |
| HCM Control Delay (s) | )      | 8.7   | -       | -   | 7.3    | 0    |
| HCM Lane LOS          |        | А     | -       | -   | А      | А    |
| HCM 95th %tile Q(veh  | )      | 0     | -       | -   | 0.1    | -    |

HCM Lane LOS

HCM 95th %tile Q(veh)

| Int Delay, s/veh       | 0    |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    |      | 1    |      | 1    | 1    |      |
| Traffic Vol, veh/h     | 0    | 82   | 0    | 106  | 1    | 0    |
| Future Vol, veh/h      | 0    | 82   | 0    | 106  | 1    | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | 0    | -    | -    | -    | -    |
| Veh in Median Storage, | # 1  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 8    | 8    | 2    | 1    | 3    | 2    |
| Mvmt Flow              | 0    | 91   | 0    | 118  | 1    | 0    |

| Major/Minor                            | Major1     | N | 1inor2 |   |
|----------------------------------------|------------|---|--------|---|
| Conflicting Flow All                   |            | 0 | 118    | - |
| Stage 1                                | -          | U | 0      | - |
| Stage 2                                | -          | - | 118    |   |
|                                        | -          | - |        | - |
| Critical Hdwy                          | -          | - | 6.53   | - |
| Critical Hdwy Stg 1                    | -          | - | -      | - |
| Critical Hdwy Stg 2                    | -          | - | 5.53   | - |
| Follow-up Hdwy                         | -          |   | 4.027  | - |
| Pot Cap-1 Maneuver                     | 0          | - | 770    | 0 |
| Stage 1                                | 0          | - | -      | 0 |
| Stage 2                                | 0          | - | 796    | 0 |
| Platoon blocked, %                     |            | - |        |   |
| Mov Cap-1 Maneuver                     | -          | - | 0      | - |
| Mov Cap-2 Maneuver                     | -          | - | 0      | - |
| Stage 1                                | -          | - | 0      | - |
| Stage 2                                | -          | - | 0      | - |
|                                        |            |   |        |   |
| A                                      |            |   | 00     |   |
| Approach                               | NB         |   | SB     |   |
| HCM Control Delay, s                   | 0          |   |        |   |
| HCM LOS                                |            |   | -      |   |
|                                        |            |   |        |   |
| Minor Lane/Major Mvmt                  | NBT SBLn1  |   |        |   |
|                                        | NDT ODLITT |   |        |   |
| Capacity (veh/h)<br>HCM Lane V/C Ratio |            |   |        |   |
|                                        |            |   |        |   |
| HCM Control Delay (s)                  |            |   |        |   |

\_

\_

-

-

# Intersection

| Movement               | EBL  | EBT   | EBR  | WBL  | WBT   | WBR  | NBL  | NBT               | NBR  | SBL  | SBT              | SBR  |  |
|------------------------|------|-------|------|------|-------|------|------|-------------------|------|------|------------------|------|--|
|                        |      |       | EDK  | VVDL |       | VVDR | INDL |                   | INDK | SDL  |                  | SDK  |  |
| Lane Configurations    | - ግ  | ર્ન 👘 |      | - ግ  | ર્ન 👘 |      |      | - <del>(</del> }- |      |      | - <del>4</del> > |      |  |
| Traffic Vol, veh/h     | 1    | 239   | 22   | 72   | 370   | 21   | 29   | 9                 | 33   | 10   | 14               | 4    |  |
| Future Vol, veh/h      | 1    | 239   | 22   | 72   | 370   | 21   | 29   | 9                 | 33   | 10   | 14               | 4    |  |
| Conflicting Peds, #/hr | 0    | 0     | 0    | 0    | 0     | 0    | 0    | 0                 | 0    | 0    | 0                | 0    |  |
| Sign Control           | Free | Free  | Free | Free | Free  | Free | Stop | Stop              | Stop | Stop | Stop             | Stop |  |
| RT Channelized         | -    | -     | None | -    | -     | None | -    | -                 | None | -    | -                | None |  |
| Storage Length         | 100  | -     | -    | 115  | -     | -    | -    | -                 | -    | -    | -                | -    |  |
| Veh in Median Storage, | # -  | 0     | -    | -    | 0     | -    | -    | 0                 | -    | -    | 0                | -    |  |
| Grade, %               | -    | 0     | -    | -    | 0     | -    | -    | 0                 | -    | -    | 0                | -    |  |
| Peak Hour Factor       | 90   | 90    | 90   | 90   | 90    | 90   | 90   | 90                | 90   | 90   | 90               | 90   |  |
| Heavy Vehicles, %      | 0    | 5     | 0    | 4    | 3     | 0    | 0    | 0                 | 0    | 13   | 0                | 0    |  |
| Mvmt Flow              | 1    | 266   | 24   | 80   | 411   | 23   | 32   | 10                | 37   | 11   | 16               | 4    |  |

| Major/Minor          | Major1 |   | Ν | 1ajor2 |   | Ν | linor1 |     | I   | Minor2 |     |     |  |
|----------------------|--------|---|---|--------|---|---|--------|-----|-----|--------|-----|-----|--|
| Conflicting Flow All | 434    | 0 | 0 | 290    | 0 | 0 | 873    | 874 | 278 | 887    | 875 | 423 |  |
| Stage 1              | -      | - | - | -      | - | - | 280    | 280 | -   | 583    | 583 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 593    | 594 | -   | 304    | 292 | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.14   | - | - | 7.1    | 6.5 | 6.2 | 7.23   | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.1    | 5.5 | -   | 6.23   | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.1    | 5.5 | -   | 6.23   | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.236  | - | - | 3.5    | 4   | 3.3 | 3.617  | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1136   | - | - | 1260   | - | - | 273    | 290 | 766 | 253    | 290 | 635 |  |
| Stage 1              | -      | - | - | -      | - | - | 731    | 683 | -   | 480    | 502 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 496    | 496 | -   | 683    | 675 | -   |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |     |     |        |     |     |  |
| Mov Cap-1 Maneuver   | 1136   | - | - | 1260   | - | - | 247    | 271 | 766 | 223    | 271 | 635 |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 247    | 271 | -   | 223    | 271 | -   |  |
| Stage 1              | -      | - | - | -      | - | - | 730    | 682 | -   | 480    | 470 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 446    | 465 | -   | 640    | 674 | -   |  |
|                      |        |   |   |        |   |   |        |     |     |        |     |     |  |
| Approach             | EB     |   |   | WB     |   |   | NB     |     |     | SB     |     |     |  |
| HCM Control Delay, s | 0      |   |   | 1.3    |   |   | 17.5   |     |     | 19.9   |     |     |  |
| HCM LOS              |        |   |   |        |   |   | С      |     |     | С      |     |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR S | SBLn1 |
|-----------------------|-------|-------|-----|-----|-------|-----|-------|-------|
| Capacity (veh/h)      | 367   | 1136  | -   | -   | 1260  | -   | -     | 272   |
| HCM Lane V/C Ratio    | 0.215 | 0.001 | -   | -   | 0.063 | -   | -     | 0.114 |
| HCM Control Delay (s) | 17.5  | 8.2   | -   | -   | 8.1   | -   | -     | 19.9  |
| HCM Lane LOS          | С     | А     | -   | -   | А     | -   | -     | С     |
| HCM 95th %tile Q(veh) | 0.8   | 0     | -   | -   | 0.2   | -   | -     | 0.4   |

### Intersection

| Movement               | EBL  | EBT         | EBR  | WBL  | WBT         | WBR   | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|-------------|------|------|-------------|-------|------|------|------|------|------|------|--|
| Lane Configurations    | 5    | <b>≜</b> †₽ |      | 5    | <b>≜</b> †₽ | TIDI( |      | 4    |      | 002  | 4    | ODIX |  |
| Traffic Vol, veh/h     | 17   | 182         | 17   | 75   | 217         | 72    | 10   | 13   | 43   | 58   | 7    | 38   |  |
| Future Vol, veh/h      | 17   | 182         | 17   | 75   | 217         | 72    | 10   | 13   | 43   | 58   | 7    | 38   |  |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0    | 0           | 0     | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free        | Free | Free | Free        | Free  | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -           | None | -    | -           | None  | -    | -    | None | -    | -    | None |  |
| Storage Length         | 125  | -           | -    | 125  | -           | -     | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0           | -    | -    | 0           | -     | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0           | -    | -    | 0           | -     | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90          | 90   | 90   | 90          | 90    | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 1           | 0    | 2    | 0           | 4     | 0    | 0    | 0    | 0    | 0    | 3    |  |
| Mvmt Flow              | 19   | 202         | 19   | 83   | 241         | 80    | 11   | 14   | 48   | 64   | 8    | 42   |  |

| Major/Minor          | Major1 |   | Ν | 1ajor2 |   | Ν | linor1 |     | Ν   | linor2 |     |      |  |
|----------------------|--------|---|---|--------|---|---|--------|-----|-----|--------|-----|------|--|
| Conflicting Flow All | 321    | 0 | 0 | 221    | 0 | 0 | 541    | 737 | 111 | 593    | 706 | 161  |  |
| Stage 1              | -      | - | - | -      | - | - | 250    | 250 | -   | 447    | 447 | -    |  |
| Stage 2              | -      | - | - | -      | - | - | 291    | 487 | -   | 146    | 259 | -    |  |
| Critical Hdwy        | 4.1    | - | - | 4.14   | - | - | 7.5    | 6.5 | 6.9 | 7.5    | 6.5 | 6.96 |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.5    | 5.5 | -   | 6.5    | 5.5 | -    |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.5    | 5.5 | -   | 6.5    | 5.5 | -    |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.22   | - | - | 3.5    | 4   | 3.3 | 3.5    | 4   | 3.33 |  |
| Pot Cap-1 Maneuver   | 1250   | - | - | 1345   | - | - | 429    | 348 | 927 | 393    | 363 | 852  |  |
| Stage 1              | -      | - | - | -      | - | - | 738    | 704 | -   | 566    | 577 | -    |  |
| Stage 2              | -      | - | - | -      | - | - | 698    | 554 | -   | 848    | 697 | -    |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |     |     |        |     |      |  |
| Mov Cap-1 Maneuver   | 1250   | - | - | 1345   | - | - | 378    | 322 | 927 | 339    | 335 | 852  |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 378    | 322 | -   | 339    | 335 | -    |  |
| Stage 1              | -      | - | - | -      | - | - | 727    | 693 | -   | 558    | 541 | -    |  |
| Stage 2              | -      | - | - | -      | - | - | 614    | 520 | -   | 776    | 687 | -    |  |
|                      |        |   |   |        |   |   |        |     |     |        |     |      |  |
| Approach             | EB     |   |   | WB     |   |   | NB     |     |     | SB     |     |      |  |
| HCM Control Delay, s | 0.6    |   |   | 1.6    |   |   | 12.1   |     |     | 16.2   |     |      |  |
| HCM LOS              |        |   |   |        |   |   | В      |     |     | С      |     |      |  |
|                      |        |   |   |        |   |   |        |     |     |        |     |      |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR | SBLn1 |  |  |
|-----------------------|-------|-------|-----|-----|-------|-----|-----|-------|--|--|
| Capacity (veh/h)      | 583   | 1250  | -   | -   | 1345  | -   | -   | 435   |  |  |
| HCM Lane V/C Ratio    | 0.126 | 0.015 | -   | -   | 0.062 | -   | -   | 0.263 |  |  |
| HCM Control Delay (s) | 12.1  | 7.9   | -   | -   | 7.9   | -   | -   | 16.2  |  |  |
| HCM Lane LOS          | В     | А     | -   | -   | А     | -   | -   | С     |  |  |
| HCM 95th %tile Q(veh) | 0.4   | 0     | -   | -   | 0.2   | -   | -   | 1     |  |  |

### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR   |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Lane Configurations    | ٦    | 4    |      | ۲    | 4    |      |      | 4    |      |      | र्भ  | 1     |
| Traffic Vol, veh/h     | 133  | 353  | 0    | 16   | 441  | 71   | 0    | 4    | 13   | 56   | 3    | 305   |
| Future Vol, veh/h      | 133  | 353  | 0    | 16   | 441  | 71   | 0    | 4    | 13   | 56   | 3    | 305   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop  |
| RT Channelized         | -    | -    | None | -    | -    | None | -    | -    | None | -    | -    | Yield |
| Storage Length         | 100  | -    | -    | 100  | -    | -    | -    | -    | -    | -    | -    | 125   |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90    |
| Heavy Vehicles, %      | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Mvmt Flow              | 148  | 392  | 0    | 18   | 490  | 79   | 0    | 4    | 14   | 62   | 3    | 339   |

| Major/Minor          | Major1 |     | Ν     | /lajor2 |     | 1     | Minor1 |      |       | Minor2 |      |     |  |
|----------------------|--------|-----|-------|---------|-----|-------|--------|------|-------|--------|------|-----|--|
| Conflicting Flow All | 569    | 0   | 0     | 392     | 0   | 0     | 1255   | 1293 | 392   | 1263   | 1254 | 530 |  |
| Stage 1              | -      | -   | -     | -       | -   | -     | 688    | 688  | -     | 566    | 566  | -   |  |
| Stage 2              | -      | -   | -     | -       | -   | -     | 567    | 605  | -     | 697    | 688  | -   |  |
| Critical Hdwy        | 4.1    | -   | -     | 4.1     | -   | -     | 7.1    | 6.5  | 6.2   | 7.1    | 6.5  | 6.2 |  |
| Critical Hdwy Stg 1  | -      | -   | -     | -       | -   | -     | 6.1    | 5.5  | -     | 6.1    | 5.5  | -   |  |
| Critical Hdwy Stg 2  | -      | -   | -     | -       | -   | -     | 6.1    | 5.5  | -     | 6.1    | 5.5  | -   |  |
| Follow-up Hdwy       | 2.2    | -   | -     | 2.2     | -   | -     | 3.5    | 4    | 3.3   |        | 4    | 3.3 |  |
| Pot Cap-1 Maneuver   | 1013   | -   | -     | 1178    | -   | -     | 150    | 164  | 661   | 148    | 173  | 553 |  |
| Stage 1              | -      | -   | -     | -       | -   | -     | 440    | 450  | -     | 513    | 511  | -   |  |
| Stage 2              | -      | -   | -     | -       | -   | -     | 512    | 491  | -     | 435    | 450  | -   |  |
| Platoon blocked, %   |        | -   | -     |         | -   | -     |        |      |       |        |      |     |  |
| Mov Cap-1 Maneuver   | 1013   | -   | -     | 1178    | -   | -     | 50     | 138  | 661   | 124    | 145  | 553 |  |
| Mov Cap-2 Maneuver   | -      | -   | -     | -       | -   | -     | 50     | 138  | -     |        | 145  | -   |  |
| Stage 1              | -      | -   | -     | -       | -   | -     | 376    | 384  | -     |        | 503  | -   |  |
| Stage 2              | -      | -   | -     | -       | -   | -     | 194    | 484  | -     | 359    | 384  | -   |  |
|                      |        |     |       |         |     |       |        |      |       |        |      |     |  |
| Approach             | EB     |     |       | WB      |     |       | NB     |      |       | SB     |      |     |  |
| HCM Control Delay, s | 2.5    |     |       | 0.2     |     |       | 15.9   |      |       | 27.9   |      |     |  |
| HCM LOS              |        |     |       |         |     |       | С      |      |       | D      |      |     |  |
|                      |        |     |       |         |     |       |        |      |       | -      |      |     |  |
| Minor Lane/Major Mvm | nt NB  | Ln1 | EBL   | EBT     | EBR | WBL   | WBT    | WBR  | SBLn1 | SBLn2  |      |     |  |
| Capacity (veh/h)     |        | 349 | 1013  | -       | -   | 1178  | -      | -    | 125   | 553    |      |     |  |
| HCM Lane V/C Ratio   |        | 054 | 0.146 | -       | -   | 0.015 | -      | -    | 0.524 |        |      |     |  |

| HCM Control Delay (s)       15.9       9.2       -       -       8.1       -       -       61.9       21.3         HCM Lane LOS       C       A       -       -       A       -       -       F       C         HCM 95th %tile Q(veh)       0.2       0.5       -       -       0       -       -       2.5       4.1 | HUM Lane V/C Ratio    | 0.054 | 0.140 | - | - 0.015 | - | - 0. | .924 ( | 0.013 |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|-------|---|---------|---|------|--------|-------|--|--|
|                                                                                                                                                                                                                                                                                                                       | HCM Control Delay (s) | 15.9  | 9.2   | - | - 8.1   | - | - 6  | 61.9   | 21.3  |  |  |
| HCM 95th %tile Q(veh) 0.2 0.5 0 2.5 4.1                                                                                                                                                                                                                                                                               | HCM Lane LOS          | С     | А     | - | - A     | - | -    | F      | С     |  |  |
|                                                                                                                                                                                                                                                                                                                       | HCM 95th %tile Q(veh) | 0.2   | 0.5   | - | - 0     | - | -    | 2.5    | 4.1   |  |  |

# Intersection

Int Delay, s/veh

HCM 95th %tile Q(veh)

0.4

0

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    | ٦    | ef 👘 |      | ۲    | ef 👘 |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h     | 1    | 214  | 29   | 7    | 340  | 1    | 34   | 0    | 10   | 0    | 1    | 0    |  |
| Future Vol, veh/h      | 1    | 214  | 29   | 7    | 340  | 1    | 34   | 0    | 10   | 0    | 1    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 115  | -    | -    | 120  | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 7    | 0    | 0    | 3    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 1    | 238  | 32   | 8    | 378  | 1    | 38   | 0    | 11   | 0    | 1    | 0    |  |

| Major/Minor I         | Major1 |       | N     | /lajor2 |     | I     | Minor1 |     | Ν     | /linor2 |     |     |  |
|-----------------------|--------|-------|-------|---------|-----|-------|--------|-----|-------|---------|-----|-----|--|
| Conflicting Flow All  | 379    | 0     | 0     | 270     | 0   | 0     | 651    | 651 | 254   | 657     | 667 | 379 |  |
| Stage 1               | -      | -     | -     | -       | -   | -     | 256    | 256 | -     | 395     | 395 | -   |  |
| Stage 2               | -      | -     | -     | -       | -   | -     | 395    | 395 | -     | 262     | 272 | -   |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.1     | -   | -     | 7.1    | 6.5 | 6.2   | 7.1     | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -       | -   | -     | 6.1    | 5.5 | -     | 6.1     | 5.5 | -   |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -       | -   | -     | 6.1    | 5.5 | -     | 6.1     | 5.5 | -   |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.2     | -   | -     | 3.5    | 4   | 3.3   | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver    | 1191   | -     | -     | 1305    | -   | -     | 384    | 390 | 790   | 381     | 382 | 672 |  |
| Stage 1               | -      | -     | -     | -       | -   | -     | 753    | 699 | -     | 634     | 608 | -   |  |
| Stage 2               | -      | -     | -     | -       | -   | -     | 634    | 608 | -     | 747     | 688 | -   |  |
| Platoon blocked, %    |        | -     | -     |         | -   | -     |        |     |       |         |     |     |  |
| Nov Cap-1 Maneuver    | 1191   | -     | -     | 1305    | -   | -     | 381    | 387 | 790   | 374     | 379 | 672 |  |
| Nov Cap-2 Maneuver    | -      | -     | -     | -       | -   | -     | 381    | 387 | -     | 374     | 379 | -   |  |
| Stage 1               | -      | -     | -     | -       | -   | -     | 752    | 698 | -     | 633     | 604 | -   |  |
| Stage 2               | -      | -     | -     | -       | -   | -     | 629    | 604 | -     | 736     | 687 | -   |  |
|                       |        |       |       |         |     |       |        |     |       |         |     |     |  |
| Approach              | EB     |       |       | WB      |     |       | NB     |     |       | SB      |     |     |  |
| HCM Control Delay, s  | 0      |       |       | 0.2     |     |       | 14.4   |     |       | 14.5    |     |     |  |
| HCM LOS               |        |       |       |         |     |       | В      |     |       | В       |     |     |  |
|                       |        |       |       |         |     |       |        |     |       |         |     |     |  |
| Minor Lane/Major Mvm  | t N    | BLn1  | EBL   | EBT     | EBR | WBL   | WBT    | WBR | SBLn1 |         |     |     |  |
| Capacity (veh/h)      |        | 432   | 1191  | -       | -   | 1305  | -      | -   | 379   |         |     |     |  |
| HCM Lane V/C Ratio    | C      | ).113 | 0.001 | -       | -   | 0.006 | -      | -   | 0.003 |         |     |     |  |
| HCM Control Delay (s) |        | 14.4  | 8     | -       | -   | 7.8   | -      | -   | 14.5  |         |     |     |  |
| HCM Lane LOS          |        | В     | А     | -       | -   | А     | -      | -   | В     |         |     |     |  |
|                       |        |       |       |         |     |       |        |     |       |         |     |     |  |

0

0

| Int Delay, s/veh       | 3.4  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | 1    |      | ٦    | 1    | Y    |      |
| Traffic Vol, veh/h     | 191  | 0    | 4    | 330  | 136  | 1    |
| Future Vol, veh/h      | 191  | 0    | 4    | 330  | 136  | 1    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | 120  | -    | 0    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 4    | 2    | 3    | 0    | 1    | 2    |
| Mvmt Flow              | 212  | 0    | 4    | 367  | 151  | 1    |

| Major/Minor          | Major1   |       | Major2 | 1     | Minor1 |       |
|----------------------|----------|-------|--------|-------|--------|-------|
| Conflicting Flow All | 0        | -     |        | 0     | 587    | 212   |
| Stage 1              | -        | -     | -      | -     | 212    | -     |
| Stage 2              | -        | -     | -      | -     | 375    | -     |
| Critical Hdwy        | -        | -     | 4.13   | -     | 6.41   | 6.22  |
| Critical Hdwy Stg 1  | -        | -     | -      | -     | 5.41   | -     |
| Critical Hdwy Stg 2  | -        | -     | -      | -     | 5.41   | -     |
| Follow-up Hdwy       | -        | -     | 2.227  | -     | 3.509  | 3.318 |
| Pot Cap-1 Maneuver   | -        | 0     | 1352   | -     | 474    | 828   |
| Stage 1              | -        | 0     | -      | -     | 826    | -     |
| Stage 2              | -        | 0     | -      | -     | 697    | -     |
| Platoon blocked, %   | -        |       |        | -     |        |       |
| Mov Cap-1 Maneuver   |          | -     | 1352   | -     | 473    | 828   |
| Mov Cap-2 Maneuver   | • -      | -     | -      | -     | 473    | -     |
| Stage 1              | -        | -     | -      | -     | 826    | -     |
| Stage 2              | -        | -     | -      | -     | 695    | -     |
|                      |          |       |        |       |        |       |
| Approach             | EB       |       | WB     |       | NB     |       |
| HCM Control Delay, s | ; 0      |       | 0.1    |       | 16.1   |       |
| HCM LOS              | _        |       |        |       | С      |       |
|                      |          |       |        |       |        |       |
| Minor Lane/Major Mvr | mt       | NBLn1 | EBT    | WBL   | WBT    |       |
| Capacity (veh/h)     | int int  | 474   |        |       | -      |       |
| HCM Lane V/C Ratio   |          | 0.321 |        | 0.003 | -      |       |
| HCM Control Delay (s | •)       | 16.1  | -      | 7.7   | -      |       |
| HCM Lane LOS         | <i>)</i> | C     | -      | A     | -      |       |
| HCM 95th %tile Q(veh | h)       | 1.4   | _      | 0     | _      |       |
|                      | 7        | 1.7   |        | 0     |        |       |

2

# Intersection

| Movement               | EBL      | EBT         | EBR  | WBL      | WBT        | WBR        | NBL         | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|----------|-------------|------|----------|------------|------------|-------------|------|------|------|------|------|
| Lane Configurations    | <u> </u> | <b>≜</b> †₽ | LDIX | <u> </u> | <b>≜</b> ↑ | <b>WBR</b> | <u>1122</u> | ¢    | NBR  |      | 4    | OBIX |
| Traffic Vol, veh/h     | 0        | 303         | 26   | 95       | 447        | 4          | 21          | 1    | 51   | 7    | 0    | 1    |
| Future Vol, veh/h      | 0        | 303         | 26   | 95       | 447        | 4          | 21          | 1    | 51   | 7    | 0    | 1    |
| Conflicting Peds, #/hr | 0        | 0           | 0    | 0        | 0          | 0          | 0           | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free     | Free        | Free | Free     | Free       | Free       | Stop        | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -        | -           | None | -        | -          | None       | -           | -    | None | -    | -    | None |
| Storage Length         | 50       | -           | -    | 125      | -          | -          | 90          | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -      | 0           | -    | -        | 0          | -          | -           | 0    | -    | -    | 0    | -    |
| Grade, %               | -        | 0           | -    | -        | 0          | -          | -           | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90       | 90          | 90   | 90       | 90         | 90         | 90          | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0        | 0           | 0    | 1        | 0          | 0          | 0           | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 0        | 337         | 29   | 106      | 497        | 4          | 23          | 1    | 57   | 8    | 0    | 1    |

| Major/Minor I         | Major1 |       | Major2 |      | Minor1 |     |       |      | Ν     | Minor2 |      |     |  |
|-----------------------|--------|-------|--------|------|--------|-----|-------|------|-------|--------|------|-----|--|
| Conflicting Flow All  | 501    | 0     | 0      | 366  | 0      | 0   | 813   | 1065 | 183   | 880    | 1077 | 251 |  |
| Stage 1               | -      | -     | -      | -    | -      | -   | 352   | 352  | -     | 711    | 711  | -   |  |
| Stage 2               | -      | -     | -      | -    | -      | -   | 461   | 713  | -     | 169    | 366  | -   |  |
| Critical Hdwy         | 4.1    | -     | -      | 4.12 | -      | -   | 7.5   | 6.5  | 6.9   | 7.5    | 6.5  | 6.9 |  |
| Critical Hdwy Stg 1   | -      | -     | -      | -    | -      | -   | 6.5   | 5.5  | -     | 6.5    | 5.5  | -   |  |
| Critical Hdwy Stg 2   | -      | -     | -      | -    | -      | -   | 6.5   | 5.5  | -     | 6.5    | 5.5  | -   |  |
| Follow-up Hdwy        | 2.2    | -     | -      | 2.21 | -      | -   | 3.5   | 4    | 3.3   | 3.5    | 4    | 3.3 |  |
| Pot Cap-1 Maneuver    | 1074   | -     | -      | 1196 | -      | -   | 274   | 224  | 834   | 245    | 221  | 755 |  |
| Stage 1               | -      | -     | -      | -    | -      | -   | 643   | 635  | -     | 395    | 439  | -   |  |
| Stage 2               | -      | -     | -      | -    | -      | -   | 555   | 438  | -     | 822    | 626  | -   |  |
| Platoon blocked, %    |        | -     | -      |      | -      | -   |       |      |       |        |      |     |  |
| Mov Cap-1 Maneuver    | 1074   | -     | -      | 1196 | -      | -   | 255   | 204  | 834   | 212    | 201  | 755 |  |
| Mov Cap-2 Maneuver    | -      | -     | -      | -    | -      | -   | 255   | 204  | -     | 212    | 201  | -   |  |
| Stage 1               | -      | -     | -      | -    | -      | -   | 643   | 635  | -     | 395    | 400  | -   |  |
| Stage 2               | -      | -     | -      | -    | -      | -   | 505   | 399  | -     | 765    | 626  | -   |  |
|                       |        |       |        |      |        |     |       |      |       |        |      |     |  |
| Approach              | EB     |       |        | WB   |        |     | NB    |      |       | SB     |      |     |  |
| HCM Control Delay, s  | 0      |       |        | 1.4  |        |     | 12.9  |      |       | 21.1   |      |     |  |
| HCM LOS               |        |       |        |      |        |     | В     |      |       | С      |      |     |  |
|                       |        |       |        |      |        |     |       |      |       |        |      |     |  |
| Minor Lane/Major Mvm  | nt     | NBLn1 | NBLn2  | EBL  | EBT    | EBR | WBL   | WBT  | WBR S | SBLn1  |      |     |  |
| Capacity (veh/h)      |        | 255   | 787    | 1074 | -      | -   | 1196  | -    | -     | 233    |      |     |  |
| HCM Lane V/C Ratio    |        | 0.092 | 0.073  | -    | -      | -   | 0.088 | -    | -     | 0.038  |      |     |  |
| HCM Control Delay (s) |        | 20.5  | 9.9    | 0    | -      | -   | 8.3   | -    | -     | 21.1   |      |     |  |
| HCM Lane LOS          |        | С     | А      | А    | -      | -   | А     | -    | -     | С      |      |     |  |
| HCM 95th %tile Q(veh) | )      | 0.3   | 0.2    | 0    | -      | -   | 0.3   | -    | -     | 0.1    |      |     |  |
|                       |        |       |        |      |        |     |       |      |       |        |      |     |  |

## Intersection

Int Delay, s/veh

| Movement               | EBL      | EBT         | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT            | SBR  |  |
|------------------------|----------|-------------|------|------|----------|------|------|------|------|------|----------------|------|--|
| Lane Configurations    | <u> </u> | <b>≜</b> î⊮ |      |      | <b>≜</b> |      | NDL  | -    | 1101 | ODL  |                | ODIX |  |
|                        | -        |             | 04   | 005  |          | •    | 70   | र्भ  | 400  | 4    | - <del>(</del> | 40   |  |
| Traffic Vol, veh/h     | 9        | 263         | 64   | 235  | 441      | 8    | 73   | 5    | 126  | 1    | 3              | 16   |  |
| Future Vol, veh/h      | 9        | 263         | 64   | 235  | 441      | 8    | 73   | 5    | 126  | 1    | 3              | 16   |  |
| Conflicting Peds, #/hr | 0        | 0           | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0              | 0    |  |
| Sign Control           | Free     | Free        | Free | Free | Free     | Free | Stop | Stop | Stop | Stop | Stop           | Stop |  |
| RT Channelized         | -        | -           | None | -    | -        | None | -    | -    | None | -    | -              | None |  |
| Storage Length         | 100      | -           | -    | 100  | -        | -    | 60   | -    | -    | -    | -              | -    |  |
| Veh in Median Storage, | # -      | 0           | -    | -    | 0        | -    | -    | 0    | -    | -    | 0              | -    |  |
| Grade, %               | -        | 0           | -    | -    | 0        | -    | -    | 0    | -    | -    | 0              | -    |  |
| Peak Hour Factor       | 90       | 90          | 90   | 90   | 90       | 90   | 90   | 90   | 90   | 90   | 90             | 90   |  |
| Heavy Vehicles, %      | 0        | 0           | 2    | 1    | 3        | 0    | 8    | 0    | 1    | 0    | 0              | 0    |  |
| M∨mt Flow              | 10       | 292         | 71   | 261  | 490      | 9    | 81   | 6    | 140  | 1    | 3              | 18   |  |

| Stage 2       -       -       -       -       769       1021       -       166         Critical Hdwy       4.1       -       -       4.12       -       -       7.66       6.5       6.92       7.         Critical Hdwy Stg 1       -       -       -       -       -       6.66       5.5       -       6.         Critical Hdwy Stg 2       -       -       -       -       6.66       5.5       -       6.         Critical Hdwy Stg 2       -       -       -       -       6.66       5.5       -       6.         Follow-up Hdwy       2.2       -       2.21       -       3.58       4       3.31       3.         Pot Cap-1 Maneuver       1075       -       1199       -       155       148       832       14   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stage 1       -       -       -       -       348       348       -       1017         Stage 2       -       -       -       -       -       769       1021       -       169         Critical Hdwy       4.1       -       -       4.12       -       7.66       6.5       6.92       7.5         Critical Hdwy Stg 1       -       -       -       -       6.66       5.5       -       6.5         Critical Hdwy Stg 2       -       -       -       -       6.66       5.5       -       6.5         Follow-up Hdwy       2.2       -       -       2.21       -       -       3.58       4       3.31       3.5         Pot Cap-1 Maneuver       1075       -       1199       -       155       148       832       146 |
| Critical Hdwy       4.1       -       -       4.12       -       -       7.66       6.5       6.92       7.5         Critical Hdwy Stg 1       -       -       -       -       -       6.66       5.5       -       6.5         Critical Hdwy Stg 2       -       -       -       -       6.66       5.5       -       6.5         Critical Hdwy Stg 2       -       -       -       -       6.66       5.5       -       6.5         Follow-up Hdwy       2.2       -       -       2.21       -       -       3.58       4       3.31       3.5         Pot Cap-1 Maneuver       1075       -       1199       -       155       148       832       146                                                                    |
| Critical Hdwy Stg 1       -       -       -       -       6.66       5.5       -       6.5         Critical Hdwy Stg 2       -       -       -       -       6.66       5.5       -       6.5         Follow-up Hdwy       2.2       -       -       2.21       -       -       3.58       4       3.31       3.5         Pot Cap-1 Maneuver       1075       -       1199       -       155       148       832       146                                                                                                                                                                                                                                                                                                    |
| Critical Hdwy Stg 2       -       -       -       -       6.66       5.5       -       6.5         Follow-up Hdwy       2.2       -       -       2.21       -       -       3.58       4       3.31       3.5         Pot Cap-1 Maneuver       1075       -       1199       -       155       148       832       146                                                                                                                                                                                                                                                                                                                                                                                                       |
| Follow-up Hdwy2.22.213.5843.313.5Pot Cap-1 Maneuver10751199155148832146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pot Cap-1 Maneuver 1075 1199 155 148 832 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Store 1 625 629 259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Stage 1 625 638 - 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Stage 2 347 316 - 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mov Cap-1 Maneuver 1075 1199 122 115 832 97 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mov Cap-2 Maneuver 122 115 - 97 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Stage 1 619 632 - 256 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Stage 2 262 247 - 671 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Approach EB WB NB SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HCM Control Delay, s 0.2 3 39.3 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HCM LOS E C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Minor Lane/Major Mvmt NBLn1 NBLn2 EBL EBT EBR WBL WBT WBR SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Capacity (veh/h) 122 832 1075 1199 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HCM Lane V/C Ratio 0.71 0.168 0.009 0.218 0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HCM Control Delay (s) 86.3 10.2 8.4 8.8 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HCM Lane LOS F B A A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HCM 95th %tile Q(veh) 3.9 0.6 0 0.8 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|-------------|------|------|------|------|------|------|------|--|
| Lane Configurations    | 5    | ۴Þ   |      | 5    | <b>≜</b> †⊅ |      |      | 4    |      | -    | 4    | -    |  |
| Traffic Vol, veh/h     | 4    | 337  | 62   | 117  | 592         | 3    | 66   | 0    | 109  | 0    | 0    | 0    |  |
| Future Vol, veh/h      | 4    | 337  | 62   | 117  | 592         | 3    | 66   | 0    | 109  | 0    | 0    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None | -    | -           | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 50   | -    | -    | 110  | -           | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90          | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 1    | 0    | 0    | 0           | 0    | 0    | 0    | 5    | 0    | 0    | 0    |  |
| Mvmt Flow              | 4    | 374  | 69   | 130  | 658         | 3    | 73   | 0    | 121  | 0    | 0    | 0    |  |

| Major/Minor          | Major1 |   | М | ajor2 |   | I | Minor1 |      | I    | Minor2 |      |     |  |
|----------------------|--------|---|---|-------|---|---|--------|------|------|--------|------|-----|--|
| Conflicting Flow All | 661    | 0 | 0 | 443   | 0 | 0 | 1006   | 1338 | 222  | 1115   | 1371 | 331 |  |
| Stage 1              | -      | - | - | -     | - | - | 417    | 417  | -    | 920    | 920  | -   |  |
| Stage 2              | -      | - | - | -     | - | - | 589    | 921  | -    | 195    | 451  | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.1   | - | - | 7.5    | 6.5  | 7    | 7.5    | 6.5  | 6.9 |  |
| Critical Hdwy Stg 1  | -      | - | - | -     | - | - | 6.5    | 5.5  | -    | 6.5    | 5.5  | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -     | - | - | 6.5    | 5.5  | -    | 6.5    | 5.5  | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2   | - | - | 3.5    | 4    | 3.35 | 3.5    | 4    | 3.3 |  |
| Pot Cap-1 Maneuver   | 937    | - | - | 1128  | - | - | 198    | 154  | 772  | 165    | 147  | 671 |  |
| Stage 1              | -      | - | - | -     | - | - | 589    | 595  | -    | 296    | 352  | -   |  |
| Stage 2              | -      | - | - | -     | - | - | 466    | 352  | -    | 794    | 574  | -   |  |
| Platoon blocked, %   |        | - | - |       | - | - |        |      |      |        |      |     |  |
| Mov Cap-1 Maneuver   | 937    | - | - | 1128  | - | - | 180    | 136  | 772  | 126    | 130  | 671 |  |
| Mov Cap-2 Maneuver   | · -    | - | - | -     | - | - | 180    | 136  | -    | 126    | 130  | -   |  |
| Stage 1              | -      | - | - | -     | - | - | 587    | 593  | -    | 295    | 312  | -   |  |
| Stage 2              | -      | - | - | -     | - | - | 412    | 312  | -    | 667    | 572  | -   |  |
|                      |        |   |   |       |   |   |        |      |      |        |      |     |  |
| Approach             | EB     |   |   | WB    |   |   | NB     |      |      | SB     |      |     |  |
| HCM Control Delay, s | 0.1    |   |   | 1.4   |   |   | 28.1   |      |      | 0      |      |     |  |
| HCM LOS              |        |   |   |       |   |   | D      |      |      | А      |      |     |  |
|                      |        |   |   |       |   |   |        |      |      |        |      |     |  |
|                      |        |   |   |       |   |   |        |      |      |        |      |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR S | BLn1 |  |
|-----------------------|-------|-------|-----|-----|-------|-----|-------|------|--|
| Capacity (veh/h)      | 345   | 937   | -   | -   | 1128  | -   | -     | -    |  |
| HCM Lane V/C Ratio    | 0.564 | 0.005 | -   | -   | 0.115 | -   | -     | -    |  |
| HCM Control Delay (s) | 28.1  | 8.9   | -   | -   | 8.6   | -   | -     | 0    |  |
| HCM Lane LOS          | D     | А     | -   | -   | А     | -   | -     | А    |  |
| HCM 95th %tile Q(veh) | 3.3   | 0     | -   | -   | 0.4   | -   | -     | -    |  |

| Int Delay, s/veh       | 3.9  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | et - |      |      | ÷.   | Y    |      |
| Traffic Vol, veh/h     | 43   | 0    | 50   | 52   | 3    | 37   |
| Future Vol, veh/h      | 43   | 0    | 50   | 52   | 3    | 37   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | -    | -    | 0    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 3    | 2    | 2    | 3    | 0    | 2    |
| Mvmt Flow              | 48   | 0    | 56   | 58   | 3    | 41   |

| Major/Minor          | Major1 | 1     | Major2 | 1   | Minor1 |       |
|----------------------|--------|-------|--------|-----|--------|-------|
| Conflicting Flow All | 0      | 0     | 48     | 0   | 218    | 48    |
| Stage 1              | -      | -     | -      | -   | 48     | -     |
| Stage 2              | -      | -     | -      | -   | 170    | -     |
| Critical Hdwy        | -      | -     | 4.12   | -   | 6.4    | 6.22  |
| Critical Hdwy Stg 1  | -      | -     | -      | -   | 5.4    | -     |
| Critical Hdwy Stg 2  | -      | -     | -      | -   | 5.4    | -     |
| Follow-up Hdwy       | -      | -     | 2.218  | -   | 3.5    | 3.318 |
| Pot Cap-1 Maneuver   | -      | -     | 1559   | -   | 775    | 1021  |
| Stage 1              | -      | -     | -      | -   | 980    | -     |
| Stage 2              | -      | -     | -      | -   | 865    | -     |
| Platoon blocked, %   | -      | -     |        | -   |        |       |
| Mov Cap-1 Maneuver   |        | -     | 1559   | -   | 746    | 1021  |
| Mov Cap-2 Maneuver   | -      | -     | -      | -   | 739    | -     |
| Stage 1              | -      | -     | -      | -   | 980    | -     |
| Stage 2              | -      | -     | -      | -   | 833    | -     |
|                      |        |       |        |     |        |       |
| Approach             | EB     |       | WB     |     | NB     |       |
| HCM Control Delay, s | 0      |       | 3.6    |     | 8.8    |       |
| HCM LOS              |        |       |        |     | А      |       |
|                      |        |       |        |     |        |       |
| Minor Lane/Major Mvn | nt     | NBLn1 | EBT    | EBR | WBL    | WBT   |
| Capacity (veh/h)     |        | 993   | -      | -   | 1559   | -     |
| HCM Lane V/C Ratio   |        | 0.045 | -      | -   | 0.036  | -     |
| HCM Control Delay (s | )      | 8.8   | -      | -   | 7.4    | 0     |
| HCM Lane LOS         |        | А     | -      | -   | А      | А     |
| HCM 95th %tile Q(veh | ı)     | 0.1   | -      | -   | 0.1    | -     |

| Int Delay, s/veh       | 0    |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    |      | 1    |      | 1    | 1    |      |
| Traffic Vol, veh/h     | 0    | 85   | 0    | 137  | 4    | 0    |
| Future Vol, veh/h      | 0    | 85   | 0    | 137  | 4    | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | 0    | -    | -    | -    | -    |
| Veh in Median Storage, | # 1  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 3    | 2    | 0    | 3    | 2    |
| Mvmt Flow              | 0    | 94   | 0    | 152  | 4    | 0    |

| Major/Minor           | Major1    | Minor2  |    |
|-----------------------|-----------|---------|----|
| Conflicting Flow All  | -         | 0 152   | -  |
| Stage 1               | _         | - 0     | _  |
| Stage 2               | -         | - 152   | _  |
| Critical Hdwy         |           | - 6.53  | _  |
| Critical Hdwy Stg 1   | -         | - 0.00  | -  |
| Critical Hdwy Stg 2   | -         | - 5.53  | -  |
|                       | -         | - 4.027 |    |
| Follow-up Hdwy        | - 0       |         | -0 |
| Pot Cap-1 Maneuver    |           | - 738   |    |
| Stage 1               | 0         |         | 0  |
| Stage 2               | 0         | - 770   | 0  |
| Platoon blocked, %    |           | -       |    |
| Mov Cap-1 Maneuver    | -         | - 0     | -  |
| Mov Cap-2 Maneuver    | -         | - 0     | -  |
| Stage 1               | -         | - 0     | -  |
| Stage 2               | -         | - 0     | -  |
|                       |           |         |    |
| Approach              | NB        | SB      |    |
|                       |           | 30      |    |
| HCM Control Delay, s  | 0         |         |    |
| HCM LOS               |           | -       |    |
|                       |           |         |    |
| Minor Lane/Major Mvmt | NBT SBLn1 |         |    |
| Capacity (veh/h)      |           |         |    |
| HCM Lane V/C Ratio    |           |         |    |
|                       |           |         |    |

| HCM Control Delay (s) | - | - |  |
|-----------------------|---|---|--|
| HCM Lane LOS          | - | - |  |
| HCM 95th %tile Q(veh) | - | - |  |

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    | ۲.   | ef 👘 |      | ۲.   | 4Î   |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h     | 0    | 503  | 10   | 16   | 200  | 10   | 10   | 0    | 50   | 60   | 9    | 0    |  |
| Future Vol, veh/h      | 0    | 503  | 10   | 16   | 200  | 10   | 10   | 0    | 50   | 60   | 9    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 100  | -    | -    | 115  | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 5    | 17   | 0    | 19   | 17   | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 0    | 559  | 11   | 18   | 222  | 11   | 11   | 0    | 56   | 67   | 10   | 0    |  |

| Major/Minor          | Major1  |        | Major2 |     |      | Minor1 |       | Ν     | /linor2 |     |     |  |
|----------------------|---------|--------|--------|-----|------|--------|-------|-------|---------|-----|-----|--|
|                      |         |        |        | 0   |      |        | 024   |       |         | 024 | 000 |  |
| Conflicting Flow All | 233     | 0 0    | 570    | 0   | 0    | 834    | 834   | 565   | 857     | 834 | 228 |  |
| Stage 1              | -       |        | -      | -   | -    | 565    | 565   | -     | 264     | 264 | -   |  |
| Stage 2              | -       |        | -      | -   | -    | 269    | 269   | -     | 593     | 570 | -   |  |
| Critical Hdwy        | 4.1     |        | 4.1    | -   | -    | 7.1    | 6.5   | 6.2   | 7.1     | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -       |        | -      | -   | -    | 6.1    | 5.5   | -     | 6.1     | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -       |        | -      | -   | -    | 6.1    | 5.5   | -     | 6.1     | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2     |        | 2.2    | -   | -    | 3.5    | 4     | 3.3   | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1346    |        | 1013   | -   | -    | 290    | 306   | 528   | 280     | 306 | 816 |  |
| Stage 1              | -       |        | -      | -   | -    | 513    | 511   | -     | 746     | 694 | -   |  |
| Stage 2              | -       |        | -      | -   | -    | 741    | 690   | -     | 496     | 509 | -   |  |
| Platoon blocked, %   |         |        |        | -   | -    |        |       |       |         |     |     |  |
| Mov Cap-1 Maneuver   | 1346    |        | 1013   | _   | -    | 279    | 300   | 528   | 247     | 300 | 816 |  |
| Mov Cap-2 Maneuver   | -       |        | -      | -   | -    | 279    | 300   | -     | 247     | 300 | -   |  |
| Stage 1              | -       |        | -      | _   | -    | 513    | 511   | -     | 746     | 682 | -   |  |
| Stage 2              | -       |        |        | _   | -    | 717    | 678   | -     | 444     | 509 | -   |  |
|                      |         |        |        |     |      | 111    | 010   |       |         | 000 |     |  |
|                      |         |        |        |     |      |        |       |       |         |     |     |  |
| Approach             | EB      |        | WB     |     |      | NB     |       |       | SB      |     |     |  |
| HCM Control Delay, s | 0       |        | 0.6    |     |      | 14.1   |       |       | 25.3    |     |     |  |
| HCM LOS              |         |        |        |     |      | В      |       |       | D       |     |     |  |
|                      |         |        |        |     |      | _      |       |       | 2       |     |     |  |
|                      |         |        |        |     |      |        |       |       |         |     |     |  |
| Minor Lane/Major Mvm | it NBLn | 1 EBL  | EBT    | EBR | WBL  | WBT    | WBR S | SBLn1 |         |     |     |  |
| Canacity (veh/h)     | 46      | 0 13/6 | _      | _   | 1013 | _      | _     | 253   |         |     |     |  |

|                       | NDLITT | EDL  | EDT | EDR | VVDL  | VVDI | WDR V | DLIII |
|-----------------------|--------|------|-----|-----|-------|------|-------|-------|
| Capacity (veh/h)      | 460    | 1346 | -   | -   | 1013  | -    | -     | 253   |
| HCM Lane V/C Ratio    | 0.145  | -    | -   | -   | 0.018 | -    | -     | 0.303 |
| HCM Control Delay (s) | 14.1   | 0    | -   | -   | 8.6   | -    | -     | 25.3  |
| HCM Lane LOS          | В      | А    | -   | -   | Α     | -    | -     | D     |
| HCM 95th %tile Q(veh) | 0.5    | 0    | -   | -   | 0.1   | -    | -     | 1.2   |

## Intersection

| Movement               | EBL  | EBT         | EBR  | WBL  | WBT        | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|-------------|------|------|------------|------|------|------|------|------|------|------|--|
| Lane Configurations    | 3    | <b>≜</b> †₽ |      | *    | <b>≜</b> ↑ |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h     | 22   | 148         | 3    | 24   | 78         | 19   | 2    | 0    | 9    | 74   | 2    | 3    |  |
| Future Vol, veh/h      | 22   | 148         | 3    | 24   | 78         | 19   | 2    | 0    | 9    | 74   | 2    | 3    |  |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0    | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free        | Free | Free | Free       | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -           | None | -    | -          | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 125  | -           | -    | 125  | -          | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0           | -    | -    | 0          | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0           | -    | -    | 0          | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90          | 90   | 90   | 90         | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 1           | 0    | 0    | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 24   | 164         | 3    | 27   | 87         | 21   | 2    | 0    | 10   | 82   | 2    | 3    |  |

| Major/Minor          | Major1 |       | Ν     | /lajor2 |     | 1     | Minor1 |       | Ν     | /linor2 |     |      |  |
|----------------------|--------|-------|-------|---------|-----|-------|--------|-------|-------|---------|-----|------|--|
| Conflicting Flow All | 108    | 0     | 0     | 167     | 0   | 0     | 313    | 376   | 84    | 282     | 367 | 54   |  |
| Stage 1              | -      | -     | -     | -       | -   | -     | 214    | 214   | -     | 152     | 152 | -    |  |
| Stage 2              | -      | -     | -     | -       | -   | -     | 99     | 162   | -     | 130     | 215 | -    |  |
| Critical Hdwy        | 4.1    | -     | -     | 4.1     | -   | -     | 7.5    | 6.5   | 6.9   | 7.5     | 6.5 | 6.9  |  |
| Critical Hdwy Stg 1  | -      | -     | -     | -       | -   | -     | 6.5    | 5.5   | -     | 6.5     | 5.5 | -    |  |
| Critical Hdwy Stg 2  | -      | -     | -     | -       | -   | -     | 6.5    | 5.5   | -     | 6.5     | 5.5 | -    |  |
| Follow-up Hdwy       | 2.2    | -     | -     | 2.2     | -   | -     | 3.5    | 4     | 3.3   | 3.5     | 4   | 3.3  |  |
| Pot Cap-1 Maneuver   | 1495   | -     | -     | 1423    | -   | -     | 622    | 558   | 965   | 654     | 565 | 1008 |  |
| Stage 1              | -      | -     | -     | -       | -   | -     | 774    | 729   | -     | 841     | 775 | -    |  |
| Stage 2              | -      | -     | -     | -       | -   | -     | 902    | 768   | -     | 866     | 729 | -    |  |
| Platoon blocked, %   |        | -     | -     |         | -   | -     |        |       |       |         |     |      |  |
| Mov Cap-1 Maneuver   | 1495   | -     | -     | 1423    | -   | -     | 601    | 538   | 965   | 630     | 545 | 1008 |  |
| Mov Cap-2 Maneuver   | -      | -     | -     | -       | -   | -     | 601    | 538   | -     | 630     | 545 | -    |  |
| Stage 1              | -      | -     | -     | -       | -   | -     | 762    | 717   | -     | 828     | 760 | -    |  |
| Stage 2              | -      | -     | -     | -       | -   | -     | 879    | 753   | -     | 843     | 717 | -    |  |
|                      |        |       |       |         |     |       |        |       |       |         |     |      |  |
| Approach             | EB     |       |       | WB      |     |       | NB     |       |       | SB      |     |      |  |
| HCM Control Delay, s | 0.9    |       |       | 1.5     |     |       | 9.2    |       |       | 11.6    |     |      |  |
| HCM LOS              | 0.0    |       |       | 1.0     |     |       | A      |       |       | B       |     |      |  |
|                      |        |       |       |         |     |       |        |       |       | _       |     |      |  |
| Minor Lane/Major Mvm | nt N   | BLn1  | EBL   | EBT     | EBR | WBL   | WBT    | WBR : | SBLn1 |         |     |      |  |
| Capacity (veh/h)     |        | 869   | 1495  | -       | -   | 1423  | -      | -     | 637   |         |     |      |  |
| HCM Lane V/C Ratio   | (      | 0.014 | 0.016 | -       | -   | 0.019 | -      | -     | 0.138 |         |     |      |  |

| HCM Control Delay (s) | 9.2 | 7.4 | - | - | 7.6 | - | - | 11.6 |  |
|-----------------------|-----|-----|---|---|-----|---|---|------|--|
| HCM Lane LOS          | А   | А   | - | - | А   | - | - | В    |  |
| HCM 95th %tile Q(veh) | 0   | 0.1 | - | - | 0.1 | - | - | 0.5  |  |

#### Intersection

Int Delay, s/veh

| Movement               | EBL  | EBT      | EBR  | WBL      | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR   |
|------------------------|------|----------|------|----------|------|------|------|------|------|------|------|-------|
| Lane Configurations    | ٦.   | <b>f</b> |      | <u>۲</u> | 4    |      |      | 4    |      |      | ्र   | 1     |
| Traffic Vol, veh/h     | 259  | 457      | 0    | 5        | 174  | 98   | 0    | 10   | 10   | 97   | 0    | 105   |
| Future Vol, veh/h      | 259  | 457      | 0    | 5        | 174  | 98   | 0    | 10   | 10   | 97   | 0    | 105   |
| Conflicting Peds, #/hr | 0    | 0        | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Sign Control           | Free | Free     | Free | Free     | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop  |
| RT Channelized         | -    | -        | None | -        | -    | None | -    | -    | None | -    | -    | Yield |
| Storage Length         | 100  | -        | -    | 100      | -    | -    | -    | -    | -    | -    | -    | 125   |
| Veh in Median Storage, | # -  | 0        | -    | -        | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Grade, %               | -    | 0        | -    | -        | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Peak Hour Factor       | 90   | 90       | 90   | 90       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90    |
| Heavy Vehicles, %      | 0    | 1        | 2    | 0        | 5    | 16   | 0    | 0    | 0    | 11   | 0    | 5     |
| Mvmt Flow              | 288  | 508      | 0    | 6        | 193  | 109  | 0    | 11   | 11   | 108  | 0    | 117   |

| Major/Minor N         | Major1 |            | I        | /lajor2 |      | 1      | Minor1   |        |       | Minor2   |         |          |           |      |
|-----------------------|--------|------------|----------|---------|------|--------|----------|--------|-------|----------|---------|----------|-----------|------|
| Conflicting Flow All  | 302    | 0          | 0        | 508     | 0    | 0      | 1344     | 1398   | 508   | 1355     | 1344    | 248      |           |      |
| Stage 1               | -      | -          | -        | -       | -    | -      | 1084     | 1084   | -     | 260      | 260     | -        |           |      |
| Stage 2               | -      | -          | -        | -       | -    | -      | 260      | 314    | -     | 1095     | 1084    | -        |           |      |
| Critical Hdwy         | 4.1    | -          | -        | 4.1     | -    | -      | 7.1      | 6.5    | 6.2   | 7.21     | 6.5     | 6.25     |           |      |
| Critical Hdwy Stg 1   | -      | -          | -        | -       | -    | -      | 6.1      | 5.5    | -     | 6.21     | 5.5     | -        |           |      |
| Critical Hdwy Stg 2   | -      | -          | -        | -       | -    | -      | 6.1      | 5.5    | -     | 6.21     | 5.5     | -        |           |      |
| Follow-up Hdwy        | 2.2    | -          | -        | 2.2     | -    | -      | 3.5      | 4      | 3.3   | 3.599    | 4       | 3.345    |           |      |
| Pot Cap-1 Maneuver    | 1270   | -          | -        | 1067    | -    | -      | 130      | 142    | 569   | 121      | 153     | 783      |           |      |
| Stage 1               | -      | -          | -        | -       | -    | -      | 265      | 296    | -     | 725      | 697     | -        |           |      |
| Stage 2               | -      | -          | -        | -       | -    | -      | 749      | 660    | -     | 249      | 296     | -        |           |      |
| Platoon blocked, %    |        | -          | -        |         | -    | -      |          |        |       |          |         |          |           |      |
| Mov Cap-1 Maneuver    | 1270   | -          | -        | 1067    | -    | -      | 91       | 109    | 569   | ~ 90     | 118     | 783      |           |      |
| Mov Cap-2 Maneuver    | -      | -          | -        | -       | -    | -      | 91       | 109    | -     | ~ 90     | 118     | -        |           |      |
| Stage 1               | -      | -          | -        | -       | -    | -      | 205      | 229    | -     | 560      | 693     | -        |           |      |
| Stage 2               | -      | -          | -        | -       | -    | -      | 634      | 656    | -     | 180      | 229     | -        |           |      |
|                       |        |            |          |         |      |        |          |        |       |          |         |          |           |      |
| Approach              | EB     |            |          | WB      |      |        | NB       |        |       | SB       |         |          |           |      |
| HCM Control Delay, s  | 3.1    |            |          | 0.2     |      |        | 27.4     |        |       | 122      |         |          |           |      |
| HCM LOS               |        |            |          |         |      |        | D        |        |       | F        |         |          |           |      |
|                       |        |            |          |         |      |        |          |        |       |          |         |          |           |      |
| Minor Lane/Major Mvm  | t I    | NBLn1      | EBL      | EBT     | EBR  | WBL    | WBT      | WBR S  | SBLn1 | SBLn2    |         |          |           |      |
| Capacity (veh/h)      |        | 183        | 1270     |         | -    | 1067   | -        | -      | 90    | 783      |         |          |           | <br> |
| HCM Lane V/C Ratio    |        | 0.121      | 0.227    | -       | -    | 0.005  | -        | -      | 1.198 | 0.149    |         |          |           |      |
| HCM Control Delay (s) |        | 27.4       | 8.7      | -       | -    | 8.4    | -        | -      | 242.8 | 10.4     |         |          |           |      |
| HCM Lane LOS          |        | D          | A        | -       | -    | A      | -        | -      | F     | В        |         |          |           |      |
| HCM 95th %tile Q(veh) |        | 0.4        | 0.9      | -       | -    | 0      | -        | -      | 7.6   | 0.5      |         |          |           |      |
| Notes                 |        |            |          |         |      |        |          |        |       |          |         |          |           |      |
| ~: Volume exceeds cap | pacity | \$: De     | elay exc | eeds 30 | 0s - | +: Com | outation | Not De | fined | *: All I | major v | olume ir | n platoon |      |
|                       |        | . <b>.</b> | , j elle |         |      |        |          |        |       |          |         |          |           |      |

H:\Projects\16000\16002\Traffic\Analysis\Synchro\3\_2050\1\_5 lane (existing)\Updated\2050 (Typ) Conditions\_update.syn Synchro 11 Report

1

# Intersection

| Movement               | EBL  | EBT     | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|---------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    | ľ    | et<br>e |      | ľ    | et - |      |      | ¢    |      |      | ÷    |      |
| Traffic Vol, veh/h     | 0    | 383     | 12   | 3    | 191  | 2    | 28   | 0    | 14   | 2    | 0    | 0    |
| Future Vol, veh/h      | 0    | 383     | 12   | 3    | 191  | 2    | 28   | 0    | 14   | 2    | 0    | 0    |
| Conflicting Peds, #/hr | 0    | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free    | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -       | None | -    | -    | None | -    | -    | None | -    | -    | None |
| Storage Length         | 115  | -       | -    | 120  | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0       | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0       | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90      | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 6       | 0    | 0    | 19   | 0    | 0    | 0    | 13   | 0    | 0    | 0    |
| Mvmt Flow              | 0    | 426     | 13   | 3    | 212  | 2    | 31   | 0    | 16   | 2    | 0    | 0    |

| Major/Minor          | Major1 |       | Ν    | Major2 |     |       | Minor1 |     | Ν     | /linor2 |     |     |  |
|----------------------|--------|-------|------|--------|-----|-------|--------|-----|-------|---------|-----|-----|--|
| Conflicting Flow All | 214    | 0     | 0    | 439    | 0   | 0     | 652    | 653 | 433   | 660     | 658 | 213 |  |
| Stage 1              | -      | -     | -    | -      | -   | -     | 433    | 433 | -     | 219     | 219 | -   |  |
| Stage 2              | -      | -     | -    | -      | -   | -     | 219    | 220 | -     | 441     | 439 | -   |  |
| Critical Hdwy        | 4.1    | -     | -    | 4.1    | -   | -     | 7.1    | 6.5 | 6.33  | 7.1     | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -      | -     | -    | -      | -   | -     | 6.1    | 5.5 | -     | 6.1     | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | -     | -    | -      | -   | -     | 6.1    | 5.5 | -     | 6.1     | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | -     | -    | 2.2    | -   | -     | 3.5    | 4   | 3.417 | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1368   | -     | -    | 1132   | -   | -     | 384    | 389 | 600   | 379     | 387 | 832 |  |
| Stage 1              | -      | -     | -    | -      | -   | -     | 605    | 585 | -     | 788     | 726 | -   |  |
| Stage 2              | -      | -     | -    | -      | -   | -     | 788    | 725 | -     | 599     | 582 | -   |  |
| Platoon blocked, %   |        | -     | -    |        | -   | -     |        |     |       |         |     |     |  |
| Mov Cap-1 Maneuver   | 1368   | -     | -    | 1132   | -   | -     | 383    | 388 | 600   | 368     | 386 | 832 |  |
| Mov Cap-2 Maneuver   | -      | -     | -    | -      | -   | -     | 383    | 388 | -     | 368     | 386 | -   |  |
| Stage 1              | -      | -     | -    | -      | -   | -     | 605    | 585 | -     | 788     | 724 | -   |  |
| Stage 2              | -      | -     | -    | -      | -   | -     | 786    | 723 | -     | 583     | 582 | -   |  |
|                      |        |       |      |        |     |       |        |     |       |         |     |     |  |
| Approach             | EB     |       |      | WB     |     |       | NB     |     |       | SB      |     |     |  |
| HCM Control Delay, s | 0      |       |      | 0.1    |     |       | 14.2   |     |       | 14.8    |     |     |  |
| HCM LOS              |        |       |      |        |     |       | В      |     |       | В       |     |     |  |
|                      |        |       |      |        |     |       |        |     |       |         |     |     |  |
| Minor Lane/Major Mvm | nt 🚺   | NBLn1 | EBL  | EBT    | EBR | WBL   | WBT    | WBR | SBLn1 |         |     |     |  |
| Capacity (veh/h)     |        | 436   | 1368 | -      | -   | 1132  | -      | -   | 368   |         |     |     |  |
| HCM Lane V/C Ratio   |        | 0 107 | -    | -      | -   | 0.003 | -      | _   | 0.006 |         |     |     |  |

| HCM Lane V/C Ratio    | 0.107 | - | - | - 0.003 | - | - 0.006 |
|-----------------------|-------|---|---|---------|---|---------|
| HCM Control Delay (s) | 14.2  | 0 | - | - 8.2   | - | - 14.8  |
| HCM Lane LOS          | В     | А | - | - A     | - | - B     |
| HCM 95th %tile Q(veh) | 0.4   | 0 | - | - 0     | - | - 0     |
|                       |       |   |   |         |   |         |

| Int Delay, s/veh       | 1.7  |      |      |      |      |      |   |
|------------------------|------|------|------|------|------|------|---|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  | ł |
| Lane Configurations    | 1    |      | ٦    | 1    | Y    |      |   |
| Traffic Vol, veh/h     | 336  | 0    | 2    | 152  | 64   | 5    | ; |
| Future Vol, veh/h      | 336  | 0    | 2    | 152  | 64   | 5    | ; |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | ) |
| Sign Control           | Free | Free | Free | Free | Stop | Stop | ) |
| RT Channelized         | -    | None | -    | None | -    | None | ÷ |
| Storage Length         | -    | -    | 120  | -    | 0    | -    | - |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    | - |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    | - |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | ) |
| Heavy Vehicles, %      | 6    | 0    | 0    | 2    | 19   | 0    | ) |
| Mvmt Flow              | 373  | 0    | 2    | 169  | 71   | 6    | ; |

| Major/Minor          | Major1         | Ν     | /lajor2 | I     | Minor1 |     |
|----------------------|----------------|-------|---------|-------|--------|-----|
|                      | 0              | -     | 373     | 0     | 546    | 373 |
| Conflicting Flow All | 0              | -     | 3/3     | -     |        |     |
| Stage 1              | -              | -     | -       | -     | 373    | -   |
| Stage 2              | -              | -     | -       | -     | 173    | -   |
| Critical Hdwy        | -              | -     | 4.1     | -     | 6.59   | 6.2 |
| Critical Hdwy Stg 1  | -              | -     | -       | -     | 5.59   | -   |
| Critical Hdwy Stg 2  | -              | -     | -       | -     | 5.59   | -   |
| Follow-up Hdwy       | -              | -     | 2.2     | -     | 3.671  | 3.3 |
| Pot Cap-1 Maneuver   | -              | 0     | 1197    | -     | 471    | 678 |
| Stage 1              | -              | 0     | -       | -     | 661    | -   |
| Stage 2              | -              | 0     | -       | -     | 818    | -   |
| Platoon blocked, %   | -              |       |         | -     |        |     |
| Mov Cap-1 Maneuver   | r -            | -     | 1197    | -     | 470    | 678 |
| Mov Cap-2 Maneuver   | r -            | -     | -       | -     | 470    | -   |
| Stage 1              | -              | -     | -       | -     | 661    | -   |
| Stage 2              | -              | -     | -       | -     | 816    | -   |
| ·                    |                |       |         |       |        |     |
| A                    |                |       |         |       |        |     |
| Approach             | EB             |       | WB      |       | NB     |     |
| HCM Control Delay, s | s 0            |       | 0.1     |       | 13.9   |     |
| HCM LOS              |                |       |         |       | В      |     |
|                      |                |       |         |       |        |     |
| Minor Lane/Major Mvi | mt I           | VBLn1 | EBT     | WBL   | WBT    |     |
|                      | 111 <b>L</b> I |       |         |       |        |     |
| Capacity (veh/h)     |                | 481   | -       |       | -      |     |
| HCM Lane V/C Ratio   |                | 0.159 |         | 0.002 | -      |     |
| HCM Control Delay (s | S)             | 13.9  | -       | 8     | -      |     |
| HCM Lane LOS         |                | В     | -       | A     | -      |     |
| HCM 95th %tile Q(vel | h)             | 0.6   | -       | 0     | -      |     |

# Intersection

| Movement               | EBL  | EBT           | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|---------------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    | ۲.   | _ <b>≜</b> î≽ |      | ۲.   | A    |      | ۲.   | 4Î   |      |      | 4    |      |
| Traffic Vol, veh/h     | 0    | 315           | 12   | 16   | 128  | 0    | 7    | 0    | 12   | 3    | 0    | 2    |
| Future Vol, veh/h      | 0    | 315           | 12   | 16   | 128  | 0    | 7    | 0    | 12   | 3    | 0    | 2    |
| Conflicting Peds, #/hr | 0    | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free          | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -             | None | -    | -    | None | -    | -    | None | -    | -    | None |
| Storage Length         | 50   | -             | -    | 125  | -    | -    | 90   | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0             | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0             | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90            | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 0             | 14   | 11   | 4    | 0    | 25   | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 0    | 350           | 13   | 18   | 142  | 0    | 8    | 0    | 13   | 3    | 0    | 2    |

| Major/Minor           | Major1 |       | 1     | Major2 |     |     | Minor1 |     | Ν     | Minor2 |     |     |  |
|-----------------------|--------|-------|-------|--------|-----|-----|--------|-----|-------|--------|-----|-----|--|
| Conflicting Flow All  | 142    | 0     | 0     | 363    | 0   | 0   | 464    | 535 | 182   | 353    | 541 | 71  |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 357    | 357 | -     | 178    | 178 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 107    | 178 | -     | 175    | 363 | -   |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.32   | -   | -   | 8      | 6.5 | 6.9   | 7.5    | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -   | 7      | 5.5 | -     | 6.5    | 5.5 | -   |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -   | 7      | 5.5 | -     | 6.5    | 5.5 | -   |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.31   | -   | -   | 3.75   | 4   | 3.3   | 3.5    | 4   | 3.3 |  |
| Pot Cap-1 Maneuver    | 1453   | -     | -     | 1130   | -   | -   | 432    | 454 | 836   | 582    | 451 | 983 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 574    | 632 | -     | 812    | 756 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 824    | 756 | -     | 816    | 628 | -   |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -   |        |     |       |        |     |     |  |
| Mov Cap-1 Maneuver    | 1453   | -     | -     | 1130   | -   | -   | 426    | 447 | 836   | 566    | 444 | 983 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -   | 426    | 447 | -     | 566    | 444 | -   |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 574    | 632 | -     | 812    | 744 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 809    | 744 | -     | 803    | 628 | -   |  |
|                       |        |       |       |        |     |     |        |     |       |        |     |     |  |
| Approach              | EB     |       |       | WB     |     |     | NB     |     |       | SB     |     |     |  |
| HCM Control Delay, s  | 0      |       |       | 0.9    |     |     | 10.9   |     |       | 10.3   |     |     |  |
| HCM LOS               |        |       |       |        |     |     | В      |     |       | В      |     |     |  |
|                       |        |       |       |        |     |     |        |     |       |        |     |     |  |
| Minor Lane/Major Mvn  | nt     | NBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT | WBR S | SBLn1  |     |     |  |
| Capacity (veh/h)      |        | 426   | 836   | 1453   | -   | -   | 1130   | -   | -     | 682    |     |     |  |
| HCM Lane V/C Ratio    |        | 0.018 | 0.016 | -      | -   | -   | 0.016  | -   | -     | 0.008  |     |     |  |
| HCM Control Delay (s) | )      | 13.6  | 9.4   | 0      | -   | -   | 8.2    | -   | -     | 10.3   |     |     |  |
| HCM Lane LOS          |        | В     | А     | А      | -   | -   | А      | -   | -     | В      |     |     |  |
| HCM 95th %tile Q(veh  | )      | 0.1   | 0     | 0      | -   | -   | 0      | -   | -     | 0      |     |     |  |

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    | ۲    | Å    |      | ۲    | A    |      |      | र्च  | 1    |      | 4    |      |  |
| Traffic Vol, veh/h     | 12   | 244  | 30   | 76   | 121  | 7    | 23   | 3    | 238  | 7    | 2    | 5    |  |
| Future Vol, veh/h      | 12   | 244  | 30   | 76   | 121  | 7    | 23   | 3    | 238  | 7    | 2    | 5    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 100  | -    | -    | 100  | -    | -    | 60   | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 1    | 8    | 3    | 1    | 0    | 0    | 0    | 0    | 25   | 0    | 0    |  |
| Mvmt Flow              | 13   | 271  | 33   | 84   | 134  | 8    | 26   | 3    | 264  | 8    | 2    | 6    |  |

| Conflicting Flow All       142       0       0       304       0       0       550       624       152       469       636       71         Stage 1       -       -       -       -       314       314       -       306       306       -         Stage 2       -       -       -       -       236       310       -       163       330       -         Critical Hdwy       4.1       -       -       -       -       6.5       6.5       -       7       5.5       -         Critical Hdwy Stg 1       -       -       -       -       6.5       5.5       -       7       5.5       -         Critical Hdwy Stg 2       -       -       2.23       -       3.5       4       3.3       3.75       4       3.3         Oct Cap-1 Maneuver       1453       -       1246       -       422       404       873       428       398       983         Oct Cap-1 Maneuver       1453       -       1246       -       393       374       873       279       368       983         Alov Cap-2 Maneuver       -       -       -       -       655 <th>ajor/Minor</th> <th>Major1</th> <th></th> <th></th> <th>Major2</th> <th></th> <th></th> <th>Minor1</th> <th></th> <th>Ν</th> <th>/linor2</th> <th></th> <th></th> <th></th> | ajor/Minor           | Major1 |       |       | Major2 |     |     | Minor1 |     | Ν     | /linor2 |     |     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|-------|-------|--------|-----|-----|--------|-----|-------|---------|-----|-----|--|
| Stage 1       -       -       -       -       -       314       314       -       306       306       -         Stage 2       -       -       -       -       -       236       310       -       163       330       -         Critical Hdwy       4.1       -       -       4.16       -       -       7.5       6.5       6.9       8       6.5       6.9         Critical Hdwy Stg 1       -       -       -       -       6.5       5.5       -       7       5.5       -         Critical Hdwy Stg 2       -       -       -       -       6.5       5.5       -       7       5.5       -         Collow-up Hdwy       2.2       -       2.23       -       422       404       873       428       398       983         Stage 1       -       -       -       677       660       -       618       665       -         Stage 2       -       -       -       752       663       -       760       649       -         Platoon blocked, %       -       -       -       393       374       873       279       368                                                                                                                                                                                                       |                      | -      | 0     |       |        | 0   | 0   | 550    | 624 | 152   | 469     | 636 | 71  |  |
| Dritical Hdwy       4.1       -       4.16       -       -       7.5       6.5       6.9       8       6.5       6.9         Dritical Hdwy Stg 1       -       -       -       -       6.5       5.5       -       7       5.5       -         Dritical Hdwy Stg 2       -       -       -       -       6.5       5.5       -       7       5.5       -         Critical Hdwy Stg 2       -       -       2.23       -       -       3.5       4       3.3       3.75       4       3.3         Pot Cap-1 Maneuver       1453       -       1246       -       -       422       404       873       428       398       983         Stage 1       -       -       -       -       752       663       -       760       649       -         Stage 2       -       -       -       -       752       663       -       760       649       -         Platoon blocked, %       -       -       -       393       374       873       279       368       -         Stage 1       -       -       -       -       655       619       -                                                                                                                                                                                              |                      | -      | -     | -     | -      | -   | -   | 314    | 314 | -     | 306     | 306 | -   |  |
| Critical Hdwy Stg 1       -       -       -       -       6.5       5.5       -       7       5.5       -         Critical Hdwy Stg 2       -       -       2.23       -       -       3.5       4       3.3       3.75       4       3.3         Pot Cap-1 Maneuver       1453       -       1246       -       -       422       404       873       428       398       983         Stage 1       -       -       -       677       660       -       618       665       -         Stage 2       -       -       -       -       752       663       -       760       649       -         Platoon blocked, %       -       -       -       7752       663       -       760       649       -         Avor Cap-1 Maneuver       1453       -       1246       -       393       374       873       279       368       983         Mov Cap-2 Maneuver       -       -       -       393       374       -       279       368       -         Stage 1       -       -       -       -       695       619       -       522       643                                                                                                                                                                                         | Stage 2              | -      | -     | -     | -      | -   | -   | 236    | 310 | -     | 163     | 330 | -   |  |
| Critical Hdwy Stg 2       -       -       -       -       6.5       5.5       -       7       5.5       -         Follow-up Hdwy       2.2       -       2.23       -       -       3.5       4       3.3       3.75       4       3.3         Pot Cap-1 Maneuver       1453       -       1246       -       -       422       404       873       428       398       983         Stage 1       -       -       -       -       677       660       -       618       665       -         Stage 2       -       -       -       -       752       663       -       760       649       -         Platoon blocked, %       -       -       -       -       793       368       983         Mov Cap-1 Maneuver       1453       -       1246       -       393       374       279       368       983         Mov Cap-2 Maneuver       -       -       -       671       654       612       620       -         Stage 2       -       -       -       -       695       619       522       643       -         Approach       EB                                                                                                                                                                                                | itical Hdwy          | 4.1    | -     | -     | 4.16   | -   | -   | 7.5    | 6.5 | 6.9   | 8       | 6.5 | 6.9 |  |
| Follow-up Hdwy       2.2       -       2.23       -       3.5       4       3.3       3.75       4       3.3         Pot Cap-1 Maneuver       1453       -       1246       -       422       404       873       428       398       983         Stage 1       -       -       -       677       660       -       618       665       -         Stage 2       -       -       -       -       752       663       -       760       649       -         Platoon blocked, %       -       -       -       393       374       873       279       368       983         Mov Cap-2 Maneuver       1453       -       1246       -       393       374       -       279       368       983         Mov Cap-2 Maneuver       -       -       -       393       374       -       279       368       -         Stage 1       -       -       -       -       671       654       612       620       -         Stage 2       -       -       -       695       619       -       522       643       -         HCM Control Delay, s       0.3 </td <td>ritical Hdwy Stg 1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>6.5</td> <td>5.5</td> <td>-</td> <td>7</td> <td>5.5</td> <td>-</td> <td></td>  | ritical Hdwy Stg 1   | -      | -     | -     | -      | -   | -   | 6.5    | 5.5 | -     | 7       | 5.5 | -   |  |
| Pot Cap-1 Maneuver       1453       -       1246       -       -       422       404       873       428       398       983         Stage 1       -       -       -       -       677       660       -       618       665       -         Stage 2       -       -       -       -       752       663       -       760       649       -         Platoon blocked, %       -       -       -       -       -       752       663       -       760       649       -         Platoon blocked, %       -       -       -       -       393       374       873       279       368       983         Mov Cap-1 Maneuver       1453       -       1246       -       -       393       374       873       279       368       983         Mov Cap-2 Maneuver       -       -       -       671       654       -       612       620       -         Stage 1       -       -       -       -       695       619       -       522       643       -         Approach       EB       WB       NB       SB       B       B       B                                                                                                                                                                                                 | itical Hdwy Stg 2    |        |       | -     | -      | -   | -   | 6.5    | 5.5 | -     | 7       | 5.5 |     |  |
| Stage 1       -       -       -       -       677       660       -       618       665       -         Stage 2       -       -       -       -       752       663       -       760       649       -         Platoon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                          | ollow-up Hdwy        | 2.2    | -     | -     | 2.23   | -   | -   | 3.5    | 4   | 3.3   | 3.75    | 4   | 3.3 |  |
| Stage 2       -       -       -       -       752       663       -       760       649       -         Platoon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                          | ot Cap-1 Maneuver    | 1453   | -     | -     | 1246   | -   | -   |        |     | 873   |         |     | 983 |  |
| Platoon blocked, %       -       -       -       -         Aov Cap-1 Maneuver       1453       -       1246       -       -       393       374       873       279       368       983         Mov Cap-2 Maneuver       -       -       -       393       374       -       279       368       983         Stage 1       -       -       -       -       671       654       -       612       620       -         Stage 2       -       -       -       -       695       619       -       522       643       -         Approach       EB       WB       NB       SB       -       -       -       695       619       -       522       643       -         Approach       EB       WB       NB       SB       -       -       -       -       695       619       -       522       643       -         Acportach       EB       WB       NB       SB       B       B       B       B       B       -         Actional Control Delay, s       0.3       3       11.3       11.4.5       -       -       -       -       -                                                                                                                                                                                                    | Stage 1              | -      | -     | -     | -      | -   | -   |        |     | -     |         |     | -   |  |
| Mov Cap-1 Maneuver       1453       -       1246       -       -       393       374       873       279       368       983         Mov Cap-2 Maneuver       -       -       -       -       393       374       -       279       368       983         Stage 1       -       -       -       -       671       654       -       612       620       -         Stage 2       -       -       -       -       695       619       -       522       643       -         Approach       EB       WB       NB       SB       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       695       619       -       522       643       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                      | Stage 2              | -      | -     | -     | -      | -   | -   | 752    | 663 | -     | 760     | 649 | -   |  |
| Mov Cap-2 Maneuver         -         -         -         -         393         374         -         279         368         -           Stage 1         -         -         -         -         671         654         -         612         620         -           Stage 2         -         -         -         -         695         619         -         522         643         -           Approach         EB         WB         NB         SB         -         -         -         695         619         -         522         643         -           Approach         EB         WB         NB         SB         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<                                                                                                                   |                      |        | -     | -     |        | -   | -   |        |     |       |         |     |     |  |
| Stage 1       -       -       -       -       671       654       -       612       620       -         Stage 2       -       -       -       -       695       619       -       522       643       -         Approach       EB       WB       NB       SB       -       -       -       695       619       -       522       643       -         Approach       EB       WB       NB       SB       -       -       -       695       619       -       522       643       -         Approach       EB       WB       NB       SB       -       -       -       -       695       619       -       522       643       -         Approach       EB       WB       NB       SB       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>ov Cap-1 Maneuver</td> <td>1453</td> <td>-</td> <td>-</td> <td>1246</td> <td>-</td> <td>-</td> <td>393</td> <td>374</td> <td>873</td> <td>279</td> <td>368</td> <td>983</td> <td></td>                                      | ov Cap-1 Maneuver    | 1453   | -     | -     | 1246   | -   | -   | 393    | 374 | 873   | 279     | 368 | 983 |  |
| Stage 2         -         -         -         695         619         -         522         643         -           Approach         EB         WB         NB         SB         -         -         -         695         619         -         522         643         -         -         -         695         619         -         522         643         -         -         -         695         619         -         522         643         -         -         -         -         695         619         -         522         643         -           Approach         EB         WB         NB         SB         -         -         -         -         -         695         619         -         522         643         -           ACM Control Delay, s         0.3         3         11.3         14.5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                  |                      | r - 1  | -     | -     | -      | -   | -   |        |     | -     |         |     | -   |  |
| Approach EB WB NB SB<br>HCM Control Delay, s 0.3 3 11.3 14.5<br>HCM LOS B B<br>Approach EB NBL NBLn1 NBLn2 EBL EBT EBR WBL WBT WBR SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stage 1              | -      | -     | -     | -      | -   | -   |        |     | -     |         |     | -   |  |
| ACM Control Delay, s 0.3 3 11.3 14.5<br>ACM LOS B B<br>Alinor Lane/Major Mvmt NBLn1 NBLn2 EBL EBT EBR WBL WBT WBR SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stage 2              | -      | -     | -     | -      | -   | -   | 695    | 619 | -     | 522     | 643 | -   |  |
| ACM Control Delay, s 0.3 3 11.3 14.5<br>ACM LOS B B<br>Alinor Lane/Major Mvmt NBLn1 NBLn2 EBL EBT EBR WBL WBT WBR SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |        |       |       |        |     |     |        |     |       |         |     |     |  |
| ICM LOS B B<br>Alinor Lane/Major Mvmt NBLn1 NBLn2 EBL EBT EBR WBL WBT WBR SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oproach              | EB     |       |       | WB     |     |     | NB     |     |       | SB      |     |     |  |
| ICM LOS B B<br>Minor Lane/Major Mvmt NBLn1 NBLn2 EBL EBT EBR WBL WBT WBR SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CM Control Delay, s  | s 0.3  |       |       | 3      |     |     | 11.3   |     |       | 14.5    |     |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |        |       |       |        |     |     | В      |     |       | В       |     |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |        |       |       |        |     |     |        |     |       |         |     |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | inor Lane/Major Mvn  | mt     | NBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT | WBR S | SBLn1   |     |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | apacity (veh/h)      |        | 391   | 873   | 1453   | -   | -   | 1246   | -   | -     | 393     |     |     |  |
| ICM Lane V/C Ratio 0.074 0.303 0.009 0.068 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CM Lane V/C Ratio    |        | 0.074 | 0.303 | 0.009  | -   | -   | 0.068  | -   | -     | 0.04    |     |     |  |
| HCM Control Delay (s) 14.9 10.9 7.5 8.1 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CM Control Delay (s) | 5)     | 14.9  | 10.9  | 7.5    | -   | -   | 8.1    | -   | -     | 14.5    |     |     |  |
| ICM Lane LOS B B A A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • •                |        | В     | В     | А      | -   | -   | А      | -   | -     | В       |     |     |  |
| ICM 95th %tile Q(veh) 0.2 1.3 0 0.2 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CM 95th %tile Q(veh  | h)     | 0.2   | 1.3   | 0      | -   | -   | 0.2    | -   | -     | 0.1     |     |     |  |

## Intersection

Int Delay, s/veh

| Movement               | EBL  | EBT         | EBR  | WBL        | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|-------------|------|------------|----------|------|------|------|------|------|------|------|
| Lane Configurations    | 5    | <b>≜</b> î∌ |      | <u>NDL</u> | <b>≜</b> |      | NDL  | 4    | NDIX | ODL  | 4    |      |
| Traffic Vol, veh/h     | 0    | 511         | 18   | 45         | 225      | 5    | 16   | 0    | 156  | 3    | 0    | 2    |
| Future Vol, veh/h      | 0    | 511         | 18   | 45         | 225      | 5    | 16   | 0    | 156  | 3    | 0    | 2    |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free        | Free | Free       | Free     | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -           | None | -          | -        | None | -    | -    | None | -    | -    | None |
| Storage Length         | 50   | -           | -    | 110        | -        | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0           | -    | -          | 0        | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0           | -    | -          | 0        | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90          | 90   | 90         | 90       | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 1           | 0    | 0          | 4        | 0    | 25   | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 0    | 568         | 20   | 50         | 250      | 6    | 18   | 0    | 173  | 3    | 0    | 2    |

| Major/Minor           | Major1 |     | Ν    | /lajor2 |     | 1    | Minor1 |     | Ν     | /linor2 |     |     |  |
|-----------------------|--------|-----|------|---------|-----|------|--------|-----|-------|---------|-----|-----|--|
| Conflicting Flow All  | 256    | 0   | 0    | 588     | 0   | 0    | 803    | 934 | 294   | 637     | 941 | 128 |  |
| Stage 1               | -      | -   | -    | -       | -   | -    | 578    | 578 | -     | 353     | 353 | -   |  |
| Stage 2               | -      | -   | -    | -       | -   | -    | 225    | 356 | -     | 284     | 588 | -   |  |
| Critical Hdwy         | 4.1    | -   | -    | 4.1     | -   | -    | 8      | 6.5 | 6.9   | 7.5     | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1   | -      | -   | -    | -       | -   | -    | 7      | 5.5 | -     | 6.5     | 5.5 | -   |  |
| Critical Hdwy Stg 2   | -      | -   | -    | -       | -   | -    | 7      | 5.5 | -     | 6.5     | 5.5 | -   |  |
| Follow-up Hdwy        | 2.2    | -   | -    | 2.2     | -   | -    | 3.75   | 4   | 3.3   | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver    | 1321   | -   | -    | 997     | -   | -    | 238    | 268 | 708   | 366     | 265 | 905 |  |
| Stage 1               | -      | -   | -    | -       | -   | -    | 415    | 504 | -     | 642     | 634 | -   |  |
| Stage 2               | -      | -   | -    | -       | -   | -    | 695    | 633 | -     | 705     | 499 | -   |  |
| Platoon blocked, %    |        | -   | -    |         | -   | -    |        |     |       |         |     |     |  |
| Mov Cap-1 Maneuver    | 1321   | -   | -    | 997     | -   | -    | 228    | 255 | 708   | 266     | 252 | 905 |  |
| Mov Cap-2 Maneuver    | -      | -   | -    | -       | -   | -    | 228    | 255 | -     | 266     | 252 | -   |  |
| Stage 1               | -      | -   | -    | -       | -   | -    | 415    | 504 | -     | 642     | 602 | -   |  |
| Stage 2               | -      | -   | -    | -       | -   | -    | 659    | 601 | -     | 532     | 499 | -   |  |
|                       |        |     |      |         |     |      |        |     |       |         |     |     |  |
| Approach              | EB     |     |      | WB      |     |      | NB     |     |       | SB      |     |     |  |
| HCM Control Delay, s  | 0      |     |      | 1.4     |     |      | 14     |     |       | 14.9    |     |     |  |
| HCM LOS               |        |     |      |         |     |      | В      |     |       | В       |     |     |  |
|                       |        |     |      |         |     |      |        |     |       |         |     |     |  |
| Minor Lane/Major Mvm  | nt NB  | Ln1 | EBL  | EBT     | EBR | WBL  | WBT    | WBR | SBLn1 |         |     |     |  |
| Capacity (veh/h)      | :      | 592 | 1321 | -       | -   | 997  | -      | -   | 371   |         |     |     |  |
| HCM Lane V/C Ratio    | 0.     | 323 | -    | -       | -   | 0.05 | -      | -   | 0.015 |         |     |     |  |
| HCM Control Delay (s) |        | 14  | 0    | -       | -   | 8.8  | -      | -   | 14.9  |         |     |     |  |
|                       |        | -   |      |         |     |      |        |     | -     |         |     |     |  |

А

0.2

-

-

-

-

В

0

-

-

В

1.4

А

0

-

-

HCM Lane LOS

HCM 95th %tile Q(veh)

| Int Delay, s/veh       | 4    |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | el 🗧 |      |      | ÷    | Y    |      |
| Traffic Vol, veh/h     | 33   | 2    | 19   | 26   | 3    | 36   |
| Future Vol, veh/h      | 33   | 2    | 19   | 26   | 3    | 36   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | -    | -    | 0    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 0    | 0    | 0    | 0    | 5    |
| Mvmt Flow              | 37   | 2    | 21   | 29   | 3    | 40   |

| Major/Minor M         | Major1 | Ν     | /lajor2 | 1   | Minor1 |       |
|-----------------------|--------|-------|---------|-----|--------|-------|
| Conflicting Flow All  | 0      | 0     | 39      | 0   | 109    | 38    |
| Stage 1               | -      | -     | -       | -   | 38     | -     |
| Stage 2               | -      | -     | -       | -   | 71     | -     |
| Critical Hdwy         | -      | -     | 4.1     | -   | 6.4    | 6.25  |
| Critical Hdwy Stg 1   | -      | -     | -       | -   | 5.4    | -     |
| Critical Hdwy Stg 2   | -      | -     | -       | -   | 5.4    | -     |
| Follow-up Hdwy        | -      | -     | 2.2     | -   |        | 3.345 |
| Pot Cap-1 Maneuver    | -      | -     | 1584    | -   | 893    | 1025  |
| Stage 1               | -      | -     | -       | -   | 990    | -     |
| Stage 2               | -      | -     | -       | -   | 957    | -     |
| Platoon blocked, %    | -      | -     |         | -   |        |       |
| Mov Cap-1 Maneuver    | -      | -     | 1584    | -   | 881    | 1025  |
| Mov Cap-2 Maneuver    | -      | -     | -       | -   | 841    | -     |
| Stage 1               | -      | -     | -       | -   | 990    | -     |
| Stage 2               | -      | -     | -       | -   | 945    | -     |
|                       |        |       |         |     |        |       |
| Approach              | EB     |       | WB      |     | NB     |       |
| HCM Control Delay, s  | 0      |       | 3.1     |     | 8.7    |       |
| HCM LOS               | 0      |       | 0.1     |     | A      |       |
|                       |        |       |         |     | /\     |       |
|                       |        |       |         |     |        |       |
| Minor Lane/Major Mvm  | it N   | IBLn1 | EBT     | EBR | WBL    | WBT   |
| Capacity (veh/h)      |        | 1008  | -       | -   | 1584   | -     |
| HCM Lane V/C Ratio    |        | 0.043 | -       |     | 0.013  | -     |
| HCM Control Delay (s) |        | 8.7   | -       | -   | 7.3    | 0     |
| HCM Lane LOS          |        | A     | -       | -   | A      | А     |
| HCM 95th %tile Q(veh) |        | 0.1   | -       | -   | 0      | -     |

HCM 95th %tile Q(veh)

\_

| Int Delay, s/veh       | 0    |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    |      | 1    |      | 1    | 1    |      |
| Traffic Vol, veh/h     | 0    | 272  | 0    | 69   | 2    | 0    |
| Future Vol, veh/h      | 0    | 272  | 0    | 69   | 2    | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | 0    | -    | -    | -    | -    |
| Veh in Median Storage, | # 1  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 3    | 0    | 20   | 0    | 0    |
| Mvmt Flow              | 0    | 302  | 0    | 77   | 2    | 0    |

| Major/Minor           | Major1    | Ν | linor2 |   |  |
|-----------------------|-----------|---|--------|---|--|
| Conflicting Flow All  | ,<br>-    | 0 | 77     | - |  |
| Stage 1               | -         | - | 0      | - |  |
| Stage 2               | -         | - | 77     | - |  |
| Critical Hdwy         | -         | - | 6.5    | - |  |
| Critical Hdwy Stg 1   | -         | - | -      | - |  |
| Critical Hdwy Stg 2   | -         | - | 5.5    | - |  |
| Follow-up Hdwy        | -         | - | 4      | - |  |
| Pot Cap-1 Maneuver    | 0         | - | 817    | 0 |  |
| Stage 1               | 0         | - | -      | 0 |  |
| Stage 2               | 0         | - | 835    | 0 |  |
| Platoon blocked, %    |           | - |        |   |  |
| Mov Cap-1 Maneuver    | -         | - | 0      | - |  |
| Mov Cap-2 Maneuver    | -         | - | 0      | - |  |
| Stage 1               | -         | - | 0      | - |  |
| Stage 2               | -         | - | 0      | - |  |
|                       |           |   |        |   |  |
| Approach              | NB        |   | SB     |   |  |
| HCM Control Delay, s  | 0         |   |        |   |  |
| HCM LOS               | Ū         |   | -      |   |  |
|                       |           |   |        |   |  |
|                       |           |   |        |   |  |
| Minor Lane/Major Mvmt | NBT SBLn1 |   |        |   |  |
| Capacity (veh/h)      |           |   |        |   |  |
| HCM Lane V/C Ratio    |           |   |        |   |  |
| HCM Control Delay (s) |           |   |        |   |  |
| HCM Lane LOS          |           |   |        |   |  |

# Intersection

| Movement               | EBL  | EBT   | EBR  | WBL  | WBT   | WBR   | NBL  | NBT              | NBR  | SBL  | SBT              | SBR  |  |
|------------------------|------|-------|------|------|-------|-------|------|------------------|------|------|------------------|------|--|
|                        |      |       | LDIX | VVDL |       | VUDIN | NDL  |                  | NDIN | ODL  |                  | SDIV |  |
| Lane Configurations    |      | ર્ન 👘 |      |      | ર્ન 👘 |       |      | - <del>4</del> > |      |      | - <del>4</del> > |      |  |
| Traffic Vol, veh/h     | 3    | 326   | 22   | 62   | 479   | 64    | 19   | 9                | 47   | 16   | 5                | 7    |  |
| Future Vol, veh/h      | 3    | 326   | 22   | 62   | 479   | 64    | 19   | 9                | 47   | 16   | 5                | 7    |  |
| Conflicting Peds, #/hr | 0    | 0     | 0    | 0    | 0     | 0     | 0    | 0                | 0    | 0    | 0                | 0    |  |
| Sign Control           | Free | Free  | Free | Free | Free  | Free  | Stop | Stop             | Stop | Stop | Stop             | Stop |  |
| RT Channelized         | -    | -     | None | -    | -     | None  | -    | -                | None | -    | -                | None |  |
| Storage Length         | 100  | -     | -    | 115  | -     | -     | -    | -                | -    | -    | -                | -    |  |
| Veh in Median Storage, | # -  | 0     | -    | -    | 0     | -     | -    | 0                | -    | -    | 0                | -    |  |
| Grade, %               | -    | 0     | -    | -    | 0     | -     | -    | 0                | -    | -    | 0                | -    |  |
| Peak Hour Factor       | 90   | 90    | 90   | 90   | 90    | 90    | 90   | 90               | 90   | 90   | 90               | 90   |  |
| Heavy Vehicles, %      | 0    | 8     | 0    | 0    | 3     | 0     | 0    | 0                | 0    | 11   | 33               | 0    |  |
| Mvmt Flow              | 3    | 362   | 24   | 69   | 532   | 71    | 21   | 10               | 52   | 18   | 6                | 8    |  |

| Major/Minor          | Major1 |      | N   | Major2 |     | 1   | Minor1 |       | l     | Minor2 |       |     |  |
|----------------------|--------|------|-----|--------|-----|-----|--------|-------|-------|--------|-------|-----|--|
| Conflicting Flow All | 603    | 0    | 0   | 386    | 0   | 0   | 1093   | 1121  | 374   | 1117   | 1098  | 568 |  |
| Stage 1              | -      | -    | -   | -      | -   | -   | 380    | 380   | -     | 706    | 706   | -   |  |
| Stage 2              | -      | -    | -   | -      | -   | -   | 713    | 741   | -     | 411    | 392   | -   |  |
| Critical Hdwy        | 4.1    | -    | -   | 4.1    | -   | -   | 7.1    | 6.5   | 6.2   | 7.21   | 6.83  | 6.2 |  |
| Critical Hdwy Stg 1  | -      | -    | -   | -      | -   | -   | 6.1    | 5.5   | -     | 6.21   | 5.83  | -   |  |
| Critical Hdwy Stg 2  | -      | -    | -   | -      | -   | -   | 6.1    | 5.5   | -     | 6.21   | 5.83  | -   |  |
| Follow-up Hdwy       | 2.2    | -    | -   | 2.2    | -   | -   | 3.5    | 4     | 3.3   | 3.599  | 4.297 | 3.3 |  |
| Pot Cap-1 Maneuver   | 984    | -    | -   | 1184   | -   | -   | 193    | 208   | 677   | 177    | 187   | 526 |  |
| Stage 1              | -      | -    | -   | -      | -   | -   | 646    | 617   | -     | 413    | 395   | -   |  |
| Stage 2              | -      | -    | -   | -      | -   | -   | 426    | 426   | -     | 600    | 556   | -   |  |
| Platoon blocked, %   |        | -    | -   |        | -   | -   |        |       |       |        |       |     |  |
| Mov Cap-1 Maneuver   | 984    | -    | -   | 1184   | -   | -   | 177    | 195   | 677   | 150    | 176   | 526 |  |
| Mov Cap-2 Maneuver   | -      | -    | -   | -      | -   | -   | 177    | 195   | -     | 150    | 176   | -   |  |
| Stage 1              | -      | -    | -   | -      | -   | -   | 644    | 615   | -     | 412    | 372   | -   |  |
| Stage 2              | -      | -    | -   | -      | -   | -   | 389    | 401   | -     | 543    | 554   | -   |  |
|                      |        |      |     |        |     |     |        |       |       |        |       |     |  |
| Approach             | EB     |      |     | WB     |     |     | NB     |       |       | SB     |       |     |  |
| HCM Control Delay, s | 0.1    |      |     | 0.8    |     |     | 19.2   |       |       | 27.8   |       |     |  |
| HCM LOS              |        |      |     |        |     |     | С      |       |       | D      |       |     |  |
|                      |        |      |     |        |     |     |        |       |       |        |       |     |  |
| Minor Lane/Major Mvm | nt N   | BLn1 | EBL | EBT    | EBR | WBL | WBT    | WBR S | SBLn1 |        |       |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR S | SBLn1 |  |
|-----------------------|-------|-------|-----|-----|-------|-----|-------|-------|--|
| Capacity (veh/h)      | 336   | 984   | -   | -   | 1184  | -   | -     | 189   |  |
| HCM Lane V/C Ratio    | 0.248 | 0.003 | -   | -   | 0.058 | -   | -     | 0.165 |  |
| HCM Control Delay (s) | 19.2  | 8.7   | -   | -   | 8.2   | -   | -     | 27.8  |  |
| HCM Lane LOS          | С     | А     | -   | -   | А     | -   | -     | D     |  |
| HCM 95th %tile Q(veh) | 1     | 0     | -   | -   | 0.2   | -   | -     | 0.6   |  |

## Intersection

| Movement               | EBL  | EBT          | EBR  | WBL  | WBT          | WBR  | NBL  | NBT              | NBR  | SBL  | SBT              | SBR  |  |
|------------------------|------|--------------|------|------|--------------|------|------|------------------|------|------|------------------|------|--|
|                        |      |              | EDN  | VVDL |              | VVDN | INDL |                  | NDN  | JDL  |                  | SDR  |  |
| Lane Configurations    |      | _ <b>ħ</b> ₽ |      |      | - <b>†</b> Þ |      |      | - <del>4</del> > |      |      | - <del>4</del> > |      |  |
| Traffic Vol, veh/h     | 14   | 193          | 9    | 31   | 209          | 57   | 10   | 9                | 29   | 62   | 3                | 22   |  |
| Future Vol, veh/h      | 14   | 193          | 9    | 31   | 209          | 57   | 10   | 9                | 29   | 62   | 3                | 22   |  |
| Conflicting Peds, #/hr | 0    | 0            | 0    | 0    | 0            | 0    | 0    | 0                | 0    | 0    | 0                | 0    |  |
| Sign Control           | Free | Free         | Free | Free | Free         | Free | Stop | Stop             | Stop | Stop | Stop             | Stop |  |
| RT Channelized         | -    | -            | None | -    | -            | None | -    | -                | None | -    | -                | None |  |
| Storage Length         | 125  | -            | -    | 125  | -            | -    | -    | -                | -    | -    | -                | -    |  |
| Veh in Median Storage, | # -  | 0            | -    | -    | 0            | -    | -    | 0                | -    | -    | 0                | -    |  |
| Grade, %               | -    | 0            | -    | -    | 0            | -    | -    | 0                | -    | -    | 0                | -    |  |
| Peak Hour Factor       | 90   | 90           | 90   | 90   | 90           | 90   | 90   | 90               | 90   | 90   | 90               | 90   |  |
| Heavy Vehicles, %      | 0    | 2            | 20   | 0    | 3            | 3    | 0    | 0                | 0    | 3    | 0                | 0    |  |
| Mvmt Flow              | 16   | 214          | 10   | 34   | 232          | 63   | 11   | 10               | 32   | 69   | 3                | 24   |  |

| Major/Minor          | Major1 |       | ľ   | Major2 |     | l   | Minor1 |       | N      | /linor2 |     |     |  |
|----------------------|--------|-------|-----|--------|-----|-----|--------|-------|--------|---------|-----|-----|--|
| Conflicting Flow All | 295    | 0     | 0   | 224    | 0   | 0   | 437    | 614   | 112    | 476     | 588 | 148 |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | 251    | 251   | -      | 332     | 332 | -   |  |
| Stage 2              | -      | -     | -   | -      | -   | -   | 186    | 363   | -      | 144     | 256 | -   |  |
| Critical Hdwy        | 4.1    | -     | -   | 4.1    | -   | -   | 7.5    | 6.5   | 6.9    | 7.56    | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1  | -      | -     | -   | -      | -   | -   | 6.5    | 5.5   | -      | 6.56    | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | -     | -   | -      | -   | -   | 6.5    | 5.5   | -      | 6.56    | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | -     | -   | 2.2    | -   | -   | 3.5    | 4     | 3.3    | 3.53    | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1278   | -     | -   | 1357   | -   | -   | 508    | 410   | 926    | 470     | 424 | 878 |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | 737    | 703   | -      | 652     | 648 | -   |  |
| Stage 2              | -      | -     | -   | -      | -   | -   | 804    | 628   | -      | 841     | 699 | -   |  |
| Platoon blocked, %   |        | -     | -   |        | -   | -   |        |       |        |         |     |     |  |
| Mov Cap-1 Maneuver   | 1278   | -     | -   | 1357   | -   | -   | 477    | 394   | 926    | 432     | 408 | 878 |  |
| Mov Cap-2 Maneuver   | -      | -     | -   | -      | -   | -   | 477    | 394   | -      | 432     | 408 | -   |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | 727    | 694   | -      | 644     | 632 | -   |  |
| Stage 2              | -      | -     | -   | -      | -   | -   | 758    | 612   | -      | 790     | 690 | -   |  |
|                      |        |       |     |        |     |     |        |       |        |         |     |     |  |
| Approach             | EB     |       |     | WB     |     |     | NB     |       |        | SB      |     |     |  |
| HCM Control Delay, s | 0.5    |       |     | 0.8    |     |     | 11.1   |       |        | 14      |     |     |  |
| HCM LOS              |        |       |     |        |     |     | В      |       |        | В       |     |     |  |
|                      |        |       |     |        |     |     |        |       |        |         |     |     |  |
| Minor Lane/Maior Mym | nt N   | IBLn1 | EBL | EBT    | EBR | WBL | WBT    | WBR S | SBI n1 |         |     |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR S | SBLn1 |  |
|-----------------------|-------|-------|-----|-----|-------|-----|-------|-------|--|
| Capacity (veh/h)      | 639   | 1278  | -   | -   | 1357  | -   | -     | 495   |  |
| HCM Lane V/C Ratio    | 0.083 | 0.012 | -   | -   | 0.025 | -   | -     | 0.195 |  |
| HCM Control Delay (s) | 11.1  | 7.9   | -   | -   | 7.7   | -   | -     | 14    |  |
| HCM Lane LOS          | В     | А     | -   | -   | А     | -   | -     | В     |  |
| HCM 95th %tile Q(veh) | 0.3   | 0     | -   | -   | 0.1   | -   | -     | 0.7   |  |

#### Intersection

Int Delay, s/veh

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR   |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Lane Configurations    | ኘ    | ef 👘 |      | ٦    | ef 👘 |      |      | 4    |      |      | र्च  | 1     |
| Traffic Vol, veh/h     | 119  | 317  | 0    | 14   | 414  | 93   | 0    | 5    | 10   | 74   | 3    | 286   |
| Future Vol, veh/h      | 119  | 317  | 0    | 14   | 414  | 93   | 0    | 5    | 10   | 74   | 3    | 286   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop  |
| RT Channelized         | -    | -    | None | -    | -    | None | -    | -    | None | -    | -    | Yield |
| Storage Length         | 100  | -    | -    | 100  | -    | -    | -    | -    | -    | -    | -    | 125   |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90    |
| Heavy Vehicles, %      | 2    | 3    | 0    | 0    | 2    | 4    | 0    | 0    | 0    | 7    | 0    | 3     |
| Mvmt Flow              | 132  | 352  | 0    | 16   | 460  | 103  | 0    | 6    | 11   | 82   | 3    | 318   |

| Major/Minor           | Major1 |       | 1     | Major2 |     |       | Minor1 |       |       | Minor2 |      |       |  |
|-----------------------|--------|-------|-------|--------|-----|-------|--------|-------|-------|--------|------|-------|--|
| Conflicting Flow All  | 563    | 0     | 0     | 352    | 0   | 0     | 1161   | 1211  | 352   | 1169   | 1160 | 512   |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 616    | 616   | -     | 544    | 544  | -     |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 545    | 595   | -     | 625    | 616  | -     |  |
| Critical Hdwy         | 4.12   | -     | -     | 4.1    | -   | -     | 7.1    | 6.5   | 6.2   | 7.17   | 6.5  | 6.23  |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -     | 6.1    | 5.5   | -     | 6.17   | 5.5  | -     |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -     | 6.1    | 5.5   | -     | 6.17   | 5.5  | -     |  |
| Follow-up Hdwy        | 2.218  | -     | -     | 2.2    | -   | -     | 3.5    | 4     | 3.3   | 3.563  | 4    | 3.327 |  |
| Pot Cap-1 Maneuver    | 1008   | -     | -     | 1218   | -   | -     | 174    | 184   | 696   | 166    | 197  | 560   |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 481    | 485   | -     | 514    | 522  | -     |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 526    | 496   | -     | 464    | 485  | -     |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -     |        |       |       |        |      |       |  |
| Mov Cap-1 Maneuver    | 1008   | -     | -     | 1218   | -   | -     | 66     | 158   | 696   | 142    | 169  | 560   |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -     | 66     | 158   | -     | 142    | 169  | -     |  |
| Stage 1               | -      | -     | -     | -      | -   | -     | 418    | 421   | -     | 447    | 515  | -     |  |
| Stage 2               | -      | -     | -     | -      | -   | -     | 223    | 490   | -     | 392    | 421  | -     |  |
|                       |        |       |       |        |     |       |        |       |       |        |      |       |  |
| Approach              | EB     |       |       | WB     |     |       | NB     |       |       | SB     |      |       |  |
| HCM Control Delay, s  | 2.5    |       |       | 0.2    |     |       | 16.6   |       |       | 28.5   |      |       |  |
| HCM LOS               |        |       |       |        |     |       | С      |       |       | D      |      |       |  |
|                       |        |       |       |        |     |       |        |       |       |        |      |       |  |
| Minor Lane/Major Mvm  | nt I   | NBLn1 | EBL   | EBT    | EBR | WBL   | WBT    | WBR S | SBLn1 | SBLn2  |      |       |  |
| Capacity (veh/h)      |        | 326   | 1008  | -      | -   | 1218  | -      | -     | 143   | 560    |      |       |  |
| HCM Lane V/C Ratio    |        | 0.051 | 0.131 | -      | -   | 0.013 | -      | -     | 0.598 | 0.567  |      |       |  |
| HCM Control Delay (s) |        | 16.6  | 9.1   | -      | -   | 8     | -      | -     | 62    | 19.5   |      |       |  |
| HCM Lane LOS          |        | С     | А     | -      | -   | А     | -      | -     | F     | С      |      |       |  |
|                       |        |       |       |        |     |       |        |       |       |        |      |       |  |

3.5

3.1

0

0.2

HCM 95th %tile Q(veh)

0.5

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    | ۲    | ef 👘 |      | ۲.   | ef 👘 |      |      | 4    |      |      | ÷    |      |  |
| Traffic Vol, veh/h     | 0    | 276  | 16   | 10   | 429  | 3    | 19   | 0    | 12   | 0    | 0    | 0    |  |
| Future Vol, veh/h      | 0    | 276  | 16   | 10   | 429  | 3    | 19   | 0    | 12   | 0    | 0    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 115  | -    | -    | 120  | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 9    | 0    | 0    | 3    | 50   | 9    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 0    | 307  | 18   | 11   | 477  | 3    | 21   | 0    | 13   | 0    | 0    | 0    |  |

| Major/Minor                      | Major1 |      | Ν   | /lajor2 |     |     | Minor1 |       | Ν    | /linor2 |     |     |  |
|----------------------------------|--------|------|-----|---------|-----|-----|--------|-------|------|---------|-----|-----|--|
| Conflicting Flow All             | 480    | 0    | 0   | 325     | 0   | 0   | 817    | 818   | 316  | 824     | 826 | 479 |  |
| Stage 1                          | -      | -    | -   | -       | -   | -   | 316    | 316   | -    | 501     | 501 | -   |  |
| Stage 2                          | -      | -    | -   | -       | -   | -   | 501    | 502   | -    | 323     | 325 | -   |  |
| Critical Hdwy                    | 4.1    | -    | -   | 4.1     | -   | -   | 7.19   | 6.5   | 6.2  | 7.1     | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1              | -      | -    | -   | -       | -   | -   | 6.19   | 5.5   | -    | 6.1     | 5.5 | -   |  |
| Critical Hdwy Stg 2              | -      | -    | -   | -       | -   | -   | 6.19   | 5.5   | -    | 6.1     | 5.5 | -   |  |
| Follow-up Hdwy                   | 2.2    | -    | -   | 2.2     | -   | -   | 3.581  | 4     | 3.3  | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver               | 1093   | -    | -   | 1246    | -   | -   | 287    | 313   | 729  | 294     | 310 | 591 |  |
| Stage 1                          | -      | -    | -   | -       | -   | -   | 680    | 659   | -    | 556     | 546 | -   |  |
| Stage 2                          | -      | -    | -   | -       | -   | -   | 539    | 545   | -    | 693     | 653 | -   |  |
| Platoon blocked, %               |        | -    | -   |         | -   | -   |        |       |      |         |     |     |  |
| Mov Cap-1 Maneuver               | 1093   | -    | -   | 1246    | -   | -   | 285    | 310   | 729  | 287     | 307 | 591 |  |
| Mov Cap-2 Maneuver               | -      | -    | -   | -       | -   | -   | 285    | 310   | -    | 287     | 307 | -   |  |
| Stage 1                          | -      | -    | -   | -       | -   | -   | 680    | 659   | -    | 556     | 541 | -   |  |
| Stage 2                          | -      | -    | -   | -       | -   | -   | 534    | 540   | -    | 680     | 653 | -   |  |
|                                  |        |      |     |         |     |     |        |       |      |         |     |     |  |
| Approach                         | EB     |      |     | WB      |     |     | NB     |       |      | SB      |     |     |  |
| HCM Control Delay, s             | 0      |      |     | 0.2     |     |     | 15.6   |       |      | 0       |     |     |  |
| HCM LOS                          |        |      |     |         |     |     | С      |       |      | A       |     |     |  |
|                                  |        |      |     |         |     |     |        |       |      |         |     |     |  |
| Minor Lane/Major Mvn             | nt NB  | SLn1 | EBL | EBT     | EBR | WBL | WBT    | WBR S | BLn1 |         |     |     |  |
| <b>a u</b> ( <b>u</b> ( <b>)</b> |        |      |     |         |     |     |        |       |      |         |     |     |  |

| ivilnor Lane/iviajor ivivmt | NBLN1 | ERL  | ERI | EBK | <b>WRL</b> | <b>WRI</b> | WBR 2 | BLUI |  |
|-----------------------------|-------|------|-----|-----|------------|------------|-------|------|--|
| Capacity (veh/h)            | 373   | 1093 | -   | -   | 1246       | -          | -     | -    |  |
| HCM Lane V/C Ratio          | 0.092 | -    | -   | -   | 0.009      | -          | -     | -    |  |
| HCM Control Delay (s)       | 15.6  | 0    | -   | -   | 7.9        | -          | -     | 0    |  |
| HCM Lane LOS                | С     | Α    | -   | -   | Α          | -          | -     | А    |  |
| HCM 95th %tile Q(veh)       | 0.3   | 0    | -   | -   | 0          | -          | -     | -    |  |

# Intersection Int Delay, s/veh 3.8 Movement EBT EBR WBI WBT NBI NBR

| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |  |  |  |  |
|------------------------|------|------|------|------|------|------|--|--|--|--|
| Lane Configurations    | •    |      | 1    | •    | Y    |      |  |  |  |  |
| Traffic Vol, veh/h     | 274  | 0    | 2    | 462  | 140  | 0    |  |  |  |  |
| Future Vol, veh/h      | 274  | 0    | 2    | 462  | 140  | 0    |  |  |  |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |  |  |  |  |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |  |  |  |  |
| RT Channelized         | -    | None | -    | None | -    | None |  |  |  |  |
| Storage Length         | -    | -    | 120  | -    | 0    | -    |  |  |  |  |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |  |  |  |  |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |  |  |  |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |  |  |  |  |
| Heavy Vehicles, %      | 4    | 2    | 3    | 3    | 1    | 0    |  |  |  |  |
| Mvmt Flow              | 304  | 0    | 2    | 513  | 156  | 0    |  |  |  |  |
|                        |      |      |      |      |      |      |  |  |  |  |

| Major/Minor           | Major1   |           | Major2 |       | Minor1 |     |
|-----------------------|----------|-----------|--------|-------|--------|-----|
| Conflicting Flow All  | 0        |           | 304    | 0     | 821    | 304 |
| Stage 1               | -        | -         | -      | -     | 304    | -   |
| Stage 2               | -        | -         | -      | -     | 517    | -   |
| Critical Hdwy         | -        | -         | 4.13   | -     | 6.41   | 6.2 |
| Critical Hdwy Stg 1   | -        | -         | -      | -     | 5.41   | -   |
| Critical Hdwy Stg 2   | -        | -         | -      | -     | 5.41   | -   |
| Follow-up Hdwy        | -        | -         | 2.227  | -     | 3.509  | 3.3 |
| Pot Cap-1 Maneuver    | -        |           | 1251   | -     | 346    | 740 |
| Stage 1               | -        | 0         | -      | -     | 751    | -   |
| Stage 2               | -        | 0         | -      | -     | 601    | -   |
| Platoon blocked, %    | -        |           |        | -     |        |     |
| Mov Cap-1 Maneuver    | -        | -         | 1251   | -     | 345    | 740 |
| Mov Cap-2 Maneuver    | -        |           | -      | -     | 345    | -   |
| Stage 1               | -        | -         | -      | -     | 751    | -   |
| Stage 2               | -        | -         | -      | -     | 600    | -   |
|                       |          |           |        |       |        |     |
| Approach              | EB       |           | WB     |       | NB     |     |
| HCM Control Delay, s  | 0        |           | 0      |       | 23.7   |     |
| HCM LOS               |          |           |        |       | С      |     |
|                       |          |           |        |       |        |     |
| Minor Lane/Major Mvm  | nt       | NBLn1     | EBT    | WBL   | WBT    |     |
| Capacity (veh/h)      | <u>n</u> | 345       | -      |       | -      |     |
| HCM Lane V/C Ratio    |          | 0.451     |        | 0.002 | -      |     |
| HCM Control Delay (s) |          | 23.7      | _      |       | -      |     |
| HCM Lane LOS          |          | 20.7<br>C | _      | A     | _      |     |
| HCM 95th %tile Q(veh  | )        | 2.2       | _      | 0     | _      |     |
|                       | /        | L.L       |        | v     |        |     |

# Intersection

| Movement               | EBL  | EBT         | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|-------------|------|------|-------------|------|------|------|------|------|------|------|
| Lane Configurations    | ٦    | <b>∱</b> î≽ |      | ۲    | <b>∱</b> î≽ |      | ٦    | eî 👘 |      |      | 4    |      |
| Traffic Vol, veh/h     | 3    | 210         | 3    | 28   | 343         | 3    | 3    | 2    | 33   | 3    | 0    | 7    |
| Future Vol, veh/h      | 3    | 210         | 3    | 28   | 343         | 3    | 3    | 2    | 33   | 3    | 0    | 7    |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free        | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -           | None | -    | -           | None | -    | -    | None | -    | -    | None |
| Storage Length         | 50   | -           | -    | 125  | -           | -    | 90   | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90          | 90   | 90   | 90          | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 0           | 0    | 0    | 1           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 3    | 233         | 3    | 31   | 381         | 3    | 3    | 2    | 37   | 3    | 0    | 8    |

| Major/Minor           | Major1 |       |       | Major2 |     |     | Minor1 |     | Ν     | /linor2 |     |     |  |
|-----------------------|--------|-------|-------|--------|-----|-----|--------|-----|-------|---------|-----|-----|--|
| Conflicting Flow All  | 384    | 0     | 0     | 236    | 0   | 0   | 494    | 687 | 118   | 569     | 687 | 192 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 241    | 241 | -     | 445     | 445 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 253    | 446 | -     | 124     | 242 | -   |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.1    | -   | -   | 7.5    | 6.5 | 6.9   | 7.5     | 6.5 | 6.9 |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -   | 6.5    | 5.5 | -     | 6.5     | 5.5 | -   |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -   | 6.5    | 5.5 | -     | 6.5     | 5.5 | -   |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.2    | -   | -   | 3.5    | 4   | 3.3   | 3.5     | 4   | 3.3 |  |
| Pot Cap-1 Maneuver    | 1186   | -     | -     | 1343   | -   | -   | 463    | 372 | 918   | 409     | 372 | 823 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 747    | 710 | -     | 567     | 578 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 735    | 577 | -     | 873     | 709 | -   |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -   |        |     |       |         |     |     |  |
| Mov Cap-1 Maneuver    | 1186   | -     | -     | 1343   | -   | -   | 450    | 362 | 918   | 383     | 362 | 823 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -   | 450    | 362 | -     | 383     | 362 | -   |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 745    | 708 | -     | 565     | 565 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 711    | 564 | -     | 833     | 707 | -   |  |
|                       |        |       |       |        |     |     |        |     |       |         |     |     |  |
| Approach              | EB     |       |       | WB     |     |     | NB     |     |       | SB      |     |     |  |
| HCM Control Delay, s  | 0.1    |       |       | 0.6    |     |     | 9.8    |     |       | 11      |     |     |  |
| HCM LOS               |        |       |       |        |     |     | А      |     |       | В       |     |     |  |
|                       |        |       |       |        |     |     |        |     |       |         |     |     |  |
| Minor Lane/Major Mvn  | nt     | NBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT | WBR S | BLn1    |     |     |  |
| Capacity (veh/h)      |        | 450   | 844   | 1186   | -   | -   | 1343   | -   | -     | 612     |     |     |  |
| HCM Lane V/C Ratio    |        | 0.007 | 0.046 | 0.003  | -   | -   | 0.023  | -   | -     | 0.018   |     |     |  |
| HCM Control Delay (s) | )      | 13.1  | 9.5   | 8      | -   | -   | 7.7    | -   | -     | 11      |     |     |  |
| HCM Lane LOS          |        | В     | А     | А      | -   | -   | А      | -   | -     | В       |     |     |  |
| HCM 95th %tile Q(veh  | )      | 0     | 0.1   | 0      | -   | -   | 0.1    | -   | -     | 0.1     |     |     |  |

# Intersection

| Movement               | EBL  | EBT         | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|-------------|------|------|-------------|------|------|------|------|------|------|------|
| Lane Configurations    | ľ    | <b>↑</b> ĵ≽ |      | ľ    | <b>∱î</b> ∌ |      |      | र्च  | 1    |      | ÷    |      |
| Traffic Vol, veh/h     | 9    | 260         | 70   | 302  | 355         | 9    | 38   | 5    | 143  | 2    | 10   | 9    |
| Future Vol, veh/h      | 9    | 260         | 70   | 302  | 355         | 9    | 38   | 5    | 143  | 2    | 10   | 9    |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free        | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -           | None | -    | -           | None | -    | -    | None | -    | -    | None |
| Storage Length         | 100  | -           | -    | 100  | -           | -    | 60   | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90          | 90   | 90   | 90          | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 2           | 3    | 0    | 4           | 20   | 12   | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 10   | 289         | 78   | 336  | 394         | 10   | 42   | 6    | 159  | 2    | 11   | 10   |

| Major/Minor           | Major1 |       |       | Major2 |     |     | Minor1 |      | ſ   | Minor2 |      |     |  |
|-----------------------|--------|-------|-------|--------|-----|-----|--------|------|-----|--------|------|-----|--|
| Conflicting Flow All  | 404    | 0     | 0     | 367    | 0   | 0   | 1223   | 1424 | 184 | 1239   | 1458 | 202 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 348    | 348  | -   | 1071   | 1071 | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 875    | 1076 | -   | 168    | 387  | -   |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.1    | -   | -   | 7.74   | 6.5  | 6.9 | 7.5    | 6.5  | 6.9 |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -   | 6.74   | 5.5  | -   | 6.5    | 5.5  | -   |  |
| Critical Hdwy Stg 2   | -      |       | -     | -      | -   | -   | 6.74   | 5.5  | -   | 6.5    | 5.5  | -   |  |
| Follow-up Hdwy        | 2.2    |       | -     | 2.2    | -   | -   | 3.62   | 4    | 3.3 | 3.5    | 4    | 3.3 |  |
| Pot Cap-1 Maneuver    | 1166   | -     | -     | 1203   | -   | -   | 125    | 137  | 833 | 134    | 131  | 811 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 614    | 638  | -   | 239    | 300  | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 291    | 298  | -   | 823    | 613  | -   |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -   |        |      |     |        |      |     |  |
| Mov Cap-1 Maneuver    | 1166   | -     | -     | 1203   | -   | -   | 88     | 98   | 833 | 81     | 94   | 811 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -   | 88     | 98   | -   | 81     | 94   | -   |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 608    | 632  | -   | 237    | 216  | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 196    | 215  | -   | 655    | 607  | -   |  |
|                       |        |       |       |        |     |     |        |      |     |        |      |     |  |
| Approach              | EB     |       |       | WB     |     |     | NB     |      |     | SB     |      |     |  |
| HCM Control Delay, s  | 0.2    |       |       | 4.1    |     |     | 27.5   |      |     | 33.8   |      |     |  |
| HCM LOS               |        |       |       |        |     |     | D      |      |     | D      |      |     |  |
|                       |        |       |       |        |     |     |        |      |     | _      |      |     |  |
| Minor Lane/Major Mvm  | nt     | NBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT  | WBR | SBLn1  |      |     |  |
| Capacity (veh/h)      |        | 89    | 833   | 1166   | -   | -   | 1203   | -    | -   | 148    |      |     |  |
| HCM Lane V/C Ratio    |        | 0.537 | 0.191 | 0.009  | -   | -   | 0.279  | -    | -   | 0.158  |      |     |  |
| HCM Control Delay (s) |        | 84.9  | 10.3  | 8.1    | -   | -   | 9.1    | -    | -   | 33.8   |      |     |  |
| HCM Lane LOS          |        | F     | В     | A      | -   | -   | A      | -    | -   | D      |      |     |  |
| HCM 95th %tile Q(veh  | )      | 2.4   | 0.7   | 0      | -   | -   | 1.1    | -    | -   | 0.5    |      |     |  |
|                       |        |       |       |        |     |     |        |      |     |        |      |     |  |

## Intersection

| Movement               | EBL  | EBT         | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|-------------|------|------|-------------|------|------|------|------|------|------|------|
| Lane Configurations    | 7    | <b>≜</b> ↑₽ |      | 3    | <b>≜</b> †₽ |      |      | 4    |      | 002  | 4    | 0011 |
| Traffic Vol, veh/h     | 2    | 294         | 45   | 123  | 547         | 7    | 21   | 0    | 96   | 0    | 0    | 0    |
| Future Vol, veh/h      | 2    | 294         | 45   | 123  | 547         | 7    | 21   | 0    | 96   | 0    | 0    | 0    |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free        | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -           | None | -    | -           | None | -    | -    | None | -    | -    | None |
| Storage Length         | 50   | -           | -    | 110  | -           | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90          | 90   | 90   | 90          | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 0           | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 2    | 327         | 50   | 137  | 608         | 8    | 23   | 0    | 107  | 0    | 0    | 0    |

| Major/Minor          | Major1 |     | Ν   | lajor2 |     | ľ    | Minor1 |       | Ν    | /linor2 |      |     |  |
|----------------------|--------|-----|-----|--------|-----|------|--------|-------|------|---------|------|-----|--|
| Conflicting Flow All | 616    | 0   | 0   | 377    | 0   | 0    | 934    | 1246  | 189  | 1054    | 1267 | 308 |  |
| Stage 1              | -      | -   | -   | -      | -   | -    | 356    | 356   | -    | 886     | 886  | -   |  |
| Stage 2              | -      | -   | -   | -      | -   | -    | 578    | 890   | -    | 168     | 381  | -   |  |
| Critical Hdwy        | 4.1    | -   | -   | 4.1    | -   | -    | 7.5    | 6.5   | 6.9  | 7.5     | 6.5  | 6.9 |  |
| Critical Hdwy Stg 1  | -      | -   | -   | -      | -   | -    | 6.5    | 5.5   | -    | 6.5     | 5.5  | -   |  |
| Critical Hdwy Stg 2  | -      | -   | -   | -      | -   | -    | 6.5    | 5.5   | -    | 6.5     | 5.5  | -   |  |
| Follow-up Hdwy       | 2.2    | -   | -   | 2.2    | -   | -    | 3.5    | 4     | 3.3  | 3.5     | 4    | 3.3 |  |
| Pot Cap-1 Maneuver   | 974    | -   | -   | 1193   | -   | -    | 224    | 175   | 827  | 183     | 170  | 694 |  |
| Stage 1              | -      | -   | -   | -      | -   | -    | 640    | 633   | -    | 310     | 365  | -   |  |
| Stage 2              | -      | -   | -   | -      | -   | -    | 474    | 364   | -    | 823     | 617  | -   |  |
| Platoon blocked, %   |        | -   | -   |        | -   | -    |        |       |      |         |      |     |  |
| Mov Cap-1 Maneuver   | 974    | -   | -   | 1193   | -   | -    | 204    | 155   | 827  | 145     | 150  | 694 |  |
| Mov Cap-2 Maneuver   | -      | -   | -   | -      | -   | -    | 204    | 155   | -    | 145     | 150  | -   |  |
| Stage 1              | -      | -   | -   | -      | -   | -    | 639    | 632   | -    | 309     | 323  | -   |  |
| Stage 2              | -      | -   | -   | -      | -   | -    | 420    | 322   | -    | 715     | 616  | -   |  |
|                      |        |     |     |        |     |      |        |       |      |         |      |     |  |
| Approach             | EB     |     |     | WB     |     |      | NB     |       |      | SB      |      |     |  |
| HCM Control Delay, s | 0.1    |     |     | 1.5    |     |      | 13.9   |       |      | 0       |      |     |  |
| HCM LOS              |        |     |     |        |     |      | В      |       |      | А       |      |     |  |
|                      |        |     |     |        |     |      |        |       |      |         |      |     |  |
| Minor Lane/Major Mvn | nt NBL | Ln1 | EBL | EBT    | EBR | WBL  | WBT    | WBR S | BLn1 |         |      |     |  |
| Capacity (veh/h)     |        | 534 | 974 | -      | -   | 1193 | -      | -     | -    |         |      |     |  |
|                      |        |     |     |        |     |      |        |       |      |         |      |     |  |

| HCM Lane V/C Ratio    | 0.243 | 0.002 | - | - 0 | .115 | - | - | - |  |
|-----------------------|-------|-------|---|-----|------|---|---|---|--|
| HCM Control Delay (s) | 13.9  | 8.7   | - | -   | 8.4  | - | - | 0 |  |
| HCM Lane LOS          | В     | А     | - | -   | А    | - | - | А |  |
| HCM 95th %tile Q(veh) | 0.9   | 0     | - | -   | 0.4  | - | - | - |  |

| Int Delay, s/veh       | 3    |      |      |      |      |      |   |
|------------------------|------|------|------|------|------|------|---|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  | ł |
| Lane Configurations    | - î÷ |      |      | ्र   | - Y  |      |   |
| Traffic Vol, veh/h     | 26   | 5    | 34   | 45   | 3    | 10   | 1 |
| Future Vol, veh/h      | 26   | 5    | 34   | 45   | 3    | 10   | 1 |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |   |
| Sign Control           | Free | Free | Free | Free | Stop | Stop | , |
| RT Channelized         | -    | None | -    | None | -    | None | , |
| Storage Length         | -    | -    | -    | -    | 0    | -    |   |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |   |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |   |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | J |
| Heavy Vehicles, %      | 0    | 0    | 0    | 0    | 0    | 0    | J |
| Mvmt Flow              | 29   | 6    | 38   | 50   | 3    | 11   |   |

| Major/Minor I         | Major1 | Ν     | /lajor2 | 1   | Minor1 |      |
|-----------------------|--------|-------|---------|-----|--------|------|
| Conflicting Flow All  | 0      | 0     | 35      | 0   | 158    | 32   |
| Stage 1               | -      | -     | -       | -   | 32     | -    |
| Stage 2               | -      | -     | -       | -   | 126    | -    |
| Critical Hdwy         | -      | -     | 4.1     | -   | 6.4    | 6.2  |
| Critical Hdwy Stg 1   | -      | -     | -       | -   | 5.4    | -    |
| Critical Hdwy Stg 2   | -      | -     | -       | -   | 5.4    | -    |
| Follow-up Hdwy        | -      | -     | 2.2     | -   | 3.5    | 3.3  |
| Pot Cap-1 Maneuver    | -      | -     | 1589    | -   | 838    | 1048 |
| Stage 1               | -      | -     | -       | -   | 996    | -    |
| Stage 2               | -      | -     | -       | -   | 905    | -    |
| Platoon blocked, %    | -      | -     |         | -   |        |      |
| Mov Cap-1 Maneuver    | -      | -     | 1589    | -   | 817    | 1048 |
| Mov Cap-2 Maneuver    | -      | -     | -       | -   | 789    | -    |
| Stage 1               | -      | -     | -       | -   | 996    | -    |
| Stage 2               | -      | -     | -       | -   | 882    | -    |
|                       |        |       |         |     |        |      |
| Approach              | EB     |       | WB      |     | NB     |      |
| HCM Control Delay, s  | 0      |       | 3.2     |     | 8.8    |      |
| HCM LOS               |        |       |         |     | А      |      |
|                       |        |       |         |     |        |      |
| Minor Lane/Major Mvm  | nt N   | IBLn1 | EBT     | EBR | WBL    | WBT  |
| Capacity (veh/h)      |        | 974   | -       | -   | 1589   | -    |
| HCM Lane V/C Ratio    |        | 0.015 | -       | -   | 0.024  | -    |
| HCM Control Delay (s) |        | 8.8   | -       | -   | 7.3    | 0    |
| HCM Lane LOS          |        | Α     | -       | -   | А      | А    |
| HCM 95th %tile Q(veh) | )      | 0     | -       | -   | 0.1    | -    |

HCM Lane LOS

HCM 95th %tile Q(veh)

\_

\_

-

-

| Int Delay, s/veh       | 0    |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    |      | 1    |      | 1    | 1    |      |
| Traffic Vol, veh/h     | 0    | 109  | 0    | 140  | 2    | 0    |
| Future Vol, veh/h      | 0    | 109  | 0    | 140  | 2    | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | 0    | -    | -    | -    | -    |
| Veh in Median Storage, | # 1  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 8    | 8    | 2    | 1    | 3    | 2    |
| Mvmt Flow              | 0    | 121  | 0    | 156  | 2    | 0    |

| Major/Minor             | Major1    | N | 1inor2 |   |
|-------------------------|-----------|---|--------|---|
| Conflicting Flow All    | -         | 0 | 156    | - |
| Stage 1                 | -         | - | 0      | _ |
| Stage 2                 | -         | - | 156    | - |
| Critical Hdwy           | -         | - | 6.53   | - |
| Critical Hdwy Stg 1     | -         | - | -      | - |
| Critical Hdwy Stg 2     | -         | - | 5.53   | - |
| Follow-up Hdwy          | -         | - | 4.027  | - |
| Pot Cap-1 Maneuver      | 0         | - | 734    | 0 |
| Stage 1                 | 0         | - | -      | 0 |
| Stage 2                 | 0         | - | 767    | 0 |
| Platoon blocked, %      |           | - |        |   |
| Mov Cap-1 Maneuver      | -         | - | 0      | - |
| Mov Cap-2 Maneuver      | -         | - | 0      | - |
| Stage 1                 | -         | - | 0      | - |
| Stage 2                 | -         | - | 0      | - |
|                         |           |   |        |   |
| Approach                | NB        |   | SB     |   |
| HCM Control Delay, s    | 0         |   |        |   |
| HCM LOS                 | Ū         |   | -      |   |
|                         |           |   |        |   |
| Minor Long /Maior Murat |           |   |        |   |
| Minor Lane/Major Mvmt   | NBT SBLn1 |   |        |   |
| Capacity (veh/h)        |           |   |        |   |
| HCM Lane V/C Ratio      |           |   |        |   |
| HCM Control Delay (s)   |           |   |        |   |

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL      | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|------|------|----------|------|------|------|------|------|------|------|------|
| Lane Configurations    | ٦    | 4    |      | <u> </u> | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h     | 2    | 315  | 29   | 95       | 488  | 28   | 38   | 12   | 43   | 14   | 19   | 5    |
| Future Vol, veh/h      | 2    | 315  | 29   | 95       | 488  | 28   | 38   | 12   | 43   | 14   | 19   | 5    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free     | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -    | None | -        | -    | None | -    | -    | None | -    | -    | None |
| Storage Length         | 100  | -    | -    | 115      | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | ,# - | 0    | -    | -        | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0    | -    | -        | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 5    | 0    | 4        | 3    | 0    | 0    | 0    | 0    | 13   | 0    | 0    |
| Mvmt Flow              | 2    | 350  | 32   | 106      | 542  | 31   | 42   | 13   | 48   | 16   | 21   | 6    |

| Major/Minor          | Major1 |   | Major2  |   | Ν | 1inor1 |      | 1   | Minor2 |      |     |  |
|----------------------|--------|---|---------|---|---|--------|------|-----|--------|------|-----|--|
| Conflicting Flow All | 573    | 0 | 0 382   | 0 | 0 | 1153   | 1155 | 366 | 1171   | 1156 | 558 |  |
| Stage 1              | -      | - |         | - | - | 370    | 370  | -   | 770    | 770  | -   |  |
| Stage 2              | -      | - |         | - | - | 783    | 785  | -   | 401    | 386  | -   |  |
| Critical Hdwy        | 4.1    | - | - 4.14  | - | - | 7.1    | 6.5  | 6.2 | 7.23   | 6.5  | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - |         | - | - | 6.1    | 5.5  | -   | 6.23   | 5.5  | -   |  |
| Critical Hdwy Stg 2  | -      | - |         | - | - | 6.1    | 5.5  | -   | 6.23   | 5.5  | -   |  |
| Follow-up Hdwy       | 2.2    | - | - 2.236 | - | - | 3.5    | 4    | 3.3 | 3.617  | 4    | 3.3 |  |
| Pot Cap-1 Maneuver   | 1010   | - | - 1166  | - | - | 176    | 199  | 684 | 161    | 198  | 533 |  |
| Stage 1              | -      | - |         | - | - | 654    | 624  | -   | 377    | 413  | -   |  |
| Stage 2              | -      | - |         | - | - | 390    | 407  | -   | 604    | 614  | -   |  |
| Platoon blocked, %   |        | - | -       | - | - |        |      |     |        |      |     |  |
| Mov Cap-1 Maneuver   | 1010   | - | - 1166  | - | - | 147    | 180  | 684 | 131    | 180  | 533 |  |
| Mov Cap-2 Maneuver   | -      | - |         | - | - | 147    | 180  | -   | 131    | 180  | -   |  |
| Stage 1              | -      | - |         | - | - | 653    | 623  | -   | 376    | 375  | -   |  |
| Stage 2              | -      | - |         | - | - | 331    | 370  | -   | 549    | 613  | -   |  |
|                      |        |   |         |   |   |        |      |     |        |      |     |  |
| Approach             | EB     |   | WB      |   |   | NB     |      |     | SB     |      |     |  |
| HCM Control Delay, s | 0      |   | 1.3     |   |   | 30.9   |      |     | 32.8   |      |     |  |
| HCM LOS              |        |   |         |   |   | D      |      |     | D      |      |     |  |
|                      |        |   |         |   |   |        |      |     |        |      |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR | SBLn1 |
|-----------------------|-------|-------|-----|-----|-------|-----|-----|-------|
| Capacity (veh/h)      | 240   | 1010  | -   | -   | 1166  | -   | -   | 171   |
| HCM Lane V/C Ratio    | 0.431 | 0.002 | -   | -   | 0.091 | -   | -   | 0.247 |
| HCM Control Delay (s) | 30.9  | 8.6   | -   | -   | 8.4   | -   | -   | 32.8  |
| HCM Lane LOS          | D     | А     | -   | -   | А     | -   | -   | D     |
| HCM 95th %tile Q(veh) | 2     | 0     | -   | -   | 0.3   | -   | -   | 0.9   |

6

# Intersection

Int Delay, s/veh

| Movement               | EBL  | EBT          | EBR  | WBL  | WBT          | WBR  | NBL  | NBT  | NBR  | SBL  | SBT              | SBR  |  |
|------------------------|------|--------------|------|------|--------------|------|------|------|------|------|------------------|------|--|
|                        |      |              |      |      |              |      | NDL  | -    | NDIN | ODL  |                  | ODIX |  |
| Lane Configurations    | า    | - <b>†</b> Þ |      | า    | _ <b>≜</b> ⊅ |      |      | ÷    |      |      | - <del>(</del> ) |      |  |
| Traffic Vol, veh/h     | 22   | 240          | 22   | 98   | 286          | 95   | 14   | 17   | 57   | 76   | 9                | 50   |  |
| Future Vol, veh/h      | 22   | 240          | 22   | 98   | 286          | 95   | 14   | 17   | 57   | 76   | 9                | 50   |  |
| Conflicting Peds, #/hr | 0    | 0            | 0    | 0    | 0            | 0    | 0    | 0    | 0    | 0    | 0                | 0    |  |
| Sign Control           | Free | Free         | Free | Free | Free         | Free | Stop | Stop | Stop | Stop | Stop             | Stop |  |
| RT Channelized         | -    | -            | None | -    | -            | None | -    | -    | None | -    | -                | None |  |
| Storage Length         | 125  | -            | -    | 125  | -            | -    | -    | -    | -    | -    | -                | -    |  |
| Veh in Median Storage, | # -  | 0            | -    | -    | 0            | -    | -    | 0    | -    | -    | 0                | -    |  |
| Grade, %               | -    | 0            | -    | -    | 0            | -    | -    | 0    | -    | -    | 0                | -    |  |
| Peak Hour Factor       | 90   | 90           | 90   | 90   | 90           | 90   | 90   | 90   | 90   | 90   | 90               | 90   |  |
| Heavy Vehicles, %      | 0    | 1            | 0    | 2    | 0            | 4    | 0    | 0    | 0    | 0    | 0                | 3    |  |
| Mvmt Flow              | 24   | 267          | 24   | 109  | 318          | 106  | 16   | 19   | 63   | 84   | 10               | 56   |  |

| Major/Minor           | Major1 |       | N     | /lajor2 |     | 1     | Minor1 |     | Ν     | /linor2 |     |      |  |
|-----------------------|--------|-------|-------|---------|-----|-------|--------|-----|-------|---------|-----|------|--|
| Conflicting Flow All  | 424    | 0     | 0     | 291     | 0   | 0     | 709    | 969 | 146   | 780     | 928 | 212  |  |
| Stage 1               | -      | -     | -     | -       | -   | -     | 327    | 327 | -     | 589     | 589 | -    |  |
| Stage 2               | -      | -     | -     | -       | -   | -     | 382    | 642 | -     | 191     | 339 | -    |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.14    | -   | -     | 7.5    | 6.5 | 6.9   | 7.5     | 6.5 | 6.96 |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -       | -   | -     | 6.5    | 5.5 | -     | 6.5     | 5.5 | -    |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -       | -   | -     | 6.5    | 5.5 | -     | 6.5     | 5.5 | -    |  |
| Follow-up Hdwy        | 2.2    |       | -     | 2.22    | -   | -     | 3.5    | 4   | 3.3   | 3.5     | 4   | 3.33 |  |
| Pot Cap-1 Maneuver    | 1146   | -     | -     | 1268    | -   | -     | 325    | 256 | 881   | 289     | 270 | 790  |  |
| Stage 1               | -      | -     | -     | -       | -   | -     | 665    | 651 | -     | 466     | 499 | -    |  |
| Stage 2               | -      | -     | -     | -       | -   | -     | 618    | 472 | -     | 798     | 643 | -    |  |
| Platoon blocked, %    |        | -     | -     |         | -   | -     |        |     |       |         |     |      |  |
| Mov Cap-1 Maneuver    | 1146   | -     | -     | 1268    | -   | -     | 269    | 229 | 881   | 231     | 242 | 790  |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -       | -   | -     | 269    | 229 | -     | 231     | 242 | -    |  |
| Stage 1               | -      | -     | -     | -       | -   | -     | 651    | 637 | -     | 456     | 456 | -    |  |
| Stage 2               | -      | -     | -     | -       | -   | -     | 514    | 431 | -     | 704     | 629 | -    |  |
|                       |        |       |       |         |     |       |        |     |       |         |     |      |  |
| Approach              | EB     |       |       | WB      |     |       | NB     |     |       | SB      |     |      |  |
| HCM Control Delay, s  | 0.6    |       |       | 1.7     |     |       | 14.9   |     |       | 26.5    |     |      |  |
| HCM LOS               |        |       |       |         |     |       | В      |     |       | D       |     |      |  |
|                       |        |       |       |         |     |       |        |     |       |         |     |      |  |
| Minor Lane/Major Mvm  | nt     | NBLn1 | EBL   | EBT     | EBR | WBL   | WBT    | WBR | SBLn1 |         |     |      |  |
| Capacity (veh/h)      |        | 461   | 1146  | -       | -   | 1268  | -      | -   | 314   |         |     |      |  |
| HCM Lane V/C Ratio    |        | 0.212 | 0.021 | -       | -   | 0.086 | -      | -   | 0.478 |         |     |      |  |
| HCM Control Delay (s) | )      | 14.9  | 8.2   | -       | -   | 8.1   | -      | -   | 26.5  |         |     |      |  |

H:\Projects\16000\16002\Traffic\Analysis\Synchro\3\_2050\1\_5 lane (existing)\Updated\2050 Peak Summer Conditions\_Update.syn

А

0.3

-

\_

-

-

D

2.5

-

\_

HCM Lane LOS

HCM 95th %tile Q(veh)

В

0.8

А

0.1

-

-

#### Intersection

Int Delay, s/veh

| Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lane Configurations 🎢 🖡 🌴 👫                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Traffic Vol, veh/h 176 465 0 21 581 93 0 5 17 74 3 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Future Vol, veh/h         176         465         0         21         581         93         0         5         17         74         3         402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sign Control Free Free Free Free Free Free Stop Stop Stop Stop Stop Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RT Channelized None None Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Storage Length 100 100 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Veh in Median Storage, # - 0 0 0 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Grade, % - 0 0 0 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Peak Hour Factor         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90 |
| Heavy Vehicles, % 0 1 0 0 1 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mvmt Flow 196 517 0 23 646 103 0 6 19 82 3 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Major/Minor           | Major1 |        | M        | /lajor2 |      |        | Minor1   |        |       | Minor2 |         |          |           |  |
|-----------------------|--------|--------|----------|---------|------|--------|----------|--------|-------|--------|---------|----------|-----------|--|
| Conflicting Flow All  | 749    | 0      | 0        | 517     | 0    | 0      | 1654     | 1704   | 517   | 1666   | 1653    | 698      |           |  |
| Stage 1               | -      | -      | -        | -       | -    | -      | 909      | 909    | -     | 744    | 744     | -        |           |  |
| Stage 2               | -      | -      | -        | -       | -    | -      | 745      | 795    | -     | 922    | 909     | -        |           |  |
| Critical Hdwy         | 4.1    | -      | -        | 4.1     | -    | -      | 7.1      | 6.5    | 6.2   | 7.1    | 6.5     | 6.2      |           |  |
| Critical Hdwy Stg 1   | -      | -      | -        | -       | -    | -      | 6.1      | 5.5    | -     | 6.1    | 5.5     | -        |           |  |
| Critical Hdwy Stg 2   | -      | -      | -        | -       | -    | -      | 6.1      | 5.5    | -     | 6.1    | 5.5     | -        |           |  |
| Follow-up Hdwy        | 2.2    | -      | -        | 2.2     | -    | -      | 3.5      | 4      | 3.3   | 3.5    | 4       | 3.3      |           |  |
| Pot Cap-1 Maneuver    | 869    | -      | -        | 1059    | -    | -      | 79       | 93     | 562   | ~ 78   | 99      | ~ 444    |           |  |
| Stage 1               | -      | -      | -        | -       | -    | -      | 332      | 357    | -     | 410    | 424     | -        |           |  |
| Stage 2               | -      | -      | -        | -       | -    | -      | 409      | 402    | -     | 327    | 357     | -        |           |  |
| Platoon blocked, %    |        | -      | -        |         | -    | -      |          |        |       |        |         |          |           |  |
| Mov Cap-1 Maneuver    | 869    | -      | -        | 1059    | -    | -      | -        | 70     | 562   | ~ 58   | 75      | ~ 444    |           |  |
| Mov Cap-2 Maneuver    | -      | -      | -        | -       | -    | -      | -        | 70     | -     | ~ 58   | 75      | -        |           |  |
| Stage 1               | -      | -      | -        | -       | -    | -      | 257      | 276    | -     | 317    | 415     | -        |           |  |
| Stage 2               | -      | -      | -        | -       | -    | -      | -        | 393    | -     | 240    | 276     | -        |           |  |
|                       |        |        |          |         |      |        |          |        |       |        |         |          |           |  |
| Approach              | EB     |        |          | WB      |      |        | NB       |        |       | SB     |         |          |           |  |
| HCM Control Delay, s  | 2.8    |        |          | 0.3     |      |        |          |        |       | 125.9  |         |          |           |  |
| HCM LOS               |        |        |          |         |      |        | -        |        |       | F      |         |          |           |  |
|                       |        |        |          |         |      |        |          |        |       |        |         |          |           |  |
| Minor Lane/Major Mvm  | nt     | NBLn1  | EBL      | EBT     | EBR  | WBL    | WBT      | WBR S  | SBLn1 | SBLn2  |         |          |           |  |
| Capacity (veh/h)      |        | -      | 869      | -       | -    | 1059   | -        | -      | 59    | 444    |         |          |           |  |
| HCM Lane V/C Ratio    |        | -      | 0.225    | -       | -    | 0.022  | -        | -      | 1.45  | 1.006  |         |          |           |  |
| HCM Control Delay (s) | 1      | -      | 10.3     | -       | -    | 8.5    | -        | -\$    | 391.1 | 75.1   |         |          |           |  |
| HCM Lane LOS          |        | -      | B        | -       | -    | A      | -        | -<br>- | F     | F      |         |          |           |  |
| HCM 95th %tile Q(veh  | )      | -      | 0.9      | -       | -    | 0.1    | -        | -      | 7.6   | 13.1   |         |          |           |  |
| Notes                 |        |        |          |         |      |        |          |        |       |        |         |          |           |  |
| ~: Volume exceeds ca  | pacity | \$: De | elay exc | eeds 30 | 0s - | +: Com | outation | Not De | fined | *: All | major v | olume in | n platoon |  |

H:\Projects\16000\16002\Traffic\Analysis\Synchro\3\_2050\1\_5 lane (existing)\Updated\2050 Peak Summer Conditions\_Update.syn Synchro 11 Report

# Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    | ٦    | ef 👘 |      | ۲.   | ef 👘 |      |      | 4    |      |      | ÷    |      |  |
| Traffic Vol, veh/h     | 2    | 283  | 38   | 9    | 448  | 2    | 45   | 0    | 14   | 0    | 2    | 0    |  |
| Future Vol, veh/h      | 2    | 283  | 38   | 9    | 448  | 2    | 45   | 0    | 14   | 0    | 2    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 115  | -    | -    | 120  | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 0    | 7    | 0    | 0    | 3    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 2    | 314  | 42   | 10   | 498  | 2    | 50   | 0    | 16   | 0    | 2    | 0    |  |

| Major/Minor          | Major1 |   | Ν | 1ajor2 |   | Ν | linor1 |     | Ν   | linor2 |     |     |  |
|----------------------|--------|---|---|--------|---|---|--------|-----|-----|--------|-----|-----|--|
| Conflicting Flow All | 500    | 0 | 0 | 356    | 0 | 0 | 859    | 859 | 335 | 866    | 879 | 499 |  |
| Stage 1              | -      | - | - | -      | - | - | 339    | 339 | -   | 519    | 519 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 520    | 520 | -   | 347    | 360 | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.1    | - | - | 7.1    | 6.5 | 6.2 | 7.1    | 6.5 | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.1    | 5.5 | -   | 6.1    | 5.5 | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.1    | 5.5 | -   | 6.1    | 5.5 | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2    | - | - | 3.5    | 4   | 3.3 | 3.5    | 4   | 3.3 |  |
| Pot Cap-1 Maneuver   | 1075   | - | - | 1214   | - | - | 279    | 296 | 712 | 276    | 288 | 576 |  |
| Stage 1              | -      | - | - | -      | - | - | 680    | 643 | -   | 544    | 536 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 543    | 535 | -   | 673    | 630 | -   |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |     |     |        |     |     |  |
| Mov Cap-1 Maneuver   | 1075   | - | - | 1214   | - | - | 275    | 293 | 712 | 268    | 285 | 576 |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 275    | 293 | -   | 268    | 285 | -   |  |
| Stage 1              | -      | - | - | -      | - | - | 679    | 642 | -   | 543    | 532 | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 536    | 531 | -   | 657    | 629 | -   |  |
|                      |        |   |   |        |   |   |        |     |     |        |     |     |  |
| Approach             | EB     |   |   | WB     |   |   | NB     |     |     | SB     |     |     |  |
| HCM Control Delay, s | 0.1    |   |   | 0.2    |   |   | 19     |     |     | 17.7   |     |     |  |
| HCM LOS              |        |   |   |        |   |   | С      |     |     | С      |     |     |  |
|                      |        |   |   |        |   |   |        |     |     |        |     |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR | SBLn1 |
|-----------------------|-------|-------|-----|-----|-------|-----|-----|-------|
| Capacity (veh/h)      | 322   | 1075  | -   | -   | 1214  | -   | -   | 285   |
| HCM Lane V/C Ratio    | 0.204 | 0.002 | -   | -   | 0.008 | -   | -   | 0.008 |
| HCM Control Delay (s) | 19    | 8.4   | -   | -   | 8     | -   | -   | 17.7  |
| HCM Lane LOS          | С     | А     | -   | -   | А     | -   | -   | С     |
| HCM 95th %tile Q(veh) | 0.7   | 0     | -   | -   | 0     | -   | -   | 0     |

| Int Delay, s/veh       | 5.4  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | 1    |      | ٦    | 1    | Y    |      |
| Traffic Vol, veh/h     | 252  | 0    | 5    | 434  | 179  | 2    |
| Future Vol, veh/h      | 252  | 0    | 5    | 434  | 179  | 2    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | 120  | -    | 0    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 4    | 2    | 3    | 0    | 1    | 2    |
| Mvmt Flow              | 280  | 0    | 6    | 482  | 199  | 2    |

| Major/Minor          | Major1 |       | Major2 |       | Minor1 |       |
|----------------------|--------|-------|--------|-------|--------|-------|
| Conflicting Flow All | 0      |       |        | 0     | 774    | 280   |
| Stage 1              | -      | -     | -      | -     | 280    | -     |
| Stage 2              | -      | -     | -      | -     | 494    | -     |
| Critical Hdwy        | -      | -     | 4.13   | -     | 6.41   | 6.22  |
| Critical Hdwy Stg 1  | -      | -     | -      | -     | 5.41   | -     |
| Critical Hdwy Stg 2  | -      | -     | -      | -     | 5.41   | -     |
| Follow-up Hdwy       | -      | -     | 2.227  | -     | 3.509  | 3.318 |
| Pot Cap-1 Maneuver   | -      | 0     | 1277   | -     | 368    | 759   |
| Stage 1              | -      | 0     | -      | -     | 770    | -     |
| Stage 2              | -      | 0     | -      | -     | 615    | -     |
| Platoon blocked, %   | -      |       |        | -     |        |       |
| Mov Cap-1 Maneuver   |        | -     | 1277   | -     | 366    | 759   |
| Mov Cap-2 Maneuver   | · -    | -     | -      | -     | 366    | -     |
| Stage 1              | -      | -     | -      | -     | 770    | -     |
| Stage 2              | -      | -     | -      | -     | 612    | -     |
|                      |        |       |        |       |        |       |
| Approach             | EB     |       | WB     |       | NB     |       |
| HCM Control Delay, s | 0      |       | 0.1    |       | 26     |       |
| HCM LOS              |        |       |        |       | D      |       |
|                      |        |       |        |       |        |       |
| Minor Lane/Major Mvr | nt     | NBLn1 | EBT    | WBL   | WBT    |       |
| Capacity (veh/h)     |        | 368   |        |       | -      |       |
| HCM Lane V/C Ratio   |        | 0.546 |        | 0.004 | -      |       |
| HCM Control Delay (s | ;)     | 26    | -      | 7.8   | -      |       |
| HCM Lane LOS         |        | D     | -      | A     | -      |       |
| HCM 95th %tile Q(veh | า)     | 3.1   | -      | 0     | -      |       |
| HCM 95th %tile Q(ver | า)     | 3.1   | -      | 0     | -      |       |

## Intersection

| Movement               | EBL  | EBT         | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|-------------|------|------|-------------|------|------|------|------|------|------|------|
| Lane Configurations    | ኘ    | <b>∱</b> î≽ |      | ٦    | <b>∱</b> î, |      | ٦    | ef 👘 |      |      | ÷    |      |
| Traffic Vol, veh/h     | 0    | 400         | 34   | 126  | 589         | 5    | 28   | 2    | 67   | 9    | 0    | 2    |
| Future Vol, veh/h      | 0    | 400         | 34   | 126  | 589         | 5    | 28   | 2    | 67   | 9    | 0    | 2    |
| Conflicting Peds, #/hr | 0    | 0           | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free        | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -           | None | -    | -           | None | -    | -    | None | -    | -    | None |
| Storage Length         | 50   | -           | -    | 125  | -           | -    | 90   | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0           | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90          | 90   | 90   | 90          | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 0           | 0    | 1    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 0    | 444         | 38   | 140  | 654         | 6    | 31   | 2    | 74   | 10   | 0    | 2    |

| Major/Minor           | Major1 |       | ſ     | Major2 |     |     | Minor1 |      | 1   | Minor2 |      |     |  |
|-----------------------|--------|-------|-------|--------|-----|-----|--------|------|-----|--------|------|-----|--|
| Conflicting Flow All  | 660    | 0     | 0     | 482    | 0   | 0   | 1070   | 1403 | 241 | 1160   | 1419 | 330 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 463    | 463  | -   | 937    | 937  | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 607    | 940  | -   | 223    | 482  | -   |  |
| Critical Hdwy         | 4.1    | -     | -     | 4.12   | -   | -   | 7.5    | 6.5  | 6.9 | 7.5    | 6.5  | 6.9 |  |
| Critical Hdwy Stg 1   | -      | -     | -     | -      | -   | -   | 6.5    | 5.5  | -   | 6.5    | 5.5  | -   |  |
| Critical Hdwy Stg 2   | -      | -     | -     | -      | -   | -   | 6.5    | 5.5  | -   | 6.5    | 5.5  | -   |  |
| Follow-up Hdwy        | 2.2    | -     | -     | 2.21   | -   | -   | 3.5    | 4    | 3.3 | 3.5    | 4    | 3.3 |  |
| Pot Cap-1 Maneuver    | 938    | -     | -     | 1084   | -   | -   | 178    | 141  | 766 | 153    | 138  | 672 |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 554    | 568  | -   | 289    | 346  | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 455    | 345  | -   | 765    | 557  | -   |  |
| Platoon blocked, %    |        | -     | -     |        | -   | -   |        |      |     |        |      |     |  |
| Mov Cap-1 Maneuver    | 938    | -     | -     | 1084   | -   | -   | 160    | 123  | 766 | 123    | 120  | 672 |  |
| Mov Cap-2 Maneuver    | -      | -     | -     | -      | -   | -   | 160    | 123  | -   | 123    | 120  | -   |  |
| Stage 1               | -      | -     | -     | -      | -   | -   | 554    | 568  | -   | 289    | 301  | -   |  |
| Stage 2               | -      | -     | -     | -      | -   | -   | 395    | 300  | -   | 688    | 557  | -   |  |
|                       |        |       |       |        |     |     |        |      |     |        |      |     |  |
| Approach              | EB     |       |       | WB     |     |     | NB     |      |     | SB     |      |     |  |
| HCM Control Delay, s  | 0      |       |       | 1.5    |     |     | 17.4   |      |     | 32.3   |      |     |  |
| HCM LOS               |        |       |       |        |     |     | С      |      |     | D      |      |     |  |
|                       |        |       |       |        |     |     |        |      |     |        |      |     |  |
| Minor Lane/Major Mvm  | nt 🛛   | NBLn1 | NBLn2 | EBL    | EBT | EBR | WBL    | WBT  | WBR | SBLn1  |      |     |  |
| Capacity (veh/h)      |        | 160   | 665   | 938    | -   | -   | 1084   | -    | -   | 144    |      |     |  |
| HCM Lane V/C Ratio    |        | 0.194 | 0.115 | -      | -   | -   | 0.129  | -    | -   | 0.085  |      |     |  |
| HCM Control Delay (s) |        | 32.9  | 11.1  | 0      | -   | -   | 8.8    | -    | -   | 32.3   |      |     |  |
| HCM Lane LOS          |        | D     | В     | А      | -   | -   | А      | -    | -   | D      |      |     |  |
| HCM 95th %tile Q(veh) | )      | 0.7   | 0.4   | 0      | -   | -   | 0.4    | -    | -   | 0.3    |      |     |  |

#### Intersection

Int Delay, s/veh

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|------|------|------|-------------|------|------|------|------|------|------|------|
| Lane Configurations    | ٦    | Å    |      | ۲    | <b>≜</b> †₽ |      |      | र्स  | 1    |      | 4    |      |
| Traffic Vol, veh/h     | 15   | 349  | 88   | 307  | 591         | 10   | 97   | 11   | 166  | 5    | 5    | 25   |
| Future Vol, veh/h      | 15   | 349  | 88   | 307  | 591         | 10   | 97   | 11   | 166  | 5    | 5    | 25   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Free        | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -    | None | -    | -           | None | -    | -    | None | -    | -    | None |
| Storage Length         | 100  | -    | -    | 100  | -           | -    | 60   | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0    | -    | -    | 0           | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90          | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 0    | 2    | 1    | 3           | 0    | 8    | 0    | 1    | 0    | 0    | 0    |
| Mvmt Flow              | 17   | 388  | 98   | 341  | 657         | 11   | 108  | 12   | 184  | 6    | 6    | 28   |

| Major/Minor M         | Major1 |               | I        | Major2  |      |       | Minor1   |        | I     | Minor2 |          |          |         |  |
|-----------------------|--------|---------------|----------|---------|------|-------|----------|--------|-------|--------|----------|----------|---------|--|
| Conflicting Flow All  | 668    | 0             | 0        | 486     | 0    | 0     | 1485     | 1821   | 243   | 1579   | 1865     | 334      |         |  |
| Stage 1               | -      | -             | -        | -       | -    | -     | 471      | 471    | -     | 1345   | 1345     | -        |         |  |
| Stage 2               | -      | -             | -        | -       | -    | -     | 1014     | 1350   | -     | 234    | 520      | -        |         |  |
| Critical Hdwy         | 4.1    | -             | -        | 4.12    | -    | -     | 7.66     | 6.5    | 6.92  | 7.5    | 6.5      | 6.9      |         |  |
| Critical Hdwy Stg 1   | -      | -             | -        | -       | -    | -     | 6.66     | 5.5    | -     | 6.5    | 5.5      | -        |         |  |
| Critical Hdwy Stg 2   | -      | -             | -        | -       | -    | -     | 6.66     | 5.5    | -     | 6.5    | 5.5      | -        |         |  |
| Follow-up Hdwy        | 2.2    | -             | -        | 2.21    | -    | -     | 3.58     | 4      | 3.31  | 3.5    | 4        | 3.3      |         |  |
| Pot Cap-1 Maneuver    | 931    | -             | -        | 1080    | -    | -     | ~ 82     | 78     | 761   | 75     | 74       | 668      |         |  |
| Stage 1               | -      | -             | -        | -       | -    | -     | 527      | 563    | -     | 163    | 222      | -        |         |  |
| Stage 2               | -      | -             | -        | -       | -    | -     | 245      | 221    | -     | 754    | 535      | -        |         |  |
| Platoon blocked, %    |        | -             | -        |         | -    | -     |          |        |       |        |          |          |         |  |
| Mov Cap-1 Maneuver    | 931    | -             | -        | 1080    | -    | -     | ~ 54     | 52     | 761   | 35     | 50       | 668      |         |  |
| Mov Cap-2 Maneuver    | -      | -             | -        | -       | -    | -     | ~ 54     | 52     | -     | 35     | 50       | -        |         |  |
| Stage 1               | -      | -             | -        | -       | -    | -     | 518      | 553    | -     | 160    | 152      | -        |         |  |
| Stage 2               | -      | -             | -        | -       | -    | -     | 155      | 151    | -     | 548    | 525      | -        |         |  |
|                       |        |               |          |         |      |       |          |        |       |        |          |          |         |  |
| Approach              | EB     |               |          | WB      |      |       | NB       |        |       | SB     |          |          |         |  |
| HCM Control Delay, s  | 0.3    |               |          | 3.3     |      |       | 292.1    |        |       | 46.3   |          |          |         |  |
| HCM LOS               |        |               |          |         |      |       | F        |        |       | Е      |          |          |         |  |
|                       |        |               |          |         |      |       |          |        |       |        |          |          |         |  |
| Minor Lane/Major Mvm  | t N    | IBLn1         | NBLn2    | EBL     | EBT  | EBR   | WBL      | WBT    | WBR   | SBLn1  |          |          |         |  |
| Capacity (veh/h)      |        | 54            | 761      | 931     | -    | -     | 1080     | -      | -     | 125    |          |          |         |  |
| HCM Lane V/C Ratio    |        | 2.222         |          | 0.018   | -    | -     | 0.316    | -      | -     | 0.311  |          |          |         |  |
| HCM Control Delay (s) |        | 723.9         | 11.2     | 8.9     | -    | -     | 9.9      | -      | -     | 46.3   |          |          |         |  |
| HCM Lane LOS          | Ŧ      | F             | В        | A       | -    | -     | A        | -      | -     | E      |          |          |         |  |
| HCM 95th %tile Q(veh) |        | 12            | 0.9      | 0.1     | -    | -     | 1.4      | -      | -     | 1.2    |          |          |         |  |
| Notes                 |        |               |          |         |      |       |          |        |       |        |          |          |         |  |
| ~: Volume exceeds cap | acity  | \$: De        | elav exc | eeds 30 | 0s + | : Com | outation | Not De | fined | *: All | maior vo | olume in | platoon |  |
|                       |        | ų. <b>2</b> ( |          |         |      |       |          |        |       |        |          |          |         |  |

H:\Projects\16000\16002\Traffic\Analysis\Synchro\3\_2050\1\_5 lane (existing)\Updated\2050 Peak Summer Conditions\_Update.syn Synchro 11 Report

#### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    | ň    | ۴Þ   |      | 5    | ۴Þ   |      |      | 4    |      | -    | 4    | -    |
| Traffic Vol, veh/h     | 5    | 444  | 75   | 149  | 781  | 5    | 80   | 0    | 145  | 0    | 0    | 0    |
| Future Vol, veh/h      | 5    | 444  | 75   | 149  | 781  | 5    | 80   | 0    | 145  | 0    | 0    | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -    | None |
| Storage Length         | 50   | -    | -    | 110  | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 5    | 0    | 0    | 0    |
| Mvmt Flow              | 6    | 493  | 83   | 166  | 868  | 6    | 89   | 0    | 161  | 0    | 0    | 0    |

| Major/Minor          | Major1 |   | Ма  | ajor2 |   | I | Minor1 |      | I    | Minor2 |      |     |  |
|----------------------|--------|---|-----|-------|---|---|--------|------|------|--------|------|-----|--|
| Conflicting Flow All | 874    | 0 | 0   | 576   | 0 | 0 | 1313   | 1753 | 288  | 1462   | 1791 | 437 |  |
| Stage 1              | -      | - | -   | -     | - | - | 547    | 547  | -    | 1203   | 1203 | -   |  |
| Stage 2              | -      | - | -   | -     | - | - | 766    | 1206 | -    | 259    | 588  | -   |  |
| Critical Hdwy        | 4.1    | - | -   | 4.1   | - | - | 7.5    | 6.5  | 7    | 7.5    | 6.5  | 6.9 |  |
| Critical Hdwy Stg 1  | -      | - | -   | -     | - | - | 6.5    | 5.5  | -    | 6.5    | 5.5  | -   |  |
| Critical Hdwy Stg 2  | -      | - | -   | -     | - | - | 6.5    | 5.5  | -    | 6.5    | 5.5  | -   |  |
| Follow-up Hdwy       | 2.2    | - | -   | 2.2   | - | - | 3.5    | 4    | 3.35 | 3.5    | 4    | 3.3 |  |
| Pot Cap-1 Maneuver   | 781    | - | - 1 | 1007  | - | - | 118    | 86   | 700  | 92     | 82   | 573 |  |
| Stage 1              | -      | - | -   | -     | - | - | 494    | 521  | -    | 199    | 260  | -   |  |
| Stage 2              | -      | - | -   | -     | - | - | 366    | 259  | -    | 729    | 499  | -   |  |
| Platoon blocked, %   |        | - | -   |       | - | - |        |      |      |        |      |     |  |
| Mov Cap-1 Maneuver   |        | - | - 1 | 1007  | - | - | 102    | 71   | 700  | 62     | 68   | 573 |  |
| Mov Cap-2 Maneuver   | -      | - | -   | -     | - | - | 102    | 71   | -    | 62     | 68   | -   |  |
| Stage 1              | -      | - | -   | -     | - | - | 490    | 517  | -    | 197    | 217  | -   |  |
| Stage 2              | -      | - | -   | -     | - | - | 306    | 216  | -    | 557    | 495  | -   |  |
|                      |        |   |     |       |   |   |        |      |      |        |      |     |  |
| Approach             | EB     |   |     | WB    |   |   | NB     |      |      | SB     |      |     |  |
| HCM Control Delay, s | 0.1    |   |     | 1.5   |   |   | 135.2  |      |      | 0      |      |     |  |
| HCM LOS              |        |   |     |       |   |   | F      |      |      | А      |      |     |  |
|                      |        |   |     |       |   |   |        |      |      |        |      |     |  |
|                      |        |   |     |       |   |   |        |      |      |        |      |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR SI | 3Ln1 |  |
|-----------------------|-------|-------|-----|-----|-------|-----|--------|------|--|
| Capacity (veh/h)      | 227   | 781   | -   | -   | 1007  | -   | -      | -    |  |
| HCM Lane V/C Ratio    | 1.101 | 0.007 | -   | -   | 0.164 | -   | -      | -    |  |
| HCM Control Delay (s) | 135.2 | 9.6   | -   | -   | 9.3   | -   | -      | 0    |  |
| HCM Lane LOS          | F     | А     | -   | -   | А     | -   | -      | А    |  |
| HCM 95th %tile Q(veh) | 11.2  | 0     | -   | -   | 0.6   | -   | -      | -    |  |

| Int Delay, s/veh       | 3.9  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | el 🗧 |      |      | ÷.   | Y    |      |
| Traffic Vol, veh/h     | 57   | 0    | 65   | 69   | 3    | 48   |
| Future Vol, veh/h      | 57   | 0    | 65   | 69   | 3    | 48   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | -    | -    | 0    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 3    | 2    | 2    | 3    | 0    | 2    |
| Mvmt Flow              | 63   | 0    | 72   | 77   | 3    | 53   |

| Major/Minor          | Major1 | Ν     | Major2 |     | Minor1   |       |
|----------------------|--------|-------|--------|-----|----------|-------|
| Conflicting Flow All | 0      | 0     | 63     | 0   | 284      | 63    |
| Stage 1              | -      | -     | -      | -   | 63       | -     |
| Stage 2              | -      | -     | -      | -   | 221      | -     |
| Critical Hdwy        | -      | -     | 4.12   | -   | 6.4      | 6.22  |
| Critical Hdwy Stg 1  | -      | -     | -      | -   | 5.4      | -     |
| Critical Hdwy Stg 2  | -      | -     | -      | -   | 5.4      | -     |
| Follow-up Hdwy       | -      | -     | 2.218  | -   | 3.5      | 3.318 |
| Pot Cap-1 Maneuver   | -      | -     | 1540   | -   | 710      | 1002  |
| Stage 1              | -      | -     | -      | -   | 965      | -     |
| Stage 2              | -      | -     | -      | -   | 821      | -     |
| Platoon blocked, %   | -      | -     |        | -   |          |       |
| Mov Cap-1 Maneuver   | -      | -     | 1540   | -   | 675      | 1002  |
| Mov Cap-2 Maneuver   | -      | -     | -      | -   | 687      | -     |
| Stage 1              | -      | -     | -      | -   | 965      | -     |
| Stage 2              | -      | -     | -      | -   | 781      | -     |
|                      |        |       |        |     |          |       |
| Approach             | EB     |       | WB     |     | NB       |       |
| HCM Control Delay, s |        |       | 3.6    |     | 8.9      |       |
| HCM LOS              | 0      |       | 0.0    |     | 0.5<br>A |       |
|                      |        |       |        |     | Λ        |       |
|                      |        |       |        |     |          |       |
| Minor Lane/Major Mvr | nt N   | VBLn1 | EBT    | EBR | WBL      | WBT   |
| Capacity (veh/h)     |        | 976   | -      |     | 1540     | -     |
| HCM Lane V/C Ratio   |        | 0.058 | -      | -   | 0.047    | -     |
| HCM Control Delay (s | )      | 8.9   | -      | -   | 7.5      | 0     |
| HCM Lane LOS         |        | А     | -      | -   | А        | Α     |
| HCM 95th %tile Q(veh | ו)     | 0.2   | -      | -   | 0.1      | -     |

HCM Lane LOS

HCM 95th %tile Q(veh)

\_

\_

-

-

| Int Delay, s/veh       | 0     |      |      |      |      |      |
|------------------------|-------|------|------|------|------|------|
| Movement               | EBL   | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    |       | 1    |      | 1    | 1    |      |
| Traffic Vol, veh/h     | 0     | 112  | 0    | 181  | 5    | 0    |
| Future Vol, veh/h      | 0     | 112  | 0    | 181  | 5    | 0    |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free  | Free | Free | Free | Stop | Stop |
| RT Channelized         | -     | None | -    | None | -    | None |
| Storage Length         | -     | 0    | -    | -    | -    | -    |
| Veh in Median Storage, | , # 1 | -    | -    | 0    | 0    | -    |
| Grade, %               | 0     | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90    | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2     | 3    | 2    | 0    | 3    | 2    |
| Mvmt Flow              | 0     | 124  | 0    | 201  | 6    | 0    |

| Major1    | ٨      | linor?                                      |                                                                                                                                                          |
|-----------|--------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| iviajor i |        |                                             |                                                                                                                                                          |
| -         | 0      |                                             | -                                                                                                                                                        |
| -         | -      |                                             | -                                                                                                                                                        |
| -         | -      | 201                                         | -                                                                                                                                                        |
| -         | -      | 6.53                                        | -                                                                                                                                                        |
| -         | -      | -                                           | -                                                                                                                                                        |
| -         | -      | 5.53                                        | -                                                                                                                                                        |
| -         | -      | 4.027                                       | -                                                                                                                                                        |
| 0         | -      | 693                                         | 0                                                                                                                                                        |
|           | -      | -                                           | 0                                                                                                                                                        |
|           | -      | 733                                         | 0                                                                                                                                                        |
|           | -      |                                             |                                                                                                                                                          |
| -         | -      | 0                                           | -                                                                                                                                                        |
| -         | -      |                                             | -                                                                                                                                                        |
| -         | -      |                                             | -                                                                                                                                                        |
| -         | -      |                                             | -                                                                                                                                                        |
|           |        | Ű                                           |                                                                                                                                                          |
|           |        |                                             |                                                                                                                                                          |
| NB        |        | SB                                          |                                                                                                                                                          |
| 0         |        |                                             |                                                                                                                                                          |
|           |        | -                                           |                                                                                                                                                          |
|           |        |                                             |                                                                                                                                                          |
|           |        |                                             |                                                                                                                                                          |
| NBT SBLn1 |        |                                             |                                                                                                                                                          |
|           |        |                                             |                                                                                                                                                          |
|           |        |                                             |                                                                                                                                                          |
|           |        |                                             |                                                                                                                                                          |
|           | Major1 | - 0<br><br><br><br><br><br><br><br>0 -<br>0 | - 0 201<br>0<br>- 201<br>201<br>6.53<br><br>5.53<br>4.027<br>0 - 693<br>0<br>0 - 733<br><br>0 - 733<br><br>0 - 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- |

# **Project Information**

| Project Information                 |                                              |            |                           |                       |  |  |  |
|-------------------------------------|----------------------------------------------|------------|---------------------------|-----------------------|--|--|--|
| Analyst                             | SRF Consulting                               | Date       |                           | 10/14/2022            |  |  |  |
| Agency                              |                                              | Analysis   | Year                      | 2022                  |  |  |  |
| Jurisdiction                        |                                              | Time An    | alyzed                    |                       |  |  |  |
| Project Description                 | 16002 - SD 50 btw SD 5<br>& SD 153 - Fall AM | 2 Units    |                           | U.S. Customary        |  |  |  |
|                                     | Se                                           | gment 1    |                           |                       |  |  |  |
| Vehicle Inputs                      |                                              |            |                           |                       |  |  |  |
| Segment Type                        | Passing Zone                                 | Length,    | ft                        | 5280                  |  |  |  |
| Lane Width, ft                      | 12                                           | Shoulde    | r Width, ft               | 6                     |  |  |  |
| Speed Limit, mi/h                   | 65                                           | Access P   | oint Density, pts/mi      | 7.0                   |  |  |  |
| Demand and Capacity                 |                                              |            |                           |                       |  |  |  |
| Directional Demand Flow Rate, veh/h | 373                                          | Opposin    | g Demand Flow Rate, veh/h | 156                   |  |  |  |
| Peak Hour Factor                    | 0.80                                         | Total Tru  | cks, %                    | 10.00                 |  |  |  |
| Segment Capacity, veh/h             | 1700                                         | Demand     | /Capacity (D/C)           | 0.22                  |  |  |  |
| Intermediate Results                |                                              |            |                           |                       |  |  |  |
| Segment Vertical Class              | 1                                            | Free-Flo   | w Speed, mi/h             | 72.0                  |  |  |  |
| Speed Slope Coefficient             | 4.19160                                      | Speed P    | ower Coefficient          | 0.55262               |  |  |  |
| PF Slope Coefficient                | -1.12764                                     | PF Powe    | r Coefficient             | 0.84866               |  |  |  |
| In Passing Lane Effective Length?   | No                                           | Total Seg  | gment Density, veh/mi/ln  | 2.1                   |  |  |  |
| %Improved % Followers               | 0.0                                          | % Impro    | ved Avg Speed             | 0.0                   |  |  |  |
| Subsegment Data                     |                                              |            |                           |                       |  |  |  |
| # Segment Type                      | Length, ft                                   | Radius, ft | Superelevation, %         | 6 Average Speed, mi/h |  |  |  |
| 1 Tangent                           | 5280                                         | -          | -                         | 70.0                  |  |  |  |
| Vehicle Results                     |                                              |            |                           |                       |  |  |  |
| Average Speed, mi/h                 | 70.0                                         | Percent    | Followers, %              | 38.6                  |  |  |  |
| Segment Travel Time, minutes        | 0.86                                         | Follower   | Density, followers/mi/ln  | 2.1                   |  |  |  |
| Vehicle LOS                         | В                                            |            |                           |                       |  |  |  |
| Bicycle Results                     |                                              |            |                           |                       |  |  |  |
| Percent Occupied Parking            | 0                                            | Pavemer    | nt Condition Rating       | 4                     |  |  |  |
| Flow Rate Outside Lane, veh/h       | 372                                          | Bicycle E  | ffective Width, ft        | 24                    |  |  |  |
| Bicycle LOS Score                   | 5.53                                         | Bicycle E  | ffective Speed Factor     | 5.07                  |  |  |  |
| Bicycle LOS                         | F                                            |            |                           |                       |  |  |  |
| Facility Results                    |                                              |            |                           |                       |  |  |  |
| T Followe                           | r Density, followers/mi/In                   | 1          | LOS                       |                       |  |  |  |
| 1                                   | 2.1                                          |            | В                         |                       |  |  |  |

| HCS7 Two-Lane | Highway Report |
|---------------|----------------|
|---------------|----------------|

#### **Project Information**

| Pro                  | oject Infor     | mation              |                                            |               |                                   |                    |                     |
|----------------------|-----------------|---------------------|--------------------------------------------|---------------|-----------------------------------|--------------------|---------------------|
| Ana                  | lyst            |                     | SRF Consulting                             | Date          |                                   |                    | 10/14/2022          |
| Agency               |                 |                     | Analysis                                   | Analysis Year |                                   | 2022               |                     |
| Juris                | diction         |                     |                                            | Time Aı       | nalyzed                           |                    |                     |
| Proj                 | ect Description | n                   | 16002 - SD 50 btw SD<br>& SD 153 - Fall PM | 52 Units      |                                   |                    | U.S. Customary      |
|                      |                 |                     | Se                                         | egment 1      |                                   |                    |                     |
| Vel                  | hicle Input     | ts                  |                                            |               |                                   |                    |                     |
| Segi                 | ment Type       |                     | Passing Zone                               | Length,       | ft                                |                    | 5280                |
| Lane                 | e Width, ft     |                     | 12                                         | Should        | er Width, f                       | ťt                 | 6                   |
| Spee                 | ed Limit, mi/h  |                     | 65                                         | Access        | Point Dens                        | sity, pts/mi       | 7.0                 |
| De                   | mand and        | Capacity            |                                            |               |                                   |                    |                     |
| Dire                 | ctional Demar   | nd Flow Rate, veh/h | 255                                        | Opposi        | ng Deman                          | d Flow Rate, veh/h | 366                 |
| Peak                 | K Hour Factor   |                     | 0.80                                       | Total Tr      | ucks, %                           |                    | 6.00                |
| Segi                 | ment Capacity   | , veh/h             | 1700                                       | Deman         | d/Capacity                        | / (D/C)            | 0.15                |
| Int                  | ermediate       | Results             |                                            |               |                                   |                    |                     |
| Segi                 | ment Vertical ( | Class               | 1                                          | Free-Flo      | Free-Flow Speed, mi/h             |                    | 72.2                |
| Spee                 | ed Slope Coef   | ficient             | 4.26762                                    | Speed I       | Speed Power Coefficient           |                    | 0.50255             |
| PF Slope Coefficient |                 | -1.16120            | PF Pow                                     | er Coeffici   | ent                               | 0.83254            |                     |
| In Pa                | assing Lane Ef  | fective Length?     | No                                         | Total Se      | Total Segment Density, veh/mi/ln  |                    | 1.1                 |
| %lm                  | proved % Foll   | owers               | 0.0                                        | % Impr        | % Improved Avg Speed              |                    | 0.0                 |
| Sul                  | bsegment        | Data                |                                            |               |                                   |                    |                     |
| #                    | Segment Ty      | ре                  | Length, ft                                 | Radius, ft    |                                   | Superelevation, %  | Average Speed, mi/h |
| 1                    | Tangent         |                     | 5280                                       | -             | -                                 |                    | 70.5                |
| Vel                  | hicle Resu      | lts                 | -<br>-                                     | -             |                                   | -                  |                     |
| Aver                 | rage Speed, m   | i/h                 | 70.5                                       | Percent       | rcent Followers, %                |                    | 31.1                |
| Segi                 | ment Travel Ti  | me, minutes         | 0.85                                       | Followe       | Follower Density, followers/mi/ln |                    | 1.1                 |
| Vehi                 | icle LOS        |                     | A                                          |               |                                   |                    |                     |
| Bic                  | ycle Resul      | ts                  |                                            |               |                                   |                    |                     |
| Perc                 | ent Occupied    | Parking             | 0                                          | Paveme        | Pavement Condition Rating         |                    | 4                   |
| Flow                 | v Rate Outside  | Lane, veh/h         | 255                                        | Bicycle       | Effective V                       | Vidth, ft          | 24                  |
| Bicy                 | cle LOS Score   |                     | 3.80                                       | Bicycle       | Bicycle Effective Speed Factor    |                    | 5.07                |
| Bicy                 | cle LOS         |                     | D                                          |               |                                   |                    |                     |
| Fac                  | ility Resu      | ts                  |                                            |               |                                   |                    |                     |
|                      | т               | Follower            | <sup>•</sup> Density, followers/mi/l       | n             |                                   | LC                 | os                  |
|                      | 1               |                     | 1.1                                        |               |                                   | Δ                  | l l                 |

# HCS7 Two-Lane Highway Report

| Pro                    | oject Infor     | mation              |                                           |                       |                                   |            |                    |                     |
|------------------------|-----------------|---------------------|-------------------------------------------|-----------------------|-----------------------------------|------------|--------------------|---------------------|
| Ana                    | yst             |                     | SRF Consulting                            |                       | Date                              |            |                    | 10/14/2022          |
| Age                    | ncy             |                     |                                           |                       | Analysis Year                     |            |                    | 2022                |
| Juris                  | diction         |                     |                                           |                       | Time An                           | alyzed     |                    |                     |
| Proj                   | ect Description | n                   | 16002 - SD 50 btw SD<br>& SD 153 - Summer | 52                    | Units                             |            |                    | U.S. Customary      |
|                        |                 |                     | S                                         | egm                   | ent 1                             |            |                    |                     |
| Vel                    | nicle Input     | ts                  |                                           |                       |                                   |            |                    |                     |
| Segi                   | ment Type       |                     | Passing Zone                              |                       | Length, f                         | ft         |                    | 5280                |
| Lane                   | e Width, ft     |                     | 12                                        |                       | Shoulde                           | r Width, f | t                  | 6                   |
| Spe                    | ed Limit, mi/h  |                     | 65                                        |                       | Access P                          | oint Dens  | ity, pts/mi        | 7.0                 |
| De                     | mand and        | Capacity            |                                           |                       |                                   |            |                    |                     |
| Dire                   | ctional Demar   | nd Flow Rate, veh/h | 385                                       |                       | Opposin                           | g Deman    | d Flow Rate, veh/h | 251                 |
| Peal                   | Hour Factor     |                     | 0.80                                      |                       | Total Tru                         | cks, %     |                    | 6.00                |
| Segi                   | ment Capacity   | , veh/h             | 1700                                      |                       | Demand                            | /Capacity  | r (D/C)            | 0.23                |
| Int                    | ermediate       | Results             |                                           |                       |                                   |            |                    |                     |
| Segment Vertical Class |                 | 1                   |                                           | Free-Flow Speed, mi/h |                                   | mi/h       | 72.2               |                     |
| Spe                    | ed Slope Coef   | ficient             | 4.23355                                   |                       | Speed Power Coefficient           |            | fficient           | 0.52602             |
| PF Slope Coefficient   |                 | -1.14594            |                                           | PF Powe               | r Coefficie                       | ent        | 0.84016            |                     |
| In Pa                  | assing Lane Ef  | fective Length?     | No                                        |                       | Total Seg                         | gment De   | nsity, veh/mi/ln   | 2.2                 |
| %lm                    | proved % Foll   | owers               | 0.0                                       |                       | % Improved Avg Speed              |            | Speed              | 0.0                 |
| Sul                    | osegment        | Data                |                                           |                       |                                   |            |                    |                     |
| #                      | Segment Ty      | ре                  | Length, ft                                | Radiu                 | us, ft                            |            | Superelevation, %  | Average Speed, mi/h |
| 1                      | Tangent         |                     | 5280                                      | -                     | -                                 |            | -                  | 70.0                |
| Vel                    | nicle Resu      | lts                 |                                           |                       |                                   |            |                    |                     |
| Avei                   | age Speed, m    | i/h                 | 70.0                                      |                       | Percent Followers, %              |            | , %                | 40.2                |
| Segi                   | ment Travel Ti  | me, minutes         | 0.86                                      |                       | Follower Density, followers/mi/ln |            | followers/mi/ln    | 2.2                 |
| Vehi                   | cle LOS         |                     | В                                         |                       |                                   |            |                    |                     |
| Bic                    | ycle Resul      | ts                  |                                           |                       |                                   |            |                    |                     |
| Perc                   | ent Occupied    | Parking             | 0                                         |                       | Pavement Condition Rating         |            | on Rating          | 4                   |
| Flow                   | v Rate Outside  | Lane, veh/h         | 385                                       |                       | Bicycle E                         | ffective V | /idth, ft          | 24                  |
| Bicy                   | cle LOS Score   |                     | 4.01                                      |                       | Bicycle Effective Speed Factor    |            | peed Factor        | 5.07                |
| Bicy                   | cle LOS         |                     | D                                         |                       |                                   |            |                    |                     |
| Fac                    | ility Resu      | ts                  |                                           |                       |                                   |            |                    |                     |
|                        | т               | Follower            | · Density, followers/mi,                  | /In                   |                                   |            | LO                 | S                   |
|                        | 1               |                     | 2.2                                       |                       |                                   |            | В                  |                     |

| HCS7 Two-Lane | Highway Report |
|---------------|----------------|
|---------------|----------------|

| Pro                    | oject Infor     | mation              |                                            |                       |                                   |                    |                     |
|------------------------|-----------------|---------------------|--------------------------------------------|-----------------------|-----------------------------------|--------------------|---------------------|
| Ana                    | lyst            |                     | SRF Consulting                             | Date                  |                                   |                    | 10/14/2022          |
| Age                    | ncy             |                     |                                            | Analysi               | s Year                            |                    | 2022                |
| Juris                  | diction         |                     |                                            | Time A                | nalyzed                           |                    |                     |
| Proj                   | ect Description | n                   | 16002 - SD 50 btw SD<br>& SD 314 - Fall AM | 153 Units             |                                   |                    | U.S. Customary      |
|                        |                 |                     | Se                                         | egment 1              |                                   |                    |                     |
| Vel                    | hicle Input     | ts                  |                                            |                       |                                   |                    |                     |
| Segi                   | ment Type       |                     | Passing Zone                               | Length,               | ft                                |                    | 2880                |
| Lane                   | e Width, ft     |                     | 12                                         | Should                | er Width, f                       | t                  | 6                   |
| Spee                   | ed Limit, mi/h  |                     | 65                                         | Access                | Point Dens                        | sity, pts/mi       | 8.0                 |
| De                     | mand and        | Capacity            |                                            |                       |                                   |                    |                     |
| Dire                   | ctional Demar   | nd Flow Rate, veh/h | 475                                        | Opposi                | ng Deman                          | d Flow Rate, veh/h | 175                 |
| Peak                   | K Hour Factor   |                     | 0.75                                       | Total Tr              | ucks, %                           |                    | 10.00               |
| Segi                   | ment Capacity   | , veh/h             | 1700                                       | Deman                 | d/Capacity                        | / (D/C)            | 0.28                |
| Int                    | ermediate       | Results             |                                            |                       |                                   |                    |                     |
| Segment Vertical Class |                 | 1                   | Free-Flo                                   | Free-Flow Speed, mi/h |                                   | 71.8               |                     |
| Spee                   | ed Slope Coef   | ficient             | 4.15857                                    | Speed I               | Power Coe                         | fficient           | 0.54671             |
| PF Slope Coefficient   |                 | -1.16448            | PF Pow                                     | er Coefficie          | ent                               | 0.83790            |                     |
| In Pa                  | assing Lane Ef  | fective Length?     | No                                         | Total Se              | Total Segment Density, veh/mi/ln  |                    | 3.2                 |
| %lm                    | proved % Foll   | owers               | 0.0                                        | % Impr                | % Improved Avg Speed              |                    | 0.0                 |
| Sul                    | bsegment        | Data                |                                            |                       |                                   |                    |                     |
| #                      | Segment Ty      | ре                  | Length, ft                                 | , ft Radius, ft       |                                   | Superelevation, %  | Average Speed, mi/h |
| 1                      | Tangent         |                     | 2880                                       | -                     | -                                 |                    | 69.3                |
| Vel                    | hicle Resu      | lts                 |                                            |                       |                                   |                    |                     |
| Aver                   | rage Speed, m   | i/h                 | 69.3                                       | 69.3 Percent F        |                                   | , %                | 46.4                |
| Segi                   | ment Travel Ti  | me, minutes         | 0.47                                       | Followe               | Follower Density, followers/mi/ln |                    | 3.2                 |
| Vehi                   | icle LOS        |                     | В                                          |                       |                                   |                    |                     |
| Bic                    | ycle Resul      | ts                  |                                            |                       |                                   |                    |                     |
| Perc                   | ent Occupied    | Parking             | 0                                          | Paveme                | ent Conditi                       | on Rating          | 4                   |
| Flow                   | v Rate Outside  | Lane, veh/h         | 475                                        | Bicycle               | Effective V                       | Vidth, ft          | 24                  |
| Bicy                   | cle LOS Score   |                     | 5.66                                       | Bicycle               | Bicycle Effective Speed Factor    |                    | 5.07                |
| Bicy                   | cle LOS         |                     | F                                          |                       |                                   |                    |                     |
| Fac                    | ility Resu      | ts                  |                                            |                       |                                   |                    |                     |
|                        | т               | Follower            | Density, followers/mi/l                    | n                     |                                   | LO                 | os                  |
|                        | 1               |                     | 3.2                                        |                       |                                   | В                  |                     |

#### **Project Information**

| Pro                  | ject Infor         | mation              |                                            |                |                                   |                    |                    |                     |
|----------------------|--------------------|---------------------|--------------------------------------------|----------------|-----------------------------------|--------------------|--------------------|---------------------|
| Anal                 | yst                |                     | SRF Consulting                             |                | Date                              |                    |                    | 10/14/2022          |
| Age                  | ency Analysis Year |                     |                                            | 2022           |                                   |                    |                    |                     |
| Juris                | diction            |                     |                                            |                | Time An                           | alyzed             |                    |                     |
| Proje                | ect Description    | n                   | 16002 - SD 50 btw SD<br>& SD 314 - Fall PM | 153            | Units                             |                    |                    | U.S. Customary      |
|                      |                    |                     | S                                          | egm            | nent 1                            |                    |                    |                     |
| Veł                  | nicle Input        | ts                  |                                            |                |                                   |                    |                    |                     |
| Segr                 | nent Type          |                     | Passing Zone                               |                | Length, 1                         | ft                 |                    | 2880                |
| Lane                 | Width, ft          |                     | 12                                         |                | Shoulde                           | r Width, f         | t                  | 6                   |
| Spee                 | ed Limit, mi/h     |                     | 65                                         |                | Access P                          | oint Dens          | sity, pts/mi       | 8.0                 |
| Dei                  | mand and           | Capacity            |                                            |                |                                   |                    |                    |                     |
| Dire                 | ctional Demar      | nd Flow Rate, veh/h | 468                                        |                | Opposin                           | g Deman            | d Flow Rate, veh/h | 300                 |
| Peak                 | Hour Factor        |                     | 0.75                                       |                | Total Tru                         | cks, %             |                    | 8.00                |
| Segr                 | nent Capacity      | , veh/h             | 1700                                       |                | Demand                            | /Capacity          | r (D/C)            | 0.28                |
| Inte                 | ermediate          | Results             |                                            |                |                                   |                    |                    |                     |
| Segr                 | nent Vertical (    | Class               | 1                                          |                | Free-Flow Speed, mi/h             |                    | mi/h               | 71.8                |
| Spee                 | ed Slope Coef      | ficient             | 4.20472                                    |                | Speed Power Coefficient           |                    | fficient           | 0.51520             |
| PF Slope Coefficient |                    | -1.18677            |                                            | PF Powe        | r Coefficie                       | ent                | 0.82832            |                     |
| In Pa                | issing Lane Ef     | fective Length?     | No                                         |                | Total Segment Density, veh/mi/ln  |                    | nsity, veh/mi/ln   | 3.2                 |
| %lm                  | proved % Foll      | owers               | 0.0                                        |                | % Impro                           | ved Avg S          | Speed              | 0.0                 |
| Suk                  | osegment           | Data                |                                            |                |                                   |                    |                    |                     |
| #                    | Segment Ty         | ре                  | Length, ft                                 | Radi           | ius, ft                           |                    | Superelevation, %  | Average Speed, mi/h |
| 1                    | Tangent            |                     | 2880                                       | -              | -                                 |                    | -                  | 69.3                |
| Veł                  | nicle Resu         | lts                 | -                                          |                |                                   |                    | •                  | ·                   |
| Aver                 | age Speed, m       | i/h                 | 69.3                                       | 69.3 Percent F |                                   | rcent Followers, % |                    | 46.9                |
| Segr                 | nent Travel Ti     | me, minutes         | 0.47                                       |                | Follower Density, followers/mi/ln |                    | followers/mi/ln    | 3.2                 |
| Vehi                 | cle LOS            |                     | В                                          |                |                                   |                    |                    |                     |
| Bic                  | ycle Resul         | ts                  |                                            |                |                                   |                    |                    |                     |
| Perc                 | ent Occupied       | Parking             | 0                                          |                | Pavemer                           | nt Conditi         | on Rating          | 4                   |
| Flow                 | Rate Outside       | Lane, veh/h         | 468                                        |                | Bicycle E                         | ffective V         | Vidth, ft          | 24                  |
| Bicy                 | le LOS Score       |                     | 4.83                                       |                | Bicycle Effective Speed Factor    |                    | peed Factor        | 5.07                |
| Bicy                 | cle LOS            |                     | E                                          |                |                                   |                    |                    |                     |
| Fac                  | ility Resul        | ts                  |                                            |                |                                   |                    |                    |                     |
|                      | т                  | Follower            | Density, followers/mi/                     | ′ln            |                                   |                    | LO                 | S                   |
|                      | 1                  |                     | 3.2                                        |                |                                   |                    | В                  |                     |

# HCS7 Two-Lane Highway Report

| Pro                    | oject Infor     | mation              |                                           |                       |                                   |             |                    |                     |
|------------------------|-----------------|---------------------|-------------------------------------------|-----------------------|-----------------------------------|-------------|--------------------|---------------------|
| Ana                    | yst             |                     | SRF Consulting                            | Da                    | ate                               |             |                    | 10/14/2022          |
| Age                    | ncy             |                     |                                           | Ar                    | Analysis Year                     |             |                    | 2022                |
| Juris                  | diction         |                     |                                           | Ti                    | ime Ana                           | alyzed      |                    |                     |
| Proj                   | ect Description | n                   | 16002 - SD 50 btw SD<br>& SD 314 - Summer | ) 153 Ui              | Inits                             |             |                    | U.S. Customary      |
|                        |                 |                     | S                                         | egme                  | ent 1                             |             |                    |                     |
| Vel                    | nicle Input     | ts                  |                                           |                       |                                   |             |                    |                     |
| Segi                   | ment Type       |                     | Passing Zone                              | Le                    | ength, f                          | ť           |                    | 5280                |
| Lane                   | e Width, ft     |                     | 12                                        | Sh                    | houlder                           | · Width, f  | t                  | 6                   |
| Spe                    | ed Limit, mi/h  |                     | 65                                        | Ad                    | ccess P                           | oint Dens   | ity, pts/mi        | 6.0                 |
| De                     | mand and        | Capacity            |                                           |                       |                                   |             |                    |                     |
| Dire                   | ctional Demar   | nd Flow Rate, veh/h | 445                                       | 0                     | pposin                            | g Deman     | d Flow Rate, veh/h | 264                 |
| Peak                   | Hour Factor     |                     | 0.80                                      | То                    | otal Tru                          | cks, %      |                    | 4.00                |
| Segi                   | ment Capacity   | , veh/h             | 1700                                      | De                    | emand,                            | /Capacity   | (D/C)              | 0.26                |
| Int                    | ermediate       | Results             |                                           |                       |                                   |             |                    |                     |
| Segment Vertical Class |                 | 1                   |                                           | Free-Flow Speed, mi/h |                                   | mi/h        | 72.5               |                     |
| Spe                    | ed Slope Coef   | ficient             | 4.25475                                   |                       | peed Po                           | ower Coe    | fficient           | 0.52310             |
| PF S                   | lope Coefficie  | nt                  | -1.14577                                  |                       | F Powei                           | r Coefficie | ent                | 0.83978             |
| In Pa                  | assing Lane Ef  | fective Length?     | No                                        |                       | Total Segment Density, veh/mi/ln  |             | nsity, veh/mi/ln   | 2.8                 |
| %lm                    | proved % Foll   | owers               | 0.0 % Impr                                |                       | % Improved Avg Speed              |             | Speed              | 0.0                 |
| Sul                    | osegment        | Data                |                                           |                       |                                   |             |                    |                     |
| #                      | Segment Ty      | ре                  | Length, ft                                | Radius,               | s, ft                             |             | Superelevation, %  | Average Speed, mi/h |
| 1                      | Tangent         |                     | 5280                                      | -                     | -                                 |             | -                  | 70.0                |
| Vel                    | nicle Resu      | lts                 |                                           |                       |                                   |             |                    |                     |
| Avei                   | age Speed, m    | i/h                 | 70.0                                      | Pe                    | Percent Followers, %              |             | %                  | 44.0                |
| Segi                   | ment Travel Ti  | me, minutes         | 0.86                                      | Fc                    | Follower Density, followers/mi/ln |             | followers/mi/ln    | 2.8                 |
| Vehi                   | cle LOS         |                     | В                                         |                       |                                   |             |                    |                     |
| Bic                    | ycle Resul      | ts                  |                                           |                       |                                   |             |                    |                     |
| Perc                   | ent Occupied    | Parking             | 0                                         | Pa                    | avemen                            | nt Conditi  | on Rating          | 4                   |
| Flow                   | v Rate Outside  | Lane, veh/h         | 445                                       | Bi                    | Bicycle Effective Width, ft       |             | /idth, ft          | 24                  |
| Bicy                   | cle LOS Score   |                     | 3.44                                      |                       | Bicycle Effective Speed Factor    |             | peed Factor        | 5.07                |
| Bicy                   | cle LOS         |                     | С                                         |                       |                                   |             |                    |                     |
| Fac                    | ility Resu      | ts                  |                                           |                       |                                   |             |                    |                     |
|                        | т               | Follower            | · Density, followers/mi/                  | /In                   |                                   |             | LO                 | S                   |
|                        | 1               |                     | 2.8                                       |                       |                                   |             | В                  |                     |

## **Project Information**

| Analyst             | SRF Consulting                                                    | Date          | 10/14/2022     |
|---------------------|-------------------------------------------------------------------|---------------|----------------|
| Agency              |                                                                   | Analysis Year | 2022           |
| Jurisdiction        |                                                                   | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Deer<br>Blvd & West City Limits Rd<br>- Fall AM | Units         | U.S. Customary |

| Direction 1 Eastbound                 |              |                                        |       |  |  |  |  |  |
|---------------------------------------|--------------|----------------------------------------|-------|--|--|--|--|--|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |  |  |  |  |  |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |  |  |  |  |  |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |  |  |  |  |  |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 8.0   |  |  |  |  |  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |  |  |  |  |  |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |  |  |  |  |  |
| Free-Flow Speed (FFS), mi/h           | 53.0         |                                        |       |  |  |  |  |  |
| Direction 1 Adjustment Fact           | ors          |                                        |       |  |  |  |  |  |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |  |  |  |  |  |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |  |  |  |  |  |
| Driver Population CAF                 | 1.000        |                                        |       |  |  |  |  |  |
| Direction 1 Demand and Ca             | pacity       |                                        |       |  |  |  |  |  |
| Volume(V) veh/h                       | 169          | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |  |  |  |  |  |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 95    |  |  |  |  |  |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2060  |  |  |  |  |  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2060  |  |  |  |  |  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.05  |  |  |  |  |  |
| Direction 1 Speed and Densi           | ity          |                                        |       |  |  |  |  |  |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.0  |  |  |  |  |  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 1.8   |  |  |  |  |  |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |  |  |  |  |  |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |       |  |  |  |  |  |
| Direction 1 Bicycle LOS               |              |                                        |       |  |  |  |  |  |
| Flow Rate in Outside Lane (vOL),veh/h | 94           | Effective Speed Factor (St)            | 4.62  |  |  |  |  |  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.75  |  |  |  |  |  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |  |  |  |  |  |

| Direction 2                           | Westbound    |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 7.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.3         |                                        |       |
| Direction 2 Adjustment Factor         | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 2 Demand and Cap            | acity        |                                        |       |
| Volume(V) veh/h                       | 89           | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 50    |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2064  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2064  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.02  |
| Direction 2 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 0.9   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 1.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (voL),veh/h | 94           | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.75  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |

SD 52 btw Deer Blvd & West City Limits Rd - Fall AM.xuf

## **Project Information**

| Analyst      | SRF Consulting                                                    | Date          | 10/14/2022     |
|--------------|-------------------------------------------------------------------|---------------|----------------|
| Agency       |                                                                   | Analysis Year | 2022           |
| Jurisdiction |                                                                   | Time Analyzed |                |
|              | 16002 - SD 52 btw Deer<br>Blvd & West City Limits Rd<br>- Fall PM | Units         | U.S. Customary |

| Direction 1                           | Eastbound    |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 8.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.0         |                                        |       |
| Direction 1 Adjustment Fact           | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 1 Demand and Cap            | pacity       |                                        |       |
| Volume(V) veh/h                       | 209          | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90         | Flow Rate (V <sub>p</sub> ), pc/h/ln   | 118   |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2060  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2060  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.06  |
| Direction 1 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.0  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 2.2   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |       |
| Direction 1 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 116          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.86  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |

|                                       | 1            |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 2                           | Westbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 7.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.3         |                                        |       |
| Direction 2 Adjustment Fact           | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 2 Demand and Cap            | oacity       |                                        |       |
| Volume(V) veh/h                       | 262          | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 147   |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2064  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2064  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.07  |
| Direction 2 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 2.8   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 1.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 116          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.86  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |

SD 52 btw Deer Blvd & West City Limits Rd - Fall PM.xuf

## **Project Information**

| Analyst             | SRF Consulting                                                   | Date          | 10/14/2022     |
|---------------------|------------------------------------------------------------------|---------------|----------------|
| Agency              |                                                                  | Analysis Year | 2022           |
| Jurisdiction        |                                                                  | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Deer<br>Blvd & West City Limits Rd<br>- Summer | Units         | U.S. Customary |

| Direction 1                           | Eastbound         |                                        |       |
|---------------------------------------|-------------------|----------------------------------------|-------|
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Level |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base              | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0              | Access Point Density, pts/mi           | 8.0   |
| Lane Width, ft                        | 12                | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL             | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.0              |                                        |       |
| Direction 1 Adjustment Fact           | ors               |                                        |       |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.898             |                                        |       |
| Direction 1 Demand and Cap            | pacity            | ·                                      | ·     |
| Volume(V) veh/h                       | 298               | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90              | Flow Rate (Vp), pc/h/ln                | 167   |
| Total Trucks, %                       | 1.00              | Capacity (c), pc/h/ln                  | 2060  |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 2060  |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.08  |
| Direction 1 Speed and Densi           | ity               |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0               | Average Speed (S), mi/h                | 53.0  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0               | Density (D ), pc/mi/ln                 | 3.2   |
| Median Type Adjustment (fM)           | 0.0               | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 2.0               |                                        |       |
| Direction 1 Bicycle LOS               |                   |                                        | ·     |
| Flow Rate in Outside Lane (vOL),veh/h | 166               | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18                | Bicyle LOS Score (BLOS)                | 2.04  |
| Average Effective Width (We), ft      | 24                | Bicycle Level of Service (LOS)         | В     |

| Direction 2 Geometric Data            |                   |                                        |       |
|---------------------------------------|-------------------|----------------------------------------|-------|
| Direction 2                           | Westbound         |                                        |       |
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Level |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base              | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0              | Access Point Density, pts/mi           | 7.0   |
| Lane Width, ft                        | 12                | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL             | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.3              |                                        |       |
| Direction 2 Adjustment Fact           | ors               |                                        |       |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.898             |                                        |       |
| Direction 2 Demand and Cap            | acity             |                                        | ÷     |
| Volume(V) veh/h                       | 531               | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90              | Flow Rate (Vp), pc/h/ln                | 298   |
| Total Trucks, %                       | 1.00              | Capacity (c), pc/h/ln                  | 2064  |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 2064  |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.14  |
| Direction 2 Speed and Densi           | ty                |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0               | Average Speed (S), mi/h                | 53.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0               | Density (D ), pc/mi/ln                 | 5.6   |
| Median Type Adjustment (fM)           | 0.0               | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 1.8               |                                        |       |
| Direction 2 Bicycle LOS               |                   |                                        |       |
| Flow Rate in Outside Lane (vol),veh/h | 166               | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18                | Bicyle LOS Score (BLOS)                | 2.04  |
| Average Effective Width (We), ft      | 24                | Bicycle Level of Service (LOS)         | В     |

SD 52 btw Deer Blvd & West City Limits Rd - Summer.xuf

## **Project Information**

| Analyst             | SRF Consulting                                              | Date          | 10/13/2022     |
|---------------------|-------------------------------------------------------------|---------------|----------------|
| Agency              |                                                             | Analysis Year | 2022           |
| Jurisdiction        |                                                             | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Gavin's<br>Point Rd & SD 153 - Fall<br>AM | Units         | U.S. Customary |

| Direction 1                           | Eastbound    |                                        |         |
|---------------------------------------|--------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0         | Access Point Density, pts/mi           | 8.0     |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 48.0         |                                        |         |
| Direction 1 Adjustment Fact           | ors          |                                        |         |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 1.000        |                                        |         |
| Direction 1 Demand and Ca             | pacity       | -<br>-                                 |         |
| Volume(V) veh/h                       | 101          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 56      |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 1960    |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 1960    |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.03    |
| Direction 1 Speed and Densi           | ity          |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 48.0    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 1.2     |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |         |
| Direction 1 Bicycle LOS               |              |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 56           | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 25           | Bicyle LOS Score (BLOS)                | 0.01    |
| Average Effective Width (We), ft      | 30           | Bicycle Level of Service (LOS)         | A       |

| Direction 2 Geometric Data            |              |                                        |         |
|---------------------------------------|--------------|----------------------------------------|---------|
| Direction 2                           | Westbound    |                                        |         |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0         | Access Point Density, pts/mi           | 2.0     |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 49.5         |                                        |         |
| Direction 2 Adjustment Fact           | ors          |                                        |         |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 1.000        |                                        |         |
| Direction 2 Demand and Cap            | bacity       |                                        | ·       |
| Volume(V) veh/h                       | 48           | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 26      |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 1990    |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 1990    |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.01    |
| Direction 2 Speed and Densi           | ty           |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 49.5    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 0.5     |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 0.5          |                                        |         |
| Direction 2 Bicycle LOS               |              |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 56           | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 25           | Bicyle LOS Score (BLOS)                | 0.01    |
| Average Effective Width (We), ft      | 30           | Bicycle Level of Service (LOS)         | A       |

Rights Reserved. HCS TWO INformation Constraints and SD 52 btw Gavin's Point Rd & SD 153 - Fall AM.xuf

## **Project Information**

| Analyst             | SRF Consulting                                              | Date          | 10/13/2022     |
|---------------------|-------------------------------------------------------------|---------------|----------------|
| Agency              |                                                             | Analysis Year | 2022           |
| Jurisdiction        |                                                             | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Gavin's<br>Point Rd & SD 153 - Fall<br>PM | Units         | U.S. Customary |

| Direction 1                           | Eastbound    |                                        |         |
|---------------------------------------|--------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0         | Access Point Density, pts/mi           | 8.0     |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 48.0         |                                        |         |
| Direction 1 Adjustment Fact           | ors          |                                        |         |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 1.000        |                                        |         |
| Direction 1 Demand and Cap            | pacity       |                                        |         |
| Volume(V) veh/h                       | 125          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90         | Flow Rate (V <sub>P</sub> ), pc/h/ln   | 70      |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 1960    |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 1960    |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.04    |
| Direction 1 Speed and Densi           | ty           |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 48.0    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 1.5     |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |         |
| Direction 1 Bicycle LOS               |              | ·                                      |         |
| Flow Rate in Outside Lane (vOL),veh/h | 69           | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 23           | Bicyle LOS Score (BLOS)                | 0.70    |
| Average Effective Width (We), ft      | 28           | Bicycle Level of Service (LOS)         | A       |

| Direction 2                            | Westbound    |                                        |         |
|----------------------------------------|--------------|----------------------------------------|---------|
| Number of Lanes (N), In                | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                 | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed       | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h      | 50.0         | Access Point Density, pts/mi           | 2.0     |
| Lane Width, ft                         | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                            | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h            | 49.5         |                                        |         |
| Direction 2 Adjustment Fact            | ors          |                                        |         |
| Driver Population                      | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                  | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                  | 1.000        |                                        |         |
| Direction 2 Demand and Ca              | pacity       |                                        |         |
| Volume(V) veh/h                        | 140          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                       | 0.90         | Flow Rate (Vp), pc/h/ln                | 78      |
| Total Trucks, %                        | 0.00         | Capacity (c), pc/h/ln                  | 1990    |
| Single-Unit Trucks (SUT), %            | -            | Adjusted Capacity (cadj), pc/h/ln      | 1990    |
| Tractor-Trailers (TT), %               | -            | Volume-to-Capacity Ratio (v/c)         | 0.04    |
| Direction 2 Speed and Densi            | ty           |                                        |         |
| Lane Width Adjustment (fLW)            | 0.0          | Average Speed (S), mi/h                | 49.5    |
| Total Lateral Clearance Adj. (fLLC)    | 0.0          | Density (D ), pc/mi/ln                 | 1.6     |
| Median Type Adjustment (fM)            | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)   | 0.5          |                                        |         |
| Direction 2 Bicycle LOS                |              |                                        |         |
| Flow Rate in Outside Lane (vol), veh/h | 69           | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft     | 23           | Bicyle LOS Score (BLOS)                | 0.70    |
| Average Effective Width (We), ft       | 28           | Bicycle Level of Service (LOS)         | A       |

Rights Reserved. HCS TWO MULTINATE VERSION 77575 SD 52 btw Gavin's Point Rd & SD 153 - Fall PM.xuf

## **Project Information**

| Analyst             | SRF Consulting                                             | Date          | 10/13/2022     |
|---------------------|------------------------------------------------------------|---------------|----------------|
| Agency              |                                                            | Analysis Year | 2022           |
| Jurisdiction        |                                                            | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Gavin's<br>Point Rd & SD 153 -<br>Summer | Units         | U.S. Customary |

| Direction 1                           | Eastbound         |                                        |         |
|---------------------------------------|-------------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base              | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0              | Access Point Density, pts/mi           | 8.0     |
| Lane Width, ft                        | 12                | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL             | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 48.0              |                                        |         |
| Direction 1 Adjustment Fact           | ors               |                                        |         |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 0.898             |                                        |         |
| Direction 1 Demand and Cap            | pacity            |                                        | ÷       |
| Volume(V) veh/h                       | 165               | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90              | Flow Rate (V <sub>p</sub> ), pc/h/ln   | 92      |
| Total Trucks, %                       | 0.00              | Capacity (c), pc/h/ln                  | 1960    |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 1960    |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.05    |
| Direction 1 Speed and Densi           | ity               |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0               | Average Speed (S), mi/h                | 48.0    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0               | Density (D ), pc/mi/ln                 | 1.9     |
| Median Type Adjustment (fM)           | 0.0               | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 2.0               |                                        |         |
| Direction 1 Bicycle LOS               |                   |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 92                | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 17                | Bicyle LOS Score (BLOS)                | 2.34    |
| Average Effective Width (We), ft      | 22                | Bicycle Level of Service (LOS)         | В       |

| Direction 2 Geometric Data            |                   |                                        |         |
|---------------------------------------|-------------------|----------------------------------------|---------|
| Direction 2                           | Westbound         |                                        |         |
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base              | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0              | Access Point Density, pts/mi           | 2.0     |
| Lane Width, ft                        | 12                | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL             | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 49.5              |                                        |         |
| Direction 2 Adjustment Fact           | ors               |                                        |         |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 0.898             |                                        |         |
| Direction 2 Demand and Cap            | pacity            |                                        | ÷       |
| Volume(V) veh/h                       | 203               | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90              | Flow Rate (Vp), pc/h/ln                | 113     |
| Total Trucks, %                       | 0.00              | Capacity (c), pc/h/ln                  | 1990    |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 1990    |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.06    |
| Direction 2 Speed and Densi           | ty                |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0               | Average Speed (S), mi/h                | 49.5    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0               | Density (D ), pc/mi/ln                 | 2.3     |
| Median Type Adjustment (fM)           | 0.0               | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 0.5               |                                        |         |
| Direction 2 Bicycle LOS               |                   |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 92                | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 17                | Bicyle LOS Score (BLOS)                | 2.34    |
| Average Effective Width (We), ft      | 22                | Bicycle Level of Service (LOS)         | В       |

|                   |                      | HCS7 Two                            | o-Lane  | Highv                             | vay Re                  | eport              |                     |
|-------------------|----------------------|-------------------------------------|---------|-----------------------------------|-------------------------|--------------------|---------------------|
| Project Info      | ormation             |                                     |         |                                   |                         |                    |                     |
| Analyst           |                      | SRF Consulting                      |         | Date                              |                         |                    | 10/14/2022          |
| Agency            |                      |                                     |         | Analysis                          | Year                    |                    | 2022                |
| Jurisdiction      |                      |                                     |         | Time An                           | alyzed                  |                    |                     |
| Project Descripti | on                   | 16002 SD 52 btw<br>Gavin's Point Rd |         | Units                             |                         |                    | U.S. Customary      |
|                   |                      |                                     | Segn    | nent 1                            |                         |                    |                     |
| Vehicle Inp       | uts                  |                                     |         |                                   |                         |                    |                     |
| Segment Type      |                      | Passing Zone                        |         | Length, f                         | ft                      |                    | 18480               |
| Lane Width, ft    |                      | 12                                  |         | Shoulder                          | r Width, f              | t                  | 5                   |
| Speed Limit, mi/  | 'n                   | 55                                  |         | Access P                          | oint Dens               | sity, pts/mi       | 7.0                 |
| Demand an         | d Capacity           | ·                                   |         |                                   |                         |                    | ·                   |
| Directional Dem   | and Flow Rate, veh/h | 28                                  |         | Opposin                           | g Deman                 | d Flow Rate, veh/h | 11                  |
| Peak Hour Facto   | r                    | 0.85                                |         | Total Tru                         | Total Trucks, %         |                    | 0.00                |
| Segment Capaci    | ty, veh/h            | 1700                                |         | Demand                            | Demand/Capacity (D/C)   |                    | 0.02                |
| Intermedia        | te Results           |                                     |         |                                   |                         |                    |                     |
| Segment Vertica   | l Class              | 1                                   |         | Free-Flov                         | Free-Flow Speed, mi/h   |                    | 60.3                |
| Speed Slope Co    | efficient            | 3.50060                             |         | Speed Po                          | Speed Power Coefficient |                    | 0.64008             |
| PF Slope Coeffic  | ient                 | -1.13041                            |         | PF Power Coefficient              |                         | ent                | 0.80928             |
| In Passing Lane   | Effective Length?    | No                                  |         | Total Segment Density, veh/mi/ln  |                         | nsity, veh/mi/ln   | 0.0                 |
| %Improved % Fo    | ollowers             | 0.0                                 |         | % Improved Avg Speed              |                         | Speed              | 0.0                 |
| Subsegmen         | t Data               |                                     |         |                                   |                         |                    | ·                   |
| # Segment         | Гуре                 | Length, ft                          | Rad     | dius, ft                          |                         | Superelevation, %  | Average Speed, mi/h |
| 1 Tangent         |                      | 18480                               | -       |                                   |                         | -                  | 60.3                |
| Vehicle Res       | ults                 |                                     |         |                                   |                         |                    |                     |
| Average Speed,    | mi/h                 | 60.3                                |         | Percent I                         | Followers               | , %                | 6.1                 |
| Segment Travel    | Time, minutes        | 3.49                                |         | Follower Density, followers/mi/ln |                         | followers/mi/ln    | 0.0                 |
| Vehicle LOS       |                      | A                                   |         |                                   |                         |                    |                     |
| Bicycle Res       | ults                 |                                     |         |                                   |                         |                    |                     |
| Percent Occupie   | d Parking            | 0                                   |         | Pavemer                           | nt Conditi              | on Rating          | 3                   |
| Flow Rate Outsid  | -                    | 28                                  |         | Bicycle Effective Width, ft       |                         | -                  | 37                  |
| Bicycle LOS Scor  | e                    | 0.00                                |         | Bicycle E                         | ffective S              | peed Factor        | 4.79                |
| Bicycle LOS       |                      | A                                   |         |                                   |                         |                    |                     |
| Facility Res      | ults                 |                                     |         |                                   |                         |                    |                     |
| T                 | Followe              | r Density, followers                | s/mi/ln |                                   |                         | LC                 | )S                  |
| 1                 |                      | 0.0                                 | -       |                                   |                         | A                  |                     |

|                      |                  | HCS7 Two                              | -Lane  | Highv                                                    | vay Re                  | eport              |                     |
|----------------------|------------------|---------------------------------------|--------|----------------------------------------------------------|-------------------------|--------------------|---------------------|
| Project Inform       | nation           |                                       |        |                                                          |                         |                    |                     |
| Analyst              |                  | SRF Consulting                        |        | Date                                                     | Date                    |                    | 10/14/2022          |
| Agency               |                  |                                       |        | Analysis                                                 | Year                    |                    | 2022                |
| Jurisdiction         |                  |                                       |        | Time An                                                  | alyzed                  |                    |                     |
| Project Description  |                  | 16002 SD 52 btw<br>Gavin's Point Rd - |        | Units                                                    |                         |                    | U.S. Customary      |
|                      |                  |                                       | Segr   | nent 1                                                   |                         |                    |                     |
| Vehicle Inputs       | 5                |                                       |        |                                                          |                         |                    |                     |
| Segment Type         |                  | Passing Zone                          |        | Length, f                                                | ft                      |                    | 18480               |
| Lane Width, ft       |                  | 12                                    |        | Shoulder                                                 | r Width, f              | t                  | 5                   |
| Speed Limit, mi/h    |                  | 55                                    |        | Access P                                                 | oint Dens               | sity, pts/mi       | 7.0                 |
| Demand and           | Capacity         |                                       |        |                                                          |                         |                    |                     |
| Directional Demand   | flow Rate, veh/h | 24                                    |        | Opposin                                                  | g Deman                 | d Flow Rate, veh/h | 20                  |
| Peak Hour Factor     |                  | 0.85                                  |        | Total Tru                                                | Total Trucks, %         |                    | 0.00                |
| Segment Capacity,    | veh/h            | 1700                                  |        | Demand                                                   | /Capacity               | r (D/C)            | 0.01                |
| Intermediate         | Results          |                                       |        |                                                          |                         |                    | -1                  |
| Segment Vertical Cl  | ass              | 1                                     |        | Free-Flow Speed, mi/h                                    |                         | mi/h               | 60.3                |
| Speed Slope Coeffic  | cient            | 3.51323                               |        | Speed Po                                                 | Speed Power Coefficient |                    | 0.62737             |
| PF Slope Coefficien  | t                | -1.14136                              |        | PF Power Coefficient                                     |                         | ent                | 0.80591             |
| In Passing Lane Effe | ective Length?   | No                                    |        | Total Segment Density, veh/mi/ln                         |                         | nsity, veh/mi/ln   | 0.0                 |
| %Improved % Follo    | wers             | 0.0                                   |        | % Improved Avg Speed                                     |                         | Speed              | 0.0                 |
| Subsegment [         | Data             | -                                     |        |                                                          |                         |                    | -                   |
| # Segment Type       | e                | Length, ft                            | Ra     | dius, ft                                                 |                         | Superelevation, %  | Average Speed, mi/h |
| 1 Tangent            |                  | 18480                                 | -      |                                                          |                         | -                  | 60.3                |
| Vehicle Result       | S                |                                       |        |                                                          |                         | 1                  |                     |
| Average Speed, mi/   | ſh               | 60.3                                  |        | Percent I                                                | Followers               | , %                | 5.4                 |
| Segment Travel Tim   |                  | 3.49                                  |        | Follower Density, followers/mi/ln                        |                         | followers/mi/ln    | 0.0                 |
| Vehicle LOS          |                  | A                                     |        |                                                          |                         |                    |                     |
| Bicycle Result       | s                | 1                                     |        |                                                          |                         |                    |                     |
| Percent Occupied P   |                  | 0                                     |        | Pavemer                                                  | nt Conditi              | on Rating          | 3                   |
| Flow Rate Outside L  | -                | 24                                    |        | Pavement Condition Rating<br>Bicycle Effective Width, ft |                         | -                  | 37                  |
| Bicycle LOS Score    |                  | 0.00                                  |        |                                                          |                         | peed Factor        | 4.79                |
| Bicycle LOS          |                  | A                                     |        | · ·                                                      |                         |                    |                     |
| Facility Result      | S                |                                       |        |                                                          |                         |                    |                     |
| T                    |                  | r Density, followers,                 | /mi/ln |                                                          |                         | LC                 | S                   |
| 1                    |                  | 0.0                                   |        |                                                          |                         | A                  |                     |

|                                     | HCS7 Two-Lar                                              | ne Highway R        | eport               |                     |
|-------------------------------------|-----------------------------------------------------------|---------------------|---------------------|---------------------|
| Project Information                 |                                                           |                     |                     |                     |
| Analyst                             | SRF Consulting                                            | Date                |                     | 10/14/2022          |
| Agency                              |                                                           | Analysis Year       |                     | 2022                |
| Jurisdiction                        |                                                           | Time Analyzed       |                     |                     |
| Project Description                 | 16002 - SD 52 btw SD 50<br>& Gavin's Point Rd -<br>Summer | ) Units             |                     | U.S. Customary      |
|                                     | Seg                                                       | gment 1             |                     |                     |
| Vehicle Inputs                      |                                                           |                     |                     |                     |
| Segment Type                        | Passing Zone                                              | Length, ft          |                     | 18480               |
| Lane Width, ft                      | 12                                                        | Shoulder Width,     | ft                  | 5                   |
| Speed Limit, mi/h                   | 55                                                        | Access Point Den    | sity, pts/mi        | 7.0                 |
| Demand and Capacity                 |                                                           | •                   |                     |                     |
| Directional Demand Flow Rate, veh/h | 40                                                        | Opposing Demar      | nd Flow Rate, veh/h | 33                  |
| Peak Hour Factor                    | 0.85                                                      | Total Trucks, %     |                     | 0.00                |
| Segment Capacity, veh/h             | 1700                                                      | Demand/Capacity     | y (D/C)             | 0.02                |
| Intermediate Results                |                                                           |                     | -                   |                     |
| Segment Vertical Class              | 1                                                         | Free-Flow Speed,    | mi/h                | 60.3                |
| Speed Slope Coefficient             | 3.52637                                                   | Speed Power Coe     | efficient           | 0.61454             |
| PF Slope Coefficient                | -1.15246                                                  | PF Power Coeffici   | ent                 | 0.80250             |
| In Passing Lane Effective Length?   | No                                                        | Total Segment De    | ensity, veh/mi/ln   | 0.1                 |
| %Improved % Followers               | 0.0                                                       | % Improved Avg      | Speed               | 0.0                 |
| Subsegment Data                     |                                                           |                     |                     |                     |
| # Segment Type                      | Length, ft                                                | Radius, ft          | Superelevation, %   | Average Speed, mi/h |
| 1 Tangent                           | 18480 ·                                                   | -                   | -                   | 60.3                |
| Vehicle Results                     | · · ·                                                     |                     |                     | - <b>-</b>          |
| Average Speed, mi/h                 | 60.3                                                      | Percent Followers   | 5, %                | 8.3                 |
| Segment Travel Time, minutes        | 3.49                                                      | Follower Density,   | followers/mi/ln     | 0.1                 |
| Vehicle LOS                         | A                                                         |                     |                     |                     |
| Bicycle Results                     |                                                           |                     |                     |                     |
| Percent Occupied Parking            | 0                                                         | Pavement Condit     | ion Rating          | 3                   |
| Flow Rate Outside Lane, veh/h       | 40                                                        | Bicycle Effective \ | Width, ft           | 36                  |
| Bicycle LOS Score                   | 0.00                                                      | Bicycle Effective S | Speed Factor        | 4.79                |
| Bicycle LOS                         | A                                                         |                     |                     |                     |
| Facility Results                    |                                                           |                     |                     |                     |
| -                                   | r Density, followers/mi/ln                                |                     | LC                  |                     |

| 1                     | 0.1                                      |                        | А     |                                |
|-----------------------|------------------------------------------|------------------------|-------|--------------------------------|
| Copyright © 2022 Univ | versity of Florida. All Rights Reserved. | HCS 🕅 Two-Lane Version | 7.9.6 | Generated: 10/14/2022 10:48:51 |
|                       |                                          | TwoLane1.xuf           |       |                                |

## **Project Information**

| Analyst             | SRF Consulting                                    | Date          | 10/14/2022     |
|---------------------|---------------------------------------------------|---------------|----------------|
| Agency              |                                                   | Analysis Year | 2022           |
| Jurisdiction        |                                                   | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw SD 153<br>& Deer Blvd - Fall AM | Units         | U.S. Customary |

| Direction i Geometric Data            |              |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 1                           | Eastbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 15.0  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 51.3         |                                        |       |
| Direction 1 Adjustment Facto          | rs           |                                        |       |
| Driver Population                     | Balanced Mix | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.950        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.939        |                                        |       |
| Direction 1 Demand and Capa           | acity        |                                        |       |
| Volume(V) veh/h                       | 134          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.80         | Flow Rate (Vp), pc/h/ln                | 84    |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2024  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2024  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.04  |
| Direction 1 Speed and Densit          | у            |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 51.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 1.6   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 3.8          |                                        |       |
| Direction 1 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 84           | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 24           | Bicyle LOS Score (BLOS)                | 0.00  |
| Average Effective Width (We), ft      | 30           | Bicycle Level of Service (LOS)         | A     |

| Direction 2 Geometric Data            |              |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 2                           | Westbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 3.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 54.3         |                                        |       |
| Direction 2 Adjustment Fact           | ors          |                                        |       |
| Driver Population                     | Balanced Mix | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.950        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.939        |                                        |       |
| Direction 2 Demand and Ca             | pacity       |                                        |       |
| Volume(V) veh/h                       | 70           | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.80         | Flow Rate (Vp), pc/h/ln                | 44    |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2084  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2084  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.02  |
| Direction 2 Speed and Densi           | ity          |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 54.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 0.8   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 0.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (voL),veh/h | 84           | Effective Speed Factor (St)            | 4.62  |
|                                       | 24           | Bicyle LOS Score (BLOS)                | 0.00  |
| Effective Width of Volume (Wv), ft    | 24           |                                        |       |

## **Project Information**

| Analyst             | SRF Consulting                                    | Date          | 10/14/2022     |
|---------------------|---------------------------------------------------|---------------|----------------|
| Agency              |                                                   | Analysis Year | 2022           |
| Jurisdiction        |                                                   | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw SD 153<br>& Deer Blvd - Fall PM | Units         | U.S. Customary |

| Direction i Geometric Data            |              |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 1                           | Eastbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 15.0  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 51.3         |                                        |       |
| Direction 1 Adjustment Factor         | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 1 Demand and Cap            | pacity       |                                        |       |
| Volume(V) veh/h                       | 165          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.80         | Flow Rate (Vp), pc/h/ln                | 103   |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2024  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2024  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.05  |
| Direction 1 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 51.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 2.0   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 3.8          |                                        |       |
| Direction 1 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 103          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.59  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |
|                                       |              |                                        |       |

| Direction 2 Geometric Data            |              |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 2                           | Westbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 3.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 54.3         |                                        |       |
| Direction 2 Adjustment Fact           | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 2 Demand and Ca             | pacity       | ·                                      |       |
| Volume(V) veh/h                       | 172          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.80         | Flow Rate (Vp), pc/h/ln                | 108   |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2084  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2084  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.05  |
| Direction 2 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 54.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 2.0   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 0.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 103          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.59  |
|                                       | 24           | Bicycle Level of Service (LOS)         | В     |

SD 52 btw SD 153 & Deer Blvd - Fall PM.xuf

#### **Project Information**

| Analyst             | SRF Consulting                                   | Date          | 10/14/2022     |
|---------------------|--------------------------------------------------|---------------|----------------|
| Agency              |                                                  | Analysis Year | 2022           |
| Jurisdiction        |                                                  | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw SD 153<br>& Deer Blvd - Summer | Units         | U.S. Customary |

| Direction 1                           | Eastbound    |                                        |       |  |  |
|---------------------------------------|--------------|----------------------------------------|-------|--|--|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |  |  |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |  |  |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |  |  |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 15.0  |  |  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |  |  |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |  |  |
| Free-Flow Speed (FFS), mi/h           | 51.3         |                                        |       |  |  |
| Direction 1 Adjustment Fact           | ors          |                                        |       |  |  |
| Driver Population                     | Balanced Mix | Final Speed Adjustment Factor (SAF)    | 1.000 |  |  |
| Driver Population SAF                 | 0.950        | Final Capacity Adjustment Factor (CAF) | 1.000 |  |  |
| Driver Population CAF                 | 0.939        |                                        |       |  |  |
| Direction 1 Demand and Ca             | pacity       |                                        |       |  |  |
| Volume(V) veh/h                       | 216          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |  |  |
| Peak Hour Factor                      | 0.80         | Flow Rate (Vp), pc/h/ln                | 135   |  |  |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2024  |  |  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2024  |  |  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.07  |  |  |
| Direction 1 Speed and Densi           | ity          |                                        |       |  |  |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h 51.2           |       |  |  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 2.6   |  |  |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |  |  |
| Access Point Density Adjustment (fA)  | 3.8          |                                        |       |  |  |
| Direction 1 Bicycle LOS               |              |                                        |       |  |  |
| Flow Rate in Outside Lane (vOL),veh/h | 135          | Effective Speed Factor (St)            | 4.62  |  |  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.73  |  |  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS) B       |       |  |  |
| -                                     |              |                                        | -     |  |  |

| Direction 2                                                                 | Westbound    |                                        |       |
|-----------------------------------------------------------------------------|--------------|----------------------------------------|-------|
| Number of Lanes (N), In                                                     | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                                                      | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed                                            | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h                                           | 55.0         | Access Point Density, pts/mi           | 3.0   |
| Lane Width, ft                                                              | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                                                                 | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h                                                 | 54.3         |                                        |       |
| Direction 2 Adjustment Fac                                                  | tors         |                                        |       |
| Driver Population                                                           | Balanced Mix | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                                                       | 0.950        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                                                       | 0.939        |                                        |       |
| Direction 2 Demand and Ca                                                   | pacity       |                                        | ÷     |
| Volume(V) veh/h                                                             | 278          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                                                            | 0.80         | Flow Rate (Vp), pc/h/ln                | 174   |
| Total Trucks, %                                                             | 0.00         | Capacity (c), pc/h/ln                  | 2084  |
| Single-Unit Trucks (SUT), %                                                 | -            | Adjusted Capacity (cadj), pc/h/ln      | 2084  |
| Tractor-Trailers (TT), %                                                    | -            | Volume-to-Capacity Ratio (v/c)         | 0.08  |
| Direction 2 Speed and Dens                                                  | ity          |                                        |       |
| Lane Width Adjustment (fLW)                                                 | 0.0          | Average Speed (S), mi/h                | 54.2  |
| Total Lateral Clearance Adj. (fLLC)                                         | 0.0          | Density (D ), pc/mi/ln                 | 3.2   |
| Median Type Adjustment (fM)                                                 | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)                                        | 0.8          |                                        |       |
| Direction 2 Bicycle LOS                                                     |              |                                        |       |
|                                                                             | 135          | Effective Speed Factor (St)            | 4.62  |
| Flow Rate in Outside Lane (VOL), Ven/h                                      |              | Bicyle LOS Score (BLOS)                | 1.73  |
| Flow Rate in Outside Lane (vOL),veh/h<br>Effective Width of Volume (Wv), ft | 18           | bicyle LOS Scole (BLOS)                | 1.75  |

#### • ct Info

| <b>Project Inf</b> | ormation              |                                            |                       |                                   |                    |                     |  |
|--------------------|-----------------------|--------------------------------------------|-----------------------|-----------------------------------|--------------------|---------------------|--|
| Analyst            |                       | SRF Consulting                             | Date                  |                                   |                    | 10/14/2022          |  |
| Agency             |                       |                                            | Analysis              | s Year                            |                    | 2022                |  |
| Jurisdiction       |                       |                                            | Time Ar               | Time Analyzed                     |                    |                     |  |
| Project Descript   | ion                   | 16002 - SD 153 btw SD<br>& SD 50 - Fall AM | 52 Units              | nits                              |                    | U.S. Customary      |  |
|                    |                       | Se                                         | egment 1              |                                   |                    |                     |  |
| Vehicle Inp        | uts                   |                                            |                       |                                   |                    |                     |  |
| Segment Type       |                       | Passing Zone                               | Length,               | Length, ft                        |                    | 12460               |  |
| Lane Width, ft     |                       | 11                                         | Shoulde               | er Width, f                       | t                  | 1                   |  |
| Speed Limit, mi    | /h                    | 55                                         | Access                | Access Point Density, pts/mi      |                    | 9.0                 |  |
| Demand ar          | nd Capacity           |                                            |                       |                                   |                    |                     |  |
| Directional Dem    | nand Flow Rate, veh/h | 44                                         | Opposi                | ng Deman                          | d Flow Rate, veh/h | 25                  |  |
| Peak Hour Facto    | or                    | 0.80                                       | Total Tr              | ucks, %                           |                    | 0.00                |  |
| Segment Capac      | ity, veh/h            | 1700                                       | Deman                 | d/Capacity                        | r (D/C)            | 0.03                |  |
| Intermedia         | te Results            |                                            |                       |                                   |                    |                     |  |
| Segment Vertica    | al Class              | 1                                          | Free-Flo              | Free-Flow Speed, mi/h             |                    | 56.4                |  |
| Speed Slope Co     | oefficient            | 3.30732                                    | Speed F               | Speed Power Coefficient           |                    | 0.62198             |  |
| PF Slope Coeffi    | cient                 | -1.16026                                   | PF Powe               | PF Power Coefficient              |                    | 0.79277             |  |
| In Passing Lane    | Effective Length?     | No                                         | Total Se              | Total Segment Density, veh/mi/ln  |                    | 0.1                 |  |
| %Improved % F      | ollowers              | 0.0 % Impre                                |                       | mproved Avg Speed                 |                    | 0.0                 |  |
| Subsegmer          | nt Data               |                                            |                       |                                   |                    |                     |  |
| # Segment          | Туре                  | Length, ft                                 | Length, ft Radius, ft |                                   | Superelevation, %  | Average Speed, mi/h |  |
| 1 Tangent          |                       | 12460                                      | -                     |                                   | -                  | 56.4                |  |
| Vehicle Res        | ults                  |                                            |                       |                                   |                    |                     |  |
| Average Speed,     | mi/h                  | 56.4                                       | Percent               | Percent Followers, %              |                    | 9.3                 |  |
| Segment Travel     | Time, minutes         | 2.51                                       | Followe               | Follower Density, followers/mi/ln |                    | 0.1                 |  |
| Vehicle LOS        |                       | A                                          |                       |                                   |                    |                     |  |
| Bicycle Res        | ults                  |                                            |                       |                                   |                    |                     |  |
| Percent Occupie    | ed Parking            | 0                                          | Paveme                | Pavement Condition Rating         |                    | 3                   |  |
| Flow Rate Outsi    | de Lane, veh/h        | 44                                         | Bicycle               | Bicycle Effective Width, ft       |                    | 22                  |  |
| Bicycle LOS Sco    | re                    | 2.00                                       | Bicycle               | Bicycle Effective Speed Factor    |                    | 4.79                |  |
| Bicycle LOS B      |                       |                                            |                       |                                   |                    |                     |  |
| Facility Res       | ults                  |                                            |                       |                                   |                    |                     |  |
| т                  | Followe               | Follower Density, followers/mi/ln          |                       |                                   | LOS                |                     |  |
| 1                  |                       | 0.1                                        |                       | A                                 |                    |                     |  |

| HCS7 Two-Lane | Highway | Report |
|---------------|---------|--------|
|---------------|---------|--------|

#### • ct Info

| Pro                     | ject Infor      | mation              |                                               |                         |                                   |             |                    |                     |
|-------------------------|-----------------|---------------------|-----------------------------------------------|-------------------------|-----------------------------------|-------------|--------------------|---------------------|
| Anal                    | yst             |                     | SRF Consulting                                |                         | Date                              |             |                    | 10/14/2022          |
| Ager                    | псу             |                     |                                               |                         | Analysis Year                     |             |                    | 2022                |
| Juris                   | diction         |                     |                                               |                         | Time An                           | alyzed      |                    |                     |
| Proje                   | ect Description | ו                   | 16002 - SD 153 btw SD 52<br>& SD 50 - Fall PM |                         | Units                             |             |                    | U.S. Customary      |
|                         |                 |                     | S                                             | egn                     | nent 1                            |             |                    |                     |
| Veł                     | icle Input      | S                   |                                               |                         |                                   |             |                    |                     |
| Segr                    | nent Type       |                     | Passing Zone                                  |                         | Length, f                         | ft          |                    | 12460               |
| Lane                    | Width, ft       |                     | 11                                            |                         | Shoulde                           | r Width, f  | t                  | 1                   |
| Spee                    | d Limit, mi/h   |                     | 55                                            |                         | Access P                          | oint Dens   | sity, pts/mi       | 9.0                 |
| Der                     | mand and        | Capacity            |                                               |                         |                                   |             |                    |                     |
| Dire                    | ctional Demar   | nd Flow Rate, veh/h | 58                                            |                         | Opposin                           | g Deman     | d Flow Rate, veh/h | 48                  |
| Peak                    | Hour Factor     |                     | 0.90                                          |                         | Total Tru                         | cks, %      |                    | 0.00                |
| Segr                    | nent Capacity   | , veh/h             | 1700                                          |                         | Demand                            | /Capacity   | r (D/C)            | 0.03                |
| Inte                    | ermediate       | Results             |                                               |                         |                                   |             |                    |                     |
| Segment Vertical Class  |                 | 1                   |                                               | Free-Flow Speed, mi/h   |                                   | mi/h        | 56.4               |                     |
| Speed Slope Coefficient |                 | 3.32714             |                                               | Speed Power Coefficient |                                   | fficient    | 0.60301            |                     |
| PF S                    | ope Coefficie   | nt                  | -1.17711                                      |                         | PF Powe                           | r Coefficie | ent                | 0.78787             |
| In Pa                   | ssing Lane Ef   | fective Length?     | No                                            |                         | Total Segment Density, veh/mi/ln  |             | nsity, veh/mi/ln   | 0.1                 |
| %lm                     | proved % Foll   | owers               | 0.0                                           |                         | % Improved Avg Speed              |             | Speed              | 0.0                 |
| Sub                     | osegment        | Data                |                                               |                         |                                   |             |                    |                     |
| #                       | Segment Ty      | pe                  | Length, ft                                    | Rad                     | lius, ft                          |             | Superelevation, %  | Average Speed, mi/h |
| 1                       | Tangent         |                     | 12460                                         | -                       | -                                 |             | -                  | 56.4                |
| Veł                     | icle Resul      | ts                  | •                                             |                         |                                   |             | •                  |                     |
| Aver                    | age Speed, m    | i/h                 | 56.4                                          |                         | Percent Followers, %              |             | , %                | 11.7                |
| Segr                    | nent Travel Tii | me, minutes         | 2.51                                          |                         | Follower Density, followers/mi/ln |             | followers/mi/ln    | 0.1                 |
| Vehi                    | cle LOS         |                     | A                                             |                         |                                   |             |                    |                     |
| Bic                     | ycle Resul      | ts                  |                                               |                         |                                   |             |                    |                     |
| Perce                   | ent Occupied    | Parking             | 0                                             |                         | Pavemer                           | nt Conditi  | on Rating          | 3                   |
| Flow                    | Rate Outside    | Lane, veh/h         | 58                                            |                         | Bicycle E                         | ffective V  | Vidth, ft          | 21                  |
| Bicyc                   | le LOS Score    |                     | 2.36                                          |                         | Bicycle E                         | ffective S  | peed Factor        | 4.79                |
| Bicyc                   | le LOS          |                     | В                                             |                         |                                   |             |                    |                     |
| Fac                     | ility Resul     | ts                  |                                               |                         |                                   |             |                    |                     |
|                         | т               | Follower            | · Density, followers/mi/                      | /In                     |                                   |             | LO                 | S                   |
|                         | 1               |                     | 0.1                                           |                         |                                   |             | А                  |                     |

#### **Project Information**

| Project In              | formation             |                                           |            |                                   |         |                    |                     |
|-------------------------|-----------------------|-------------------------------------------|------------|-----------------------------------|---------|--------------------|---------------------|
| Analyst                 |                       | SRF Consulting                            | Date       | e                                 |         |                    | 10/14/2022          |
| Agency                  |                       |                                           | Ana        | Analysis Year                     |         |                    | 2022                |
| Jurisdiction            |                       |                                           |            | e Analyze                         | d       |                    |                     |
| Project Descri          | ption                 | 16002 - SD 153 btw SD<br>& SD 50 - Summer | 52 Unit    | ts                                |         |                    | U.S. Customary      |
|                         |                       | Se                                        | egmen      | t 1                               |         |                    |                     |
| Vehicle In              | puts                  |                                           |            |                                   |         |                    |                     |
| Segment Type            | 2                     | Passing Zone                              | Leng       | gth, ft                           |         |                    | 12460               |
| Lane Width, ft          |                       | 11                                        | Sho        | ulder Wid                         | lth, ft |                    | 1                   |
| Speed Limit, n          | ni/h                  | 50                                        | Acce       | ess Point                         | Densi   | ity, pts/mi        | 9.0                 |
| Demand a                | and Capacity          |                                           |            |                                   |         |                    |                     |
| Directional De          | mand Flow Rate, veh/h | 92                                        | Орр        | oosing De                         | mand    | d Flow Rate, veh/h | 60                  |
| Peak Hour Fac           | tor                   | 0.90                                      | Tota       | al Trucks, S                      | %       |                    | 0.00                |
| Segment Capa            | acity, veh/h          | 1700                                      | Dem        | nand/Cap                          | acity   | (D/C)              | 0.05                |
| Intermedi               | ate Results           |                                           |            |                                   |         |                    |                     |
| Segment Vertical Class  |                       | 1                                         |            | Free-Flow Speed, mi/h             |         | mi/h               | 50.7                |
| Speed Slope Coefficient |                       | 3.02685                                   | Spee       | Speed Power Coefficient           |         | ficient            | 0.59501             |
| PF Slope Coef           | ficient               | -1.19791                                  | PF P       | Power Coe                         | efficie | nt                 | 0.76805             |
| In Passing Lan          | e Effective Length?   | No                                        | Tota       | Total Segment Density, veh/mi/ln  |         | nsity, veh/mi/ln   | 0.3                 |
| %Improved %             | Followers             | 0.0 % Imp                                 |            | % Improved Avg Speed              |         | peed               | 0.0                 |
| Subsegme                | ent Data              |                                           |            |                                   |         |                    |                     |
| # Segmer                | t Type                | Length, ft                                | Radius, ft | t                                 |         | Superelevation, %  | Average Speed, mi/h |
| 1 Tangent               |                       | 12460                                     | -          |                                   |         | -                  | 50.7                |
| Vehicle Re              | esults                |                                           |            |                                   |         |                    |                     |
| Average Spee            | d, mi/h               | 50.7                                      | Perc       | Percent Followers, %              |         | %                  | 17.5                |
| Segment Trave           | el Time, minutes      | 2.80                                      | Follo      | Follower Density, followers/mi/ln |         | ollowers/mi/ln     | 0.3                 |
| Vehicle LOS             |                       | A                                         |            |                                   |         |                    |                     |
| Bicycle Re              | sults                 |                                           |            |                                   |         |                    |                     |
| Percent Occup           | pied Parking          | 0                                         | Pave       | ement Co                          | nditic  | on Rating          | 3                   |
| Flow Rate Out           | side Lane, veh/h      | 92                                        | Bicy       | cle Effecti                       | ive W   | 'idth, ft          | 19                  |
| Bicycle LOS So          | core                  | 2.96                                      | Bicy       | Bicycle Effective Speed Factor    |         | peed Factor        | 4.62                |
| Bicycle LOS             |                       | С                                         |            |                                   |         |                    |                     |
| Facility Re             | sults                 |                                           |            |                                   |         |                    |                     |
| т                       | Follower              | <sup>•</sup> Density, followers/mi/l      | n          |                                   |         | LO                 | S                   |
| 1                       |                       | 0.3                                       |            |                                   |         | A                  |                     |

|                                     | HCS7 Two-Lan                                                  | e High    | way Report                |                     |  |  |
|-------------------------------------|---------------------------------------------------------------|-----------|---------------------------|---------------------|--|--|
| Project Information                 |                                                               |           |                           |                     |  |  |
| Analyst                             | SRF Consulting                                                | Date      |                           | 10/14/2022          |  |  |
| Agency                              |                                                               | Analysis  | Year                      | 2022                |  |  |
| Jurisdiction                        |                                                               | Time An   | alyzed                    |                     |  |  |
| Project Description                 | 16002 - SD 314 btw SD 5<br>& West City Limits Rd -<br>Fall AM | 0 Units   |                           | U.S. Customary      |  |  |
|                                     | Seg                                                           | ment 1    |                           |                     |  |  |
| Vehicle Inputs                      |                                                               |           |                           |                     |  |  |
| Segment Type                        | Passing Zone                                                  | Length,   | ft                        | 22070               |  |  |
| Lane Width, ft                      | 11                                                            | Shoulde   | r Width, ft               | 3                   |  |  |
| Speed Limit, mi/h                   | 55                                                            | Access F  | oint Density, pts/mi      | 8.0                 |  |  |
| Demand and Capacity                 |                                                               |           |                           |                     |  |  |
| Directional Demand Flow Rate, veh/h | 198                                                           | Opposir   | g Demand Flow Rate, veh/h | 50                  |  |  |
| Peak Hour Factor                    | 0.80                                                          | Total Tru | cks, %                    | 15.00               |  |  |
| Segment Capacity, veh/h             | 1700                                                          | Demand    | /Capacity (D/C)           | 0.12                |  |  |
| Intermediate Results                |                                                               |           |                           | -1                  |  |  |
| Segment Vertical Class              | 1                                                             | Free-Flo  | w Speed, mi/h             | 57.5                |  |  |
| Speed Slope Coefficient             | 3.39115                                                       | Speed P   | ower Coefficient          | 0.60147             |  |  |
| PF Slope Coefficient                | -1.17295                                                      | PF Powe   | r Coefficient             | 0.79321             |  |  |
| In Passing Lane Effective Length?   | No                                                            | Total Se  | gment Density, veh/mi/ln  | 1.0                 |  |  |
| %Improved % Followers               | 0.0                                                           | % Impro   | ved Avg Speed             | 0.0                 |  |  |
| Subsegment Data                     |                                                               |           |                           |                     |  |  |
| # Segment Type                      | Length, ft R                                                  | adius, ft | Superelevation, %         | Average Speed, mi/h |  |  |
| 1 Tangent                           | 22070 -                                                       |           | -                         | 56.7                |  |  |
| Vehicle Results                     |                                                               |           |                           |                     |  |  |
| Average Speed, mi/h                 | 56.7                                                          | Percent   | Followers, %              | 27.7                |  |  |
| Segment Travel Time, minutes        | 4.43                                                          | Follower  | Density, followers/mi/ln  | 1.0                 |  |  |
| Vehicle LOS                         | A                                                             |           |                           |                     |  |  |
| Bicycle Results                     |                                                               |           |                           | -                   |  |  |
| Percent Occupied Parking            | 0                                                             | Paveme    | nt Condition Rating       | 4                   |  |  |
| Flow Rate Outside Lane, veh/h       | 198                                                           | Bicycle E | ffective Width, ft        | 17                  |  |  |
| Bicycle LOS Score                   | 8.70                                                          | Bicycle E | ffective Speed Factor     | 4.79                |  |  |
| Bicycle LOS                         | F                                                             |           |                           |                     |  |  |
| Facility Results                    |                                                               |           |                           |                     |  |  |
| -                                   | r Density, followers/mi/ln                                    |           |                           | OS                  |  |  |

| 1                     | 1.0                                      |                        |       | A                              |
|-----------------------|------------------------------------------|------------------------|-------|--------------------------------|
| Copyright © 2022 Univ | versity of Florida. All Rights Reserved. | HCS 1 Two-Lane Version | 7.9.6 | Generated: 10/25/2022 15:35:37 |

SD 314 btw SD 50 & West City Limits Rd - Fall AM.xuf

|                                     | HCS7 Two-Lan                                                  | e High    | way Report                |                     |
|-------------------------------------|---------------------------------------------------------------|-----------|---------------------------|---------------------|
| Project Information                 |                                                               |           |                           |                     |
| Analyst                             | SRF Consulting                                                | Date      |                           | 10/14/2022          |
| Agency                              |                                                               | Analysis  | Year                      | 2022                |
| Jurisdiction                        |                                                               | Time An   | alyzed                    |                     |
| Project Description                 | 16002 - SD 314 btw SD 5<br>& West City Limits Rd -<br>Fall PM | 0 Units   |                           | U.S. Customary      |
|                                     | Seg                                                           | ment 1    |                           |                     |
| Vehicle Inputs                      |                                                               |           |                           |                     |
| Segment Type                        | Passing Zone                                                  | Length,   | ft                        | 22070               |
| Lane Width, ft                      | 11                                                            | Shoulde   | r Width, ft               | 3                   |
| Speed Limit, mi/h                   | 55                                                            | Access F  | oint Density, pts/mi      | 8.0                 |
| Demand and Capacity                 |                                                               |           |                           |                     |
| Directional Demand Flow Rate, veh/h | 84                                                            | Opposir   | g Demand Flow Rate, veh/h | 108                 |
| Peak Hour Factor                    | 0.75                                                          | Total Tru | cks, %                    | 8.00                |
| Segment Capacity, veh/h             | 1700                                                          | Demand    | /Capacity (D/C)           | 0.05                |
| Intermediate Results                | -                                                             |           |                           | - 1                 |
| Segment Vertical Class 1            |                                                               | Free-Flo  | w Speed, mi/h             | 57.7                |
| Speed Slope Coefficient             | 3.43821                                                       | Speed P   | ower Coefficient          | 0.57074             |
| PF Slope Coefficient                | -1.20014                                                      | PF Powe   | r Coefficient             | 0.78479             |
| In Passing Lane Effective Length?   | No                                                            | Total Se  | gment Density, veh/mi/ln  | 0.2                 |
| %Improved % Followers               | 0.0                                                           | % Impro   | ved Avg Speed             | 0.0                 |
| Subsegment Data                     |                                                               |           |                           |                     |
| # Segment Type                      | Length, ft R                                                  | adius, ft | Superelevation, %         | Average Speed, mi/h |
| 1 Tangent                           | 22070 -                                                       |           | -                         | 57.7                |
| Vehicle Results                     |                                                               |           |                           |                     |
| Average Speed, mi/h                 | 57.7                                                          | Percent   | Followers, %              | 15.8                |
| Segment Travel Time, minutes        | 4.34                                                          | Follower  | Density, followers/mi/ln  | 0.2                 |
| Vehicle LOS                         | A                                                             |           |                           |                     |
| Bicycle Results                     |                                                               |           |                           |                     |
| Percent Occupied Parking            | 0                                                             | Paveme    | nt Condition Rating       | 4                   |
| Flow Rate Outside Lane, veh/h       | 84                                                            | _         | ffective Width, ft        | 24                  |
| Bicycle LOS Score                   | 3.78                                                          | -         | ffective Speed Factor     | 4.79                |
| Bicycle LOS                         | D                                                             |           | ·                         |                     |
| Facility Results                    |                                                               |           |                           |                     |
| -                                   | r Density, followers/mi/ln                                    |           |                           | DS                  |

| 1                     | 0.2                                     |                         |       | A                              |
|-----------------------|-----------------------------------------|-------------------------|-------|--------------------------------|
| Copyright © 2022 Univ | ersity of Florida. All Rights Reserved. | HCS 11 Two-Lane Version | 7.9.6 | Generated: 10/25/2022 15:09:18 |

SD 314 btw SD 50 & West City Limits Rd - Fall PM.xuf

|                                     | HCS7 Two-Lan                                                 | e Highway R         | eport               |                     |
|-------------------------------------|--------------------------------------------------------------|---------------------|---------------------|---------------------|
| Project Information                 |                                                              |                     |                     |                     |
| Analyst                             |                                                              | Date                |                     | 10/14/2022          |
| Agency                              |                                                              | Analysis Year       |                     | 2022                |
| Jurisdiction                        |                                                              | Time Analyzed       |                     |                     |
| Project Description                 | 16002 - SD 314 btw SD 5<br>& West City Limits Rd -<br>Summer | 0 Units             |                     | U.S. Customary      |
|                                     | Seg                                                          | jment 1             |                     |                     |
| Vehicle Inputs                      |                                                              |                     |                     |                     |
| Segment Type                        | Passing Zone                                                 | Length, ft          |                     | 22070               |
| Lane Width, ft                      | 11                                                           | Shoulder Width,     | ft                  | 3                   |
| Speed Limit, mi/h                   | 55                                                           | Access Point Den    | isity, pts/mi       | 8.0                 |
| Demand and Capacity                 |                                                              |                     |                     |                     |
| Directional Demand Flow Rate, veh/h | 131                                                          | Opposing Demar      | nd Flow Rate, veh/h | 81                  |
| Peak Hour Factor                    | 0.80                                                         | Total Trucks, %     |                     | 0.00                |
| Segment Capacity, veh/h             | 1700                                                         | Demand/Capacit      | y (D/C)             | 0.08                |
| Intermediate Results                | 1                                                            |                     | -                   | 1                   |
| Segment Vertical Class              | 1                                                            | Free-Flow Speed     | , mi/h              | 58.0                |
| Speed Slope Coefficient             | 3.43836                                                      | Speed Power Coe     | efficient           | 0.58317             |
| PF Slope Coefficient                | -1.18896                                                     | PF Power Coeffic    | ient                | 0.78763             |
| In Passing Lane Effective Length?   | No                                                           | Total Segment De    | ensity, veh/mi/ln   | 0.5                 |
| %Improved % Followers               | 0.0                                                          | % Improved Avg      | Speed               | 0.0                 |
| Subsegment Data                     | ·                                                            |                     |                     | •                   |
| # Segment Type                      | Length, ft F                                                 | adius, ft           | Superelevation, %   | Average Speed, mi/h |
| 1 Tangent                           | 22070 -                                                      |                     | -                   | 57.5                |
| Vehicle Results                     |                                                              |                     |                     |                     |
| Average Speed, mi/h                 | 57.5                                                         | Percent Followers   | s, %                | 21.4                |
| Segment Travel Time, minutes        | 4.36                                                         | Follower Density,   | followers/mi/ln     | 0.5                 |
| Vehicle LOS                         | A                                                            |                     |                     |                     |
| Bicycle Results                     | -                                                            |                     |                     | - <b>'</b>          |
| Percent Occupied Parking            | 0                                                            | Pavement Condit     | tion Rating         | 4                   |
| Flow Rate Outside Lane, veh/h       | 131                                                          | Bicycle Effective   | Width, ft           | 21                  |
| Bicycle LOS Score                   | 2.43                                                         | Bicycle Effective S | Speed Factor        | 4.79                |
| Bicycle LOS                         | В                                                            |                     |                     |                     |
| Facility Results                    |                                                              |                     |                     |                     |
| -                                   | r Density, followers/mi/ln                                   |                     | LC                  |                     |

| 1                                                   | 0.5                                               |                       | А                              |  |  |
|-----------------------------------------------------|---------------------------------------------------|-----------------------|--------------------------------|--|--|
| Copyright © 2022 Univ                               | ersity of Florida. All Rights Reserved. HCS TM Tw | vo-Lane Version 7.9.6 | Generated: 10/14/2022 11:56:17 |  |  |
| SD 314 btw SD 50 & West City Limits Rd - Summer.xuf |                                                   |                       |                                |  |  |

|                        |                         |                     | HCS7 Two                             | o-Lane   | e Highv               | vay Re                            | eport              |                     |
|------------------------|-------------------------|---------------------|--------------------------------------|----------|-----------------------|-----------------------------------|--------------------|---------------------|
| Pro                    | oject Infor             | mation              |                                      |          |                       |                                   |                    |                     |
| Ana                    | lyst                    |                     | SRF Consulting                       |          | Date                  |                                   |                    | 10/14/2022          |
| Age                    | ncy                     |                     |                                      |          |                       | Year                              |                    | 2035                |
| Juris                  | diction                 |                     |                                      |          | Time An               | alyzed                            |                    |                     |
| Proj                   | ect Description         | n                   | 16002 - SD 50 b<br>& SD 153 - Fall A |          | Units                 |                                   |                    | U.S. Customary      |
|                        |                         |                     |                                      | Seg      | ment 1                |                                   |                    |                     |
| Ve                     | hicle Input             | ts                  |                                      |          |                       |                                   |                    |                     |
| Seg                    | ment Type               |                     | Passing Zone                         |          | Length, t             | ft                                |                    | 5280                |
| Mea                    | asured FFS              |                     | Measured                             |          | Free-Flo              | w Speed,                          | mi/h               | 60.0                |
| De                     | mand and                | Capacity            |                                      |          |                       |                                   |                    | •                   |
| Dire                   | ctional Demar           | nd Flow Rate, veh/h | 334                                  |          | Opposin               | g Deman                           | d Flow Rate, veh/h | 166                 |
| Pea                    | k Hour Factor           |                     | 0.90                                 |          | Total Tru             | cks, %                            |                    | 10.00               |
| Seg                    | ment Capacity           | , veh/h             | 1700                                 |          | Demand                | /Capacity                         | r (D/C)            | 0.20                |
| Int                    | ermediate               | Results             |                                      |          |                       |                                   |                    |                     |
| Segment Vertical Class |                         | 1                   |                                      | Free-Flo | Free-Flow Speed, mi/h |                                   | 60.0               |                     |
| Spe                    | Speed Slope Coefficient |                     | 4.35708                              |          | Speed P               | ower Coe                          | fficient           | 0.54958             |
| PF S                   | lope Coefficie          | nt                  | -1.20138                             |          | PF Powe               | PF Power Coefficient              |                    | 0.81440             |
| In P                   | assing Lane Ef          | fective Length?     | No                                   |          | Total Seg             | gment De                          | nsity, veh/mi/ln   | 2.2                 |
| %ln                    | proved % Foll           | owers               | 0.0                                  |          | % Impro               | ved Avg S                         | Speed              | 0.0                 |
| Su                     | bsegment                | Data                |                                      |          |                       |                                   |                    |                     |
| #                      | Segment Ty              | pe                  | Length, ft                           | Ra       | adius, ft             | lius, ft Superelevation, %        |                    | Average Speed, mi/h |
| 1                      | Tangent                 |                     | 5280                                 | -        |                       | -                                 |                    | 58.0                |
| Ve                     | hicle Resu              | lts                 |                                      |          |                       |                                   | •                  |                     |
| Ave                    | rage Speed, m           | i/h                 | 58.0                                 |          | Percent               | Percent Followers, %              |                    | 38.9                |
| Seg                    | ment Travel Ti          | me, minutes         | 1.03                                 |          | Follower              | Follower Density, followers/mi/ln |                    | 2.2                 |
| Veh                    | icle LOS                |                     | В                                    |          |                       |                                   |                    |                     |
| Bic                    | ycle Resul              | ts                  | ·                                    |          |                       |                                   |                    |                     |
| Perc                   | ent Occupied            | Parking             | 0                                    |          | Pavemer               | Pavement Condition Rating         |                    | 4                   |
|                        | v Rate Outside          | _                   | 334                                  |          | Bicycle E             | Bicycle Effective Width, ft       |                    | 24                  |
| Bicy                   | cle LOS Score           |                     | 5.48                                 |          | Bicycle E             | Bicycle Effective Speed Factor    |                    | 5.07                |
| Bicy                   | cle LOS                 |                     | E                                    |          |                       |                                   |                    |                     |
| Fac                    | ility Resu              | ts                  |                                      |          |                       |                                   |                    |                     |
|                        | т                       | Follower            | Density, follower                    | s/mi/ln  |                       |                                   | LC                 | DS                  |
|                        | 1                       |                     | 2.2                                  |          |                       |                                   | E                  | }                   |

Copyright © 2023 University of Florida. All Rights Reserved.

| HCS7 Two-Lane Highway Report |  |
|------------------------------|--|
|------------------------------|--|

#### **Project Information**

| Project Information                 |                                              |                               |                            |                     |
|-------------------------------------|----------------------------------------------|-------------------------------|----------------------------|---------------------|
| Analyst                             | SRF Consulting                               | Date                          |                            | 10/14/2022          |
| Agency                              |                                              | Analysis                      | Year                       | 2035                |
| Jurisdiction                        |                                              | Time An                       | alyzed                     |                     |
| Project Description                 | 16002 - SD 50 btw SD 5<br>& SD 153 - Fall PM | 52 Units                      |                            | U.S. Customary      |
|                                     | Se                                           | gment 1                       |                            |                     |
| Vehicle Inputs                      |                                              |                               |                            |                     |
| Segment Type                        | Passing Zone                                 | Length,                       | ft                         | 5280                |
| Lane Width, ft                      | 12                                           | Shoulde                       | r Width, ft                | 6                   |
| Speed Limit, mi/h                   | 65                                           | Access F                      | Point Density, pts/mi      | 7.0                 |
| Demand and Capacity                 |                                              |                               |                            |                     |
| Directional Demand Flow Rate, veh/h | 246                                          | Opposir                       | ng Demand Flow Rate, veh/h | 374                 |
| Peak Hour Factor                    | 0.90                                         | Total Tru                     | icks, %                    | 6.00                |
| Segment Capacity, veh/h             | 1700                                         | Demand                        | l/Capacity (D/C)           | 0.14                |
| Intermediate Results                |                                              |                               |                            |                     |
| Segment Vertical Class              | 1                                            | Free-Flo                      | w Speed, mi/h              | 72.2                |
| Speed Slope Coefficient             | 4.26983                                      | Speed P                       | ower Coefficient           | 0.50112             |
| PF Slope Coefficient                | -1.16208                                     | -1.16208 PF Power Coefficient |                            | 0.83206             |
| In Passing Lane Effective Length?   | No                                           | Total Se                      | gment Density, veh/mi/ln   | 1.1                 |
| %Improved % Followers               | 0.0                                          | % Impro                       | ved Avg Speed              | 0.0                 |
| Subsegment Data                     |                                              |                               |                            |                     |
| # Segment Type                      | Length, ft                                   | Radius, ft                    | Superelevation, %          | Average Speed, mi/h |
| 1 Tangent                           | 5280                                         | -                             | -                          | 70.5                |
| Vehicle Results                     |                                              |                               |                            |                     |
| Average Speed, mi/h                 | 70.5                                         | Percent                       | Followers, %               | 30.3                |
| Segment Travel Time, minutes        | 0.85                                         | Follower                      | Density, followers/mi/ln   | 1.1                 |
| Vehicle LOS                         | A                                            |                               |                            |                     |
| Bicycle Results                     | ·                                            |                               |                            | •                   |
| Percent Occupied Parking            | 0                                            | Paveme                        | nt Condition Rating        | 4                   |
| Flow Rate Outside Lane, veh/h 246   |                                              | Bicycle E                     | ffective Width, ft         | 24                  |
| Bicycle LOS Score 3.78              |                                              | Bicycle E                     | ffective Speed Factor      | 5.07                |
| Bicycle LOS                         | D                                            |                               |                            |                     |
| Facility Results                    |                                              |                               |                            |                     |
| T Follow                            | er Density, followers/mi/lı                  | n                             | I                          | LOS                 |
| 1                                   | 1.1                                          |                               |                            | A                   |

# HCS7 Two-Lane Highway Report

| Pro                               | oject Infor     | mation              |                                           |            |                                  |            |                    |                     |
|-----------------------------------|-----------------|---------------------|-------------------------------------------|------------|----------------------------------|------------|--------------------|---------------------|
| Ana                               | lyst            |                     | SRF Consulting                            | Dat        | ate                              |            |                    | 10/14/2022          |
| Age                               | ncy             |                     |                                           | Ana        | Analysis Year                    |            | 2035               |                     |
| Juris                             | diction         |                     |                                           | Tim        | ne Ana                           | alyzed     |                    |                     |
| Proj                              | ect Description | ٦                   | 16002 - SD 50 btw SD<br>& SD 153 - Summer | 52 Uni     | nits                             |            |                    | U.S. Customary      |
|                                   |                 |                     | S                                         | egmen      | nt 1                             |            |                    |                     |
| Vel                               | hicle Input     | ts                  |                                           |            |                                  |            |                    |                     |
| Segi                              | ment Type       |                     | Passing Zone                              | Ler        | ngth, f                          | t          |                    | 5280                |
| Lane                              | e Width, ft     |                     | 12                                        | Sho        | oulder                           | Width, ft  | :                  | 6                   |
| Spee                              | ed Limit, mi/h  |                     | 65                                        | Acc        | cess Po                          | oint Dens  | ity, pts/mi        | 7.0                 |
| De                                | mand and        | Capacity            |                                           |            |                                  |            |                    |                     |
| Dire                              | ctional Demar   | nd Flow Rate, veh/h | 387                                       | Ор         | oposing                          | g Deman    | d Flow Rate, veh/h | 249                 |
| Peak                              | K Hour Factor   |                     | 0.90                                      | Tot        | tal Truo                         | cks, %     |                    | 6.00                |
| Segi                              | ment Capacity   | , veh/h             | 1700                                      | Dei        | emand,                           | /Capacity  | (D/C)              | 0.23                |
| Int                               | ermediate       | Results             |                                           |            |                                  |            |                    |                     |
| Segi                              | ment Vertical ( | Class               | 1 Free-Flow                               |            | Free-Flow Speed, mi/h            |            | mi/h               | 72.2                |
| Spe                               | ed Slope Coef   | ficient             | 4.23278                                   | Spe        | Speed Power Coefficient          |            | ficient            | 0.52658             |
| PF S                              | lope Coefficie  | nt                  | -1.14555                                  | PF         | PF Power Coefficient             |            | ent                | 0.84034             |
| In Pa                             | assing Lane Ef  | fective Length?     | No                                        | Tot        | Total Segment Density, veh/mi/ln |            | 2.2                |                     |
| %lm                               | proved % Foll   | owers               | 0.0                                       | % I        | Improv                           | ved Avg S  | peed               | 0.0                 |
| Sul                               | bsegment        | Data                |                                           |            |                                  |            |                    |                     |
| #                                 | Segment Ty      | pe                  | Length, ft                                | Radius,    | ft                               |            | Superelevation, %  | Average Speed, mi/h |
| 1                                 | Tangent         |                     | 5280                                      | -          |                                  |            | -                  | 70.0                |
| Vel                               | hicle Resu      | ts                  |                                           |            |                                  |            |                    |                     |
| Aver                              | rage Speed, m   | i/h                 | 70.0                                      | Per        | Percent Followers, %             |            | %                  | 40.3                |
| Segi                              | ment Travel Ti  | me, minutes         | 0.86                                      | Fol        | llower                           | Density, t | followers/mi/In    | 2.2                 |
| Vehi                              | icle LOS        |                     | В                                         |            |                                  |            |                    |                     |
| Bic                               | ycle Resul      | ts                  |                                           |            |                                  |            |                    |                     |
| Perc                              | ent Occupied    | Parking             | 0                                         | Pav        | Pavement Condition Rating        |            | on Rating          | 4                   |
| Flow Rate Outside Lane, veh/h 387 |                 | Bic                 | Bicycle Effective Width, ft               |            | /idth, ft                        | 24         |                    |                     |
| Bicycle LOS Score 4.01            |                 | Bic                 | cycle El                                  | ffective S | peed Factor                      | 5.07       |                    |                     |
| Bicy                              | cle LOS         |                     | D                                         |            |                                  |            |                    |                     |
| Fac                               | ility Resul     | ts                  |                                           |            |                                  |            |                    |                     |
|                                   | т               | Follower            | Density, followers/mi/                    | íln        |                                  |            | LO                 | S                   |
|                                   | 1               |                     | 2.2                                       |            |                                  |            | В                  |                     |

| HCS7 Two-Lane | Highway Report |
|---------------|----------------|
|---------------|----------------|

#### siact Infa

| Proj                              | ject Infor      | mation              |                                            |            |                                   |                |                    |                     |
|-----------------------------------|-----------------|---------------------|--------------------------------------------|------------|-----------------------------------|----------------|--------------------|---------------------|
| Analy                             | /st             |                     | SRF Consulting                             | 1          | Date                              |                |                    | 10/14/2022          |
| Agen                              | су              |                     |                                            | /          | Analysis                          | Year           |                    | 2035                |
| Jurisc                            | liction         |                     |                                            | -          | Time Analyzed                     |                |                    |                     |
| Proje                             | ct Description  | ١                   | 16002 - SD 50 btw SD<br>& SD 314 - Fall AM | 153 I      | Units                             |                |                    | U.S. Customary      |
|                                   |                 |                     | Se                                         | egmo       | ent 1                             |                |                    |                     |
| Veh                               | icle Input      | S                   |                                            |            |                                   |                |                    |                     |
| Segm                              | nent Type       |                     | Passing Zone                               | I          | Length, f                         | <sup>-</sup> t |                    | 2880                |
| Lane                              | Width, ft       |                     | 12                                         | 9          | Shoulde                           | r Width, f     | t                  | 6                   |
| Spee                              | d Limit, mi/h   |                     | 65                                         | /          | Access P                          | oint Dens      | ity, pts/mi        | 8.0                 |
| Den                               | nand and        | Capacity            |                                            |            |                                   |                |                    |                     |
| Direc                             | tional Demar    | nd Flow Rate, veh/h | 518                                        | (          | Opposin                           | g Deman        | d Flow Rate, veh/h | 191                 |
| Peak                              | Hour Factor     |                     | 0.90                                       | -          | Total Tru                         | cks, %         |                    | 10.00               |
| Segm                              | nent Capacity   | , veh/h             | 1700                                       | 1          | Demand                            | /Capacity      | r (D/C)            | 0.30                |
| Inte                              | ermediate       | Results             |                                            |            |                                   |                |                    |                     |
| Segm                              | nent Vertical ( | Class               | 1                                          |            | Free-Flow Speed, mi/h             |                | mi/h               | 71.8                |
| Spee                              | d Slope Coeff   | ficient             | 4.16487                                    |            | Speed Power Coefficient           |                | fficient           | 0.54178             |
| PF Slo                            | ope Coefficie   | nt                  | -1.16814                                   |            | PF Powe                           | r Coefficie    | ent                | 0.83646             |
| In Pa                             | ssing Lane Eff  | fective Length?     | No                                         |            | Total Segment Density, veh/mi/ln  |                | nsity, veh/mi/ln   | 3.7                 |
| %lmp                              | proved % Foll   | owers               | 0.0                                        | 0          | % Improved Avg Speed              |                | Speed              | 0.0                 |
| Sub                               | segment         | Data                |                                            |            |                                   |                |                    |                     |
| #                                 | Segment Typ     | pe                  | Length, ft                                 | Radiu      | us, ft                            |                | Superelevation, %  | Average Speed, mi/h |
| 1                                 | Tangent         |                     | 2880                                       | -          |                                   |                | -                  | 69.2                |
| Veh                               | icle Resul      | ts                  |                                            |            |                                   |                |                    |                     |
| Avera                             | age Speed, m    | i/h                 | 69.2                                       | F          | Percent Followers, %              |                | , %                | 49.0                |
| Segm                              | nent Travel Tir | me, minutes         | 0.47                                       | I          | Follower Density, followers/mi/ln |                | followers/mi/ln    | 3.7                 |
| Vehic                             | le LOS          |                     | В                                          |            |                                   |                |                    |                     |
| Bicy                              | cle Resul       | ts                  |                                            |            |                                   |                |                    |                     |
| Perce                             | ent Occupied    | Parking             | 0                                          | F          | Pavement Condition Rating         |                | on Rating          | 4                   |
| Flow Rate Outside Lane, veh/h 518 |                 | 518                 | I                                          | Bicycle E  | ffective W                        | /idth, ft      | 24                 |                     |
| Bicycle LOS Score 5.70            |                 | I                   | Bicycle E                                  | ffective S | peed Factor                       | 5.07           |                    |                     |
| Bicyc                             | le LOS          |                     | F                                          |            |                                   |                |                    |                     |
| Faci                              | lity Resul      | ts                  |                                            |            |                                   |                |                    |                     |
|                                   | т               | Follower            | Density, followers/mi/l                    | In         |                                   |                | LOS                | S                   |
|                                   | 1               |                     | 3.7                                        |            |                                   |                | В                  |                     |

#### **Project Information**

| Project Infor                     | mation              |                                              |                                     |                                   |                    |                     |
|-----------------------------------|---------------------|----------------------------------------------|-------------------------------------|-----------------------------------|--------------------|---------------------|
| Analyst                           |                     | SRF Consulting                               | Date                                |                                   |                    | 10/14/2022          |
| Agency                            |                     |                                              | Analysis                            | Year                              |                    | 2035                |
| Jurisdiction                      |                     |                                              | Time An                             | alyzed                            |                    |                     |
| Project Descriptio                | n                   | 16002 - SD 50 btw SD 1<br>& SD 314 - Fall PM | 53 Units                            |                                   |                    | U.S. Customary      |
|                                   |                     | Se                                           | gment 1                             |                                   |                    |                     |
| Vehicle Inpu                      | ts                  |                                              |                                     |                                   |                    |                     |
| Segment Type                      |                     | Passing Zone                                 | Length,                             | ft                                |                    | 2880                |
| Lane Width, ft                    |                     | 12                                           | Shoulde                             | r Width, f                        | t                  | 6                   |
| Speed Limit, mi/h                 |                     | 65                                           | Access F                            | Point Dens                        | sity, pts/mi       | 8.0                 |
| Demand and                        | Capacity            |                                              |                                     |                                   |                    |                     |
| Directional Dema                  | nd Flow Rate, veh/h | 510                                          | Opposir                             | ng Deman                          | d Flow Rate, veh/h | 327                 |
| Peak Hour Factor                  |                     | 0.90                                         | Total Tru                           | ıcks, %                           |                    | 8.00                |
| Segment Capacity                  | v, veh/h            | 1700                                         | Demanc                              | l/Capacity                        | r (D/C)            | 0.30                |
| Intermediate                      | e Results           |                                              |                                     |                                   |                    |                     |
| Segment Vertical                  | Class               | 1                                            | Free-Flo                            | Free-Flow Speed, mi/h             |                    | 71.8                |
| Speed Slope Coef                  | ficient             | 4.21253                                      | Speed Power Coefficient             |                                   | 0.50986            |                     |
| PF Slope Coefficie                | nt                  | -1.19036                                     | PF Powe                             | er Coefficie                      | ent                | 0.82665             |
| In Passing Lane Ef                | fective Length?     | No                                           | Total Se                            | Total Segment Density, veh/mi/ln  |                    | 3.6                 |
| %Improved % Fol                   | lowers              | 0.0                                          | % Impro                             | oved Avg S                        | Speed              | 0.0                 |
| Subsegment                        | Data                |                                              |                                     |                                   |                    |                     |
| # Segment Ty                      | ре                  | Length, ft                                   | Radius, ft                          |                                   | Superelevation, %  | Average Speed, mi/h |
| 1 Tangent                         |                     | 2880                                         | -                                   |                                   | -                  | 69.2                |
| Vehicle Resu                      | lts                 |                                              |                                     |                                   |                    |                     |
| Average Speed, m                  | ni/h                | 69.2                                         | Percent                             | Percent Followers, %              |                    | 49.5                |
| Segment Travel Ti                 | me, minutes         | 0.47                                         | Followe                             | Follower Density, followers/mi/ln |                    | 3.6                 |
| Vehicle LOS                       |                     | В                                            |                                     |                                   |                    |                     |
| Bicycle Resu                      | lts                 |                                              |                                     |                                   |                    |                     |
| Percent Occupied                  | Parking             | 0                                            | Paveme                              | Pavement Condition Rating         |                    | 4                   |
| Flow Rate Outside Lane, veh/h 510 |                     | Bicycle E                                    | Bicycle Effective Width, ft         |                                   | 24                 |                     |
| Bicycle LOS Score 4.88            |                     | Bicycle E                                    | Bicycle Effective Speed Factor 5.07 |                                   | 5.07               |                     |
| Bicycle LOS                       |                     | E                                            |                                     |                                   |                    |                     |
| Facility Resu                     | lts                 |                                              |                                     |                                   |                    |                     |
| Т                                 | Follower            | r Density, followers/mi/ln                   |                                     |                                   | LC                 | os                  |
| 1                                 |                     | 3.6                                          |                                     |                                   | E                  | 3                   |

# HCS7 Two-Lane Highway Report

| Pro                    | ject Infor      | mation                     |                                           |             |                                   |                    |                     |
|------------------------|-----------------|----------------------------|-------------------------------------------|-------------|-----------------------------------|--------------------|---------------------|
| Anal                   | yst             |                            | SRF Consulting                            | Date        |                                   |                    | 10/14/2022          |
| Agei                   | ncy             |                            |                                           | Analysis    | Analysis Year                     |                    | 2035                |
| Juris                  | diction         |                            |                                           | Time Ar     | Time Analyzed                     |                    |                     |
| Proje                  | ect Description | ٦                          | 16002 - SD 50 btw SD<br>& SD 314 - Summer | 153 Units   |                                   |                    | U.S. Customary      |
|                        |                 |                            | Se                                        | egment 1    |                                   |                    |                     |
| Veł                    | nicle Input     | ts                         |                                           |             |                                   |                    |                     |
| Segr                   | ment Type       |                            | Passing Zone                              | Length,     | ft                                |                    | 5280                |
| Lane                   | e Width, ft     |                            | 12                                        | Shoulde     | er Width, f                       | ť                  | 6                   |
| Spee                   | ed Limit, mi/h  |                            | 65                                        | Access      | Point Dens                        | sity, pts/mi       | 6.0                 |
| Dei                    | mand and        | Capacity                   |                                           |             |                                   |                    |                     |
| Dire                   | ctional Demar   | nd Flow Rate, veh/h        | 514                                       | Opposi      | ng Deman                          | d Flow Rate, veh/h | 313                 |
| Peak                   | Hour Factor     |                            | 0.90                                      | Total Tr    | ucks, %                           |                    | 4.00                |
| Segr                   | ment Capacity   | , veh/h                    | 1700                                      | Deman       | d/Capacity                        | / (D/C)            | 0.30                |
| Inte                   | ermediate       | Results                    |                                           |             |                                   |                    |                     |
| Segr                   | ment Vertical ( | Class                      | 1                                         | Free-Flo    | Free-Flow Speed, mi/h             |                    | 72.5                |
| Spee                   | ed Slope Coef   | ficient                    | 4.26989                                   | Speed F     | Speed Power Coefficient           |                    | 0.51249             |
| PF S                   | lope Coefficie  | nt                         | -1.15273                                  | PF Powe     | PF Power Coefficient              |                    | 0.83636             |
| In Pa                  | assing Lane Ef  | fective Length?            | No                                        | Total Se    | Total Segment Density, veh/mi/ln  |                    | 3.6                 |
| %lm                    | proved % Foll   | owers                      | 0.0                                       | % Impre     | % Improved Avg Speed              |                    | 0.0                 |
| Sub                    | osegment        | Data                       |                                           |             |                                   |                    |                     |
| #                      | Segment Ty      | pe                         | Length, ft                                | Radius, ft  |                                   | Superelevation, %  | Average Speed, mi/h |
| 1                      | Tangent         |                            | 5280                                      | -           |                                   | -                  | 69.7                |
| Veł                    | nicle Resul     | lts                        | -                                         | -           |                                   | -                  |                     |
| Aver                   | age Speed, m    | i/h                        | 69.7                                      | Percent     | Percent Followers, %              |                    | 48.4                |
| Segr                   | ment Travel Ti  | me, minutes                | 0.86                                      | Followe     | Follower Density, followers/mi/ln |                    | 3.6                 |
| Vehi                   | cle LOS         |                            | В                                         |             |                                   |                    |                     |
| Bic                    | ycle Resul      | ts                         |                                           |             |                                   |                    |                     |
| Perc                   | ent Occupied    | Parking                    | 0                                         | Paveme      | Pavement Condition Rating         |                    | 4                   |
| Flow                   | Rate Outside    | te Outside Lane, veh/h 514 |                                           | Bicycle     | Bicycle Effective Width, ft       |                    | 24                  |
| Bicycle LOS Score 3.52 |                 | Bicycle                    | Effective S                               | peed Factor | 5.07                              |                    |                     |
| Bicyo                  | cle LOS         |                            | D                                         |             |                                   |                    |                     |
| Fac                    | ility Resul     | ts                         |                                           |             |                                   |                    |                     |
|                        | т               | Follower                   | Density, followers/mi/l                   | n           |                                   | LC                 | S                   |
|                        | 1               |                            | 3.6                                       |             |                                   | В                  |                     |

## **Project Information**

| Analyst             | SRF Consulting                                                    | Date          | 10/14/2022     |
|---------------------|-------------------------------------------------------------------|---------------|----------------|
| Agency              |                                                                   | Analysis Year | 2035           |
| Jurisdiction        |                                                                   | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Deer<br>Blvd & West City Limits Rd<br>- Fall AM | Units         | U.S. Customary |

| Direction 1                           | Eastbound    |                                        |       |  |  |  |
|---------------------------------------|--------------|----------------------------------------|-------|--|--|--|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |  |  |  |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |  |  |  |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |  |  |  |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 8.0   |  |  |  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |  |  |  |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |  |  |  |
| Free-Flow Speed (FFS), mi/h           | 53.0         |                                        |       |  |  |  |
| Direction 1 Adjustment Factors        |              |                                        |       |  |  |  |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |  |  |  |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |  |  |  |
| Driver Population CAF                 | 1.000        |                                        |       |  |  |  |
| Direction 1 Demand and Capacity       |              |                                        |       |  |  |  |
| Volume(V) veh/h                       | 362          | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |  |  |  |
| Peak Hour Factor                      | 0.90         | Flow Rate (V <sub>p</sub> ), pc/h/ln   | 203   |  |  |  |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2060  |  |  |  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2060  |  |  |  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.10  |  |  |  |
| Direction 1 Speed and Densi           | ity          |                                        |       |  |  |  |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.0  |  |  |  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 3.8   |  |  |  |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |  |  |  |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |       |  |  |  |
| Direction 1 Bicycle LOS               |              |                                        |       |  |  |  |
| Flow Rate in Outside Lane (vOL),veh/h | 201          | Effective Speed Factor (St)            | 4.62  |  |  |  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 2.14  |  |  |  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |  |  |  |

| Direction 2                           | Westbound    |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 7.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.3         |                                        |       |
| Direction 2 Adjustment Fact           | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 2 Demand and Cap            | acity        |                                        |       |
| Volume(V) veh/h                       | 153          | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90         | Flow Rate (V <sub>P</sub> ), pc/h/ln   | 86    |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2064  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2064  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.04  |
| Direction 2 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 1.6   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 1.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vol),veh/h | 201          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 2.14  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |

SD 52 btw Deer Blvd & West City Limits Rd - Fall AM.xuf

## **Project Information**

| Analyst             | SRF Consulting                                                    | Date          | 10/14/2022     |
|---------------------|-------------------------------------------------------------------|---------------|----------------|
| Agency              |                                                                   | Analysis Year | 2035           |
| Jurisdiction        |                                                                   | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Deer<br>Blvd & West City Limits Rd<br>- Fall PM | Units         | U.S. Customary |

| Direction 1                           | Eastbound    |                                        |       |  |  |
|---------------------------------------|--------------|----------------------------------------|-------|--|--|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |  |  |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |  |  |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |  |  |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 8.0   |  |  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |  |  |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |  |  |
| Free-Flow Speed (FFS), mi/h           | 53.0         |                                        |       |  |  |
| Direction 1 Adjustment Fact           | ors          |                                        |       |  |  |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |  |  |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |  |  |
| Driver Population CAF                 | 1.000        |                                        |       |  |  |
| Direction 1 Demand and Capacity       |              |                                        |       |  |  |
| Volume(V) veh/h                       | 318          | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |  |  |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 178   |  |  |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2060  |  |  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2060  |  |  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.09  |  |  |
| Direction 1 Speed and Densi           | ty           |                                        |       |  |  |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.0  |  |  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 3.4   |  |  |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |  |  |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |       |  |  |
| Direction 1 Bicycle LOS               |              |                                        |       |  |  |
| Flow Rate in Outside Lane (vOL),veh/h | 177          | Effective Speed Factor (St)            | 4.62  |  |  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 2.07  |  |  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |  |  |

| Direction 2                           | Westbound    |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 7.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.3         |                                        |       |
| Direction 2 Adjustment Fact           | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 2 Demand and Cap            | bacity       |                                        |       |
| Volume(V) veh/h                       | 524          | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 294   |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2064  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2064  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.14  |
| Direction 2 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 5.5   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 1.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 177          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 2.07  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |

SD 52 btw Deer Blvd & West City Limits Rd - Fall PM.xuf

## **Project Information**

| Analyst             | SRF Consulting                                                   | Date          | 10/14/2022     |
|---------------------|------------------------------------------------------------------|---------------|----------------|
| Agency              |                                                                  | Analysis Year | 2035           |
| Jurisdiction        |                                                                  | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Deer<br>Blvd & West City Limits Rd<br>- Summer | Units         | U.S. Customary |

| Direction 1                           | Eastbound         |                                        |       |
|---------------------------------------|-------------------|----------------------------------------|-------|
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Level |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Measured          | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | -                 | Access Point Density, pts/mi           | -     |
| Lane Width, ft                        | -                 | Left-Side Lateral Clearance (LCR), ft  | -     |
| Median Type                           | -                 | Total Lateral Clearance (TLC), ft      | -     |
| Free-Flow Speed (FFS), mi/h           | 55.0              |                                        |       |
| Direction 1 Adjustment Fact           | ors               |                                        |       |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.898             |                                        |       |
| Direction 1 Demand and Cap            | pacity            |                                        |       |
| Volume(V) veh/h                       | 486               | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90              | Flow Rate (Vp), pc/h/ln                | 272   |
| Total Trucks, %                       | 1.00              | Capacity (c), pc/h/ln                  | 2100  |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 2100  |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.13  |
| Direction 1 Speed and Densi           | ity               |                                        |       |
| Lane Width Adjustment (fLW)           | -                 | Average Speed (S), mi/h                | 55.0  |
| Total Lateral Clearance Adj. (fLLC)   | -                 | Density (D ), pc/mi/ln                 | 4.9   |
| Median Type Adjustment (fM)           | -                 | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | -                 |                                        |       |
| Direction 1 Bicycle LOS               |                   |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 270               | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18                | Bicyle LOS Score (BLOS)                | 2.29  |
| Average Effective Width (We), ft      | 24                | Bicycle Level of Service (LOS)         | В     |

|                                       | 1                 |                                        |       |
|---------------------------------------|-------------------|----------------------------------------|-------|
| Direction 2                           | Westbound         |                                        |       |
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Level |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base              | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0              | Access Point Density, pts/mi           | 7.0   |
| Lane Width, ft                        | 12                | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL             | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.3              |                                        |       |
| Direction 2 Adjustment Factor         | ors               |                                        |       |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.898             |                                        |       |
| Direction 2 Demand and Cap            | oacity            |                                        |       |
| Volume(V) veh/h                       | 746               | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90              | Flow Rate (Vp), pc/h/ln                | 418   |
| Total Trucks, %                       | 1.00              | Capacity (c), pc/h/ln                  | 2064  |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 2064  |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.20  |
| Direction 2 Speed and Densi           | ty                |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0               | Average Speed (S), mi/h                | 53.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0               | Density (D ), pc/mi/ln                 | 7.9   |
| Median Type Adjustment (fM)           | 0.0               | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 1.8               |                                        |       |
| Direction 2 Bicycle LOS               |                   |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 270               | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18                | Bicyle LOS Score (BLOS)                | 2.29  |
| Average Effective Width (We), ft      | 24                | Bicycle Level of Service (LOS)         | В     |

SD 52 btw Deer Blvd & West City Limits Rd - Summer.xuf

## **Project Information**

| Analyst             | SRF Consulting                                              | Date          | 10/13/2022     |
|---------------------|-------------------------------------------------------------|---------------|----------------|
| Agency              |                                                             | Analysis Year | 2035           |
| Jurisdiction        |                                                             | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Gavin's<br>Point Rd & SD 153 - Fall<br>AM | Units         | U.S. Customary |

| Direction 1                           | Eastbound    |                                        |         |
|---------------------------------------|--------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0         | Access Point Density, pts/mi           | 8.0     |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 48.0         |                                        |         |
| Direction 1 Adjustment Fact           | ors          |                                        |         |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 1.000        |                                        |         |
| Direction 1 Demand and Ca             | pacity       |                                        | ·       |
| Volume(V) veh/h                       | 132          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 74      |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 1960    |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 1960    |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.04    |
| Direction 1 Speed and Densi           | ity          |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 48.0    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 1.5     |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |         |
| Direction 1 Bicycle LOS               |              |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 73           | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 23           | Bicyle LOS Score (BLOS)                | 0.72    |
| Average Effective Width (We), ft      | 28           | Bicycle Level of Service (LOS)         | A       |

| Direction 2                           | Westbound    |                                        |         |
|---------------------------------------|--------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0         | Access Point Density, pts/mi           | 2.0     |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 49.5         |                                        |         |
| Direction 2 Adjustment Fact           | ors          |                                        |         |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 1.000        |                                        |         |
| Direction 2 Demand and Cap            | pacity       |                                        |         |
| Volume(V) veh/h                       | 63           | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 35      |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 1990    |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 1990    |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.02    |
| Direction 2 Speed and Densi           | ty           |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 49.5    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 0.7     |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 0.5          |                                        |         |
| Direction 2 Bicycle LOS               |              |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 73           | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 23           | Bicyle LOS Score (BLOS)                | 0.72    |
| Average Effective Width (We), ft      | 28           | Bicycle Level of Service (LOS)         | A       |

Rights Reserved. HCS TWO INformation Constraints and SD 52 btw Gavin's Point Rd & SD 153 - Fall AM.xuf

## **Project Information**

| Analyst             | SRF Consulting                                              | Date          | 10/13/2022     |
|---------------------|-------------------------------------------------------------|---------------|----------------|
| Agency              |                                                             | Analysis Year | 2035           |
| Jurisdiction        |                                                             | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Gavin's<br>Point Rd & SD 153 - Fall<br>PM | Units         | U.S. Customary |

| Direction 1                           | Eastbound    |                                        |         |
|---------------------------------------|--------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0         | Access Point Density, pts/mi           | 8.0     |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 48.0         |                                        |         |
| Direction 1 Adjustment Fact           | ors          |                                        |         |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 1.000        |                                        |         |
| Direction 1 Demand and Ca             | pacity       | -<br>-                                 |         |
| Volume(V) veh/h                       | 153          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 85      |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 1960    |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 1960    |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.04    |
| Direction 1 Speed and Densi           | ity          |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 48.0    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 1.8     |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |         |
| Direction 1 Bicycle LOS               |              |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 85           | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 21           | Bicyle LOS Score (BLOS)                | 1.34    |
| Average Effective Width (We), ft      | 26           | Bicycle Level of Service (LOS)         | A       |

| Direction 2                           | Westbound    |                                        |         |
|---------------------------------------|--------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0         | Access Point Density, pts/mi           | 2.0     |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 49.5         |                                        |         |
| Direction 2 Adjustment Fact           | ors          |                                        |         |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 1.000        |                                        |         |
| Direction 2 Demand and Cap            | pacity       |                                        |         |
| Volume(V) veh/h                       | 183          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 102     |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 1990    |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 1990    |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.05    |
| Direction 2 Speed and Densi           | ty           |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 49.5    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 2.1     |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 0.5          |                                        |         |
| Direction 2 Bicycle LOS               |              |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 85           | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 21           | Bicyle LOS Score (BLOS)                | 1.34    |
| Average Effective Width (We), ft      | 26           | Bicycle Level of Service (LOS)         | A       |

Rights Reserved. HCS TWO MULTITUDE VERSION 7.553 SD 52 btw Gavin's Point Rd & SD 153 - Fall PM.xuf

## **Project Information**

| Analyst      | SRF Consulting                                             | Date          | 10/13/2022     |
|--------------|------------------------------------------------------------|---------------|----------------|
| Agency       |                                                            | Analysis Year | 2035           |
| Jurisdiction |                                                            | Time Analyzed |                |
|              | 16002 - SD 52 btw Gavin's<br>Point Rd & SD 153 -<br>Summer | Units         | U.S. Customary |

| Direction 1                           | Eastbound         |                                        |         |
|---------------------------------------|-------------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base              | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0              | Access Point Density, pts/mi           | 8.0     |
| Lane Width, ft                        | 12                | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL             | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 48.0              |                                        |         |
| Direction 1 Adjustment Fact           | ors               |                                        |         |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 0.898             |                                        |         |
| Direction 1 Demand and Cap            | pacity            | ·                                      | ÷       |
| Volume(V) veh/h                       | 216               | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90              | Flow Rate (Vp), pc/h/ln                | 120     |
| Total Trucks, %                       | 0.00              | Capacity (c), pc/h/ln                  | 1960    |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 1960    |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.06    |
| Direction 1 Speed and Densi           | ity               |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0               | Average Speed (S), mi/h                | 48.0    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0               | Density (D ), pc/mi/ln                 | 2.5     |
| Median Type Adjustment (fM)           | 0.0               | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 2.0               |                                        |         |
| Direction 1 Bicycle LOS               |                   |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 120               | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 17                | Bicyle LOS Score (BLOS)                | 2.48    |
| Average Effective Width (We), ft      | 22                | Bicycle Level of Service (LOS)         | В       |

| Direction 2                           | ion 2 Westbound   |                                        |         |  |  |  |  |  |
|---------------------------------------|-------------------|----------------------------------------|---------|--|--|--|--|--|
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Rolling |  |  |  |  |  |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -       |  |  |  |  |  |
| Measured or Base Free-Flow Speed      | Base              | Grade Length, mi                       | -       |  |  |  |  |  |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0              | Access Point Density, pts/mi           | 2.0     |  |  |  |  |  |
| Lane Width, ft                        | 12                | Left-Side Lateral Clearance (LCR), ft  | 6       |  |  |  |  |  |
| Median Type                           | TWLTL             | Total Lateral Clearance (TLC), ft      | 12      |  |  |  |  |  |
| Free-Flow Speed (FFS), mi/h           | 49.5              |                                        |         |  |  |  |  |  |
| Direction 2 Adjustment Fact           | ors               |                                        | ÷       |  |  |  |  |  |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000   |  |  |  |  |  |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000   |  |  |  |  |  |
| Driver Population CAF                 | 0.898             |                                        |         |  |  |  |  |  |
| Direction 2 Demand and Cap            | pacity            |                                        | ·       |  |  |  |  |  |
| Volume(V) veh/h                       | 265               | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |  |  |  |  |  |
| Peak Hour Factor                      | 0.90              | Flow Rate (Vp), pc/h/ln                | 147     |  |  |  |  |  |
| Total Trucks, %                       | 0.00              | Capacity (c), pc/h/ln                  | 1990    |  |  |  |  |  |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 1990    |  |  |  |  |  |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.07    |  |  |  |  |  |
| Direction 2 Speed and Densi           | ty                |                                        |         |  |  |  |  |  |
| Lane Width Adjustment (fLW)           | 0.0               | Average Speed (S), mi/h                | 49.5    |  |  |  |  |  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0               | Density (D ), pc/mi/ln                 | 3.0     |  |  |  |  |  |
| Median Type Adjustment (fM)           | 0.0               | Level of Service (LOS)                 | A       |  |  |  |  |  |
| Access Point Density Adjustment (fA)  | 0.5               |                                        |         |  |  |  |  |  |
| Direction 2 Bicycle LOS               |                   |                                        |         |  |  |  |  |  |
| Flow Rate in Outside Lane (vOL),veh/h | 120               | Effective Speed Factor (St) 4.62       |         |  |  |  |  |  |
| Effective Width of Volume (Wv), ft    | 17                | Bicyle LOS Score (BLOS)                | 2.48    |  |  |  |  |  |
| Average Effective Width (We), ft      | 22                | Bicycle Level of Service (LOS)         | В       |  |  |  |  |  |

Rights Reserved. HCS WW Mututane version ...... SD 52 btw Gavin's Point Rd & SD 153 - Summer.xuf

|                                   |                                     | HCS7 Two-                                             | Lane                              | Highv                            | vay Re           | eport              |                     |
|-----------------------------------|-------------------------------------|-------------------------------------------------------|-----------------------------------|----------------------------------|------------------|--------------------|---------------------|
| Project Infor                     | mation                              |                                                       |                                   |                                  |                  |                    |                     |
| Analyst                           |                                     | SRF Consulting                                        |                                   | Date                             |                  |                    | 10/14/2022          |
| Agency                            |                                     |                                                       |                                   | Analysis                         | Year             |                    | 2035                |
| Jurisdiction                      |                                     |                                                       |                                   | Time Analyzed                    |                  |                    |                     |
| Project Descriptio                | n                                   | 16002 SD 52 btw SD 50 &<br>Gavin's Point Rd - Fall AM |                                   | Units                            |                  |                    | U.S. Customary      |
|                                   |                                     |                                                       | Segn                              | nent 1                           |                  |                    |                     |
| Vehicle Inpu                      | ts                                  |                                                       |                                   |                                  |                  |                    |                     |
| Segment Type                      |                                     | Passing Zone                                          |                                   | Length, f                        | ft               |                    | 18480               |
| Lane Width, ft                    |                                     | 12                                                    |                                   | Shoulder                         | r Width, f       | t                  | 5                   |
| Speed Limit, mi/h                 |                                     | 55                                                    |                                   | Access P                         | oint Dens        | ity, pts/mi        | 7.0                 |
| Demand and                        | Capacity                            |                                                       |                                   |                                  |                  |                    |                     |
| Directional Dema                  | nd Flow Rate, veh/h                 | 34                                                    |                                   | Opposing Demand Flow Rate, veh/h |                  | d Flow Rate, veh/h | 13                  |
| Peak Hour Factor                  |                                     | 0.90                                                  |                                   | Total Trucks, %                  |                  |                    | 0.00                |
| Segment Capacity                  | r, veh/h                            | 1700                                                  |                                   | Demand/Capacity (D/C)            |                  | (D/C)              | 0.02                |
| Intermediate                      | Results                             |                                                       |                                   |                                  |                  |                    |                     |
| Segment Vertical Class            |                                     | 1                                                     |                                   | Free-Flow Speed, mi/h            |                  | mi/h               | 60.3                |
| Speed Slope Coef                  | ficient                             | 3.50472                                               |                                   | Speed Power Coefficient          |                  | fficient           | 0.63589             |
| PF Slope Coefficie                | nt                                  | -1.13401                                              |                                   | PF Power Coefficient             |                  | ent                | 0.80817             |
| In Passing Lane Ef                | assing Lane Effective Length? No    |                                                       | Total Segment Density, veh/mi/ln  |                                  | nsity, veh/mi/ln | 0.0                |                     |
| %Improved % Fol                   | proved % Followers 0.0              |                                                       | % Improved Avg Speed              |                                  | Speed            | 0.0                |                     |
| Subsegment                        | Data                                |                                                       |                                   |                                  |                  |                    |                     |
| # Segment Ty                      | ре                                  | Length, ft                                            | Rac                               | lius, ft                         |                  | Superelevation, %  | Average Speed, mi/h |
| 1 Tangent                         |                                     | 18480                                                 | -                                 |                                  | -                |                    | 60.3                |
| Vehicle Resu                      | lts                                 |                                                       |                                   |                                  |                  | •                  |                     |
| <br>Average Speed, mi/h           |                                     | 60.3                                                  |                                   | Percent Followers, %             |                  | %                  | 7.2                 |
| Segment Travel Time, minutes 3.49 |                                     |                                                       | Follower Density, followers/mi/ln |                                  | followers/mi/ln  | 0.0                |                     |
| Vehicle LOS                       | icle LOS A                          |                                                       |                                   |                                  |                  |                    |                     |
| Bicycle Resu                      | lts                                 | ·                                                     |                                   |                                  |                  |                    |                     |
| Percent Occupied Parking 0        |                                     | Pavement Condition Rating 3                           |                                   |                                  |                  |                    |                     |
| Flow Rate Outside Lane, veh/h     |                                     | 34                                                    |                                   | Bicycle Effective Width, ft      |                  | /idth, ft          | 36                  |
| Bicycle LOS Score                 |                                     | 0.00                                                  |                                   | Bicycle Effective Speed Factor   |                  | peed Factor        | 4.79                |
| Bicycle LOS A                     |                                     | A                                                     | A                                 |                                  |                  |                    |                     |
| Facility Resu                     | lts                                 |                                                       |                                   |                                  |                  |                    |                     |
| т                                 | T Follower Density, followers/mi/In |                                                       |                                   |                                  | LOS              |                    |                     |
| 1                                 | 1 0.0                               |                                                       |                                   | Α                                |                  |                    |                     |

|                               |                                     | HCS7 Two-La                                     | ane Hig  | hway R                            | eport        |                     |  |  |
|-------------------------------|-------------------------------------|-------------------------------------------------|----------|-----------------------------------|--------------|---------------------|--|--|
| Pro                           | ject Information                    |                                                 |          |                                   |              |                     |  |  |
| Analy                         | /st                                 | SRF Consulting                                  | Date     | Date                              |              | 10/14/2022          |  |  |
| Agen                          | су                                  |                                                 | Analy    | vsis Year                         |              | 2035                |  |  |
| Jurisc                        | diction                             | 1                                               | Time     | Time Analyzed                     |              |                     |  |  |
| Proje                         | ct Description                      | 16002 SD 52 btw SD 5<br>Gavin's Point Rd - Fall |          | Units                             |              | U.S. Customary      |  |  |
|                               |                                     | S                                               | egment   | 1                                 |              |                     |  |  |
| Veh                           | icle Inputs                         |                                                 |          |                                   |              |                     |  |  |
| Segn                          | nent Type                           | Passing Zone                                    | Leng     | th, ft                            |              | 18480               |  |  |
| Lane                          | Width, ft                           | 12                                              | Shou     | lder Width, f                     | ft           | 5                   |  |  |
| Spee                          | d Limit, mi/h                       | 55                                              | Acces    | ss Point Den                      | sity, pts/mi | 7.0                 |  |  |
| Den                           | nand and Capacity                   | ·                                               |          |                                   |              |                     |  |  |
| Direc                         | tional Demand Flow Rate, veh/h      | eh/h 26                                         |          | Opposing Demand Flow Rate, veh/h  |              | 22                  |  |  |
| Peak                          | Hour Factor                         | 0.90                                            | Total    | Total Trucks, %                   |              | 0.00                |  |  |
| Segm                          | nent Capacity, veh/h                | 1700                                            | Dema     | Demand/Capacity (D/C)             |              | 0.02                |  |  |
| Inte                          | ermediate Results                   |                                                 |          |                                   |              | -                   |  |  |
| Segment Vertical Class        |                                     | 1                                               | Free-    | Free-Flow Speed, mi/h             |              | 60.3                |  |  |
| Spee                          | ed Slope Coefficient 3.51574        |                                                 | Spee     | Speed Power Coefficient           |              | 0.62490             |  |  |
| PF SI                         | ope Coefficient                     | -1.14350                                        | PF Pc    | PF Power Coefficient              |              | 0.80525             |  |  |
| In Pa                         | Passing Lane Effective Length? No   |                                                 | Total    | Total Segment Density, veh/mi/ln  |              | 0.0                 |  |  |
| %lmp                          | proved % Followers                  | 0.0                                             | % Im     | % Improved Avg Speed              |              | 0.0                 |  |  |
| Sub                           | segment Data                        | •                                               | <u>.</u> |                                   |              |                     |  |  |
| #                             | Segment Type                        | Length, ft Rad                                  |          | dius, ft Superelevation, %        |              | Average Speed, mi/h |  |  |
| 1                             | Tangent                             | ngent 18480 -                                   |          | -                                 |              | 60.3                |  |  |
| Veh                           | icle Results                        | -                                               |          |                                   |              | -                   |  |  |
| Average Speed, mi/h           |                                     | 60.3                                            | Perce    | Percent Followers, %              |              | 5.8                 |  |  |
| 5177                          |                                     | 3.49                                            | Follo    | Follower Density, followers/mi/ln |              | 0.0                 |  |  |
| Vehic                         | Vehicle LOS A                       |                                                 |          |                                   |              |                     |  |  |
| Bicy                          | /cle Results                        |                                                 |          |                                   |              |                     |  |  |
| Percent Occupied Parking 0    |                                     |                                                 | Paver    | Pavement Condition Rating 3       |              |                     |  |  |
| Flow Rate Outside Lane, veh/h |                                     | 26                                              |          | Bicycle Effective Width, ft       |              | 37                  |  |  |
| Bicycle LOS Score             |                                     | 0.00                                            |          | Bicycle Effective Speed Factor    |              | 4.79                |  |  |
| Bicycle LOS A                 |                                     | A                                               |          |                                   |              |                     |  |  |
|                               | ility Results                       |                                                 |          |                                   |              |                     |  |  |
|                               | T Follower Density, followers/mi/In |                                                 |          |                                   | LOS          |                     |  |  |
|                               | 1                                   | 0.0                                             |          |                                   | A            |                     |  |  |

|                                     | HCS7 Two-Lar                                              | ne Highway R      | leport              |                     |
|-------------------------------------|-----------------------------------------------------------|-------------------|---------------------|---------------------|
| Project Information                 |                                                           |                   |                     |                     |
| Analyst                             | SRF Consulting                                            | Date              |                     | 10/14/2022          |
| Agency                              |                                                           | Analysis Year     |                     | 2035                |
| Jurisdiction                        |                                                           | Time Analyzed     |                     |                     |
| Project Description                 | 16002 - SD 52 btw SD 50<br>& Gavin's Point Rd -<br>Summer | ) Units           |                     | U.S. Customary      |
|                                     | Seg                                                       | gment 1           |                     |                     |
| Vehicle Inputs                      |                                                           |                   |                     |                     |
| Segment Type                        | Passing Zone                                              | Length, ft        |                     | 18480               |
| Lane Width, ft                      | 12                                                        | Shoulder Width,   | ft                  | 5                   |
| Speed Limit, mi/h                   | 55                                                        | Access Point Der  | nsity, pts/mi       | 7.0                 |
| Demand and Capacity                 |                                                           |                   |                     |                     |
| Directional Demand Flow Rate, veh/h | 49                                                        | Opposing Dema     | nd Flow Rate, veh/h | 41                  |
| Peak Hour Factor                    | 0.90                                                      | Total Trucks, %   |                     | 0.00                |
| Segment Capacity, veh/h             | 1700                                                      | Demand/Capacit    | ry (D/C)            | 0.03                |
| Intermediate Results                |                                                           |                   | -                   |                     |
| Segment Vertical Class              | 1 Free-Flow Speed, mi/h                                   |                   | 60.3                |                     |
| Speed Slope Coefficient             | 3.53334                                                   | Speed Power Co    | efficient           | 0.60789             |
| PF Slope Coefficient                | -1.15823                                                  | PF Power Coeffic  | ient                | 0.80074             |
| In Passing Lane Effective Length?   | No                                                        | Total Segment D   | ensity, veh/mi/ln   | 0.1                 |
| %Improved % Followers               | 0.0 % Improved Avg Speed                                  |                   | 0.0                 |                     |
| Subsegment Data                     | ·                                                         |                   |                     | ·                   |
| # Segment Type                      | Length, ft                                                | Radius, ft        | Superelevation, %   | Average Speed, mi/h |
| 1 Tangent                           | 18480                                                     | -                 | -                   | 60.3                |
| Vehicle Results                     |                                                           |                   |                     | -                   |
| Average Speed, mi/h                 | 60.3                                                      | Percent Follower  | s, %                | 9.8                 |
| Segment Travel Time, minutes        | 3.49                                                      | Follower Density  | , followers/mi/ln   | 0.1                 |
| Vehicle LOS                         | A                                                         |                   |                     |                     |
| Bicycle Results                     |                                                           |                   |                     |                     |
| Percent Occupied Parking            | 0                                                         | Pavement Condi    | tion Rating         | 3                   |
| Flow Rate Outside Lane, veh/h       | 49                                                        | Bicycle Effective | Width, ft           | 35                  |
| Bicycle LOS Score                   | 0.00                                                      | Bicycle Effective | Speed Factor        | 4.79                |
| Bicycle LOS                         | A                                                         |                   |                     |                     |
| Facility Results                    |                                                           |                   |                     |                     |
| -                                   | r Density, followers/mi/ln                                |                   | L(                  |                     |

| 1                     | 0.1                                      | 1                                  |              | А                              |
|-----------------------|------------------------------------------|------------------------------------|--------------|--------------------------------|
| Copyright © 2023 Univ | versity of Florida. All Rights Reserved. | HCS 🖿 Two-Lane Version 7           | 7.9.6        | Generated: 10/13/2023 09:03:19 |
|                       |                                          | SD 52 btw SD 50 & Gavin's Point Rd | - Summer.xuf |                                |

## **Project Information**

| Analyst             | SRF Consulting                                    | Date          | 10/14/2022     |
|---------------------|---------------------------------------------------|---------------|----------------|
| Agency              |                                                   | Analysis Year | 2035           |
| Jurisdiction        |                                                   | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw SD 153<br>& Deer Blvd - Fall AM | Units         | U.S. Customary |

| Direction i Geometric Data            |              |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 1                           | Eastbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 15.0  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 51.3         |                                        |       |
| Direction 1 Adjustment Factor         | ors          |                                        |       |
| Driver Population                     | Balanced Mix | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.950        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.939        |                                        |       |
| Direction 1 Demand and Cap            | acity        |                                        |       |
| Volume(V) veh/h                       | 175          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 97    |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2024  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2024  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.05  |
| Direction 1 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 51.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 1.9   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 3.8          |                                        |       |
| Direction 1 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 97           | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.56  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |
|                                       |              |                                        |       |

| Direction 2 Geometric Data                                                                                    |              |                                                        |              |
|---------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------|--------------|
| Direction 2                                                                                                   | Westbound    |                                                        |              |
| Number of Lanes (N), In                                                                                       | 2            | Terrain Type                                           | Level        |
| Segment Length (L), ft                                                                                        | -            | Percent Grade, %                                       | -            |
| Measured or Base Free-Flow Speed                                                                              | Base         | Grade Length, mi                                       | -            |
| Base Free-Flow Speed (BFFS), mi/h                                                                             | 55.0         | Access Point Density, pts/mi                           | 3.0          |
| Lane Width, ft                                                                                                | 12           | Left-Side Lateral Clearance (LCR), ft                  | 6            |
| Median Type                                                                                                   | TWLTL        | Total Lateral Clearance (TLC), ft                      | 12           |
| Free-Flow Speed (FFS), mi/h                                                                                   | 54.3         |                                                        |              |
| Direction 2 Adjustment Fact                                                                                   | tors         |                                                        |              |
| Driver Population                                                                                             | Balanced Mix | Final Speed Adjustment Factor (SAF)                    | 1.000        |
| Driver Population SAF                                                                                         | 0.950        | Final Capacity Adjustment Factor (CAF)                 | 1.000        |
| Driver Population CAF                                                                                         | 0.939        |                                                        |              |
| Direction 2 Demand and Ca                                                                                     | pacity       |                                                        |              |
| Volume(V) veh/h                                                                                               | 91           | Heavy Vehicle Adjustment Factor (fHV)                  | 1.000        |
| Peak Hour Factor                                                                                              | 0.90         | Flow Rate (Vp), pc/h/ln                                | 50           |
| Total Trucks, %                                                                                               | 0.00         | Capacity (c), pc/h/ln                                  | 2084         |
| Single-Unit Trucks (SUT), %                                                                                   | -            | Adjusted Capacity (cadj), pc/h/ln                      | 2084         |
| Tractor-Trailers (TT), %                                                                                      | -            | Volume-to-Capacity Ratio (v/c)                         | 0.02         |
| Direction 2 Speed and Dens                                                                                    | ity          |                                                        |              |
| Lane Width Adjustment (fLW)                                                                                   | 0.0          | Average Speed (S), mi/h                                | 54.2         |
| Total Lateral Clearance Adj. (fLLC)                                                                           | 0.0          | Density (D ), pc/mi/ln                                 | 0.9          |
| Median Type Adjustment (fM)                                                                                   | 0.0          | Level of Service (LOS)                                 | A            |
| Access Point Density Adjustment (fA)                                                                          | 0.8          |                                                        |              |
|                                                                                                               |              |                                                        |              |
| Direction 2 Bicycle LOS                                                                                       |              |                                                        |              |
|                                                                                                               | 97           | Effective Speed Factor (St)                            | 4.62         |
| <b>Direction 2 Bicycle LOS</b><br>Flow Rate in Outside Lane (vOL),veh/h<br>Effective Width of Volume (Wv), ft | 97           | Effective Speed Factor (St)<br>Bicyle LOS Score (BLOS) | 4.62<br>1.56 |

## **Project Information**

| Analyst             | SRF Consulting                                    | Date          | 10/14/2022     |
|---------------------|---------------------------------------------------|---------------|----------------|
| Agency              |                                                   | Analysis Year | 2035           |
| Jurisdiction        |                                                   | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw SD 153<br>& Deer Blvd - Fall PM | Units         | U.S. Customary |

| Direction i Geometric Data            |              |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 1                           | Eastbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 15.0  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 51.3         |                                        |       |
| Direction 1 Adjustment Factor         | Drs          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 1 Demand and Cap            | acity        |                                        |       |
| Volume(V) veh/h                       | 215          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 120   |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2024  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2024  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.06  |
| Direction 1 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 51.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 2.3   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 3.8          |                                        |       |
| Direction 1 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 119          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.67  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |
|                                       |              |                                        |       |

| Direction 2 Geometric Data            |              |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 2                           | Westbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 3.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 54.3         |                                        |       |
| Direction 2 Adjustment Fact           | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 2 Demand and Cap            | bacity       |                                        |       |
| Volume(V) veh/h                       | 225          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 125   |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2084  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2084  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.06  |
| Direction 2 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 54.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 2.3   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 0.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 119          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.67  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |

SD 52 btw SD 153 & Deer Blvd - Fall PM.xuf

## **Project Information**

| Analyst             | SRF Consulting                                   | Date          | 10/14/2022     |
|---------------------|--------------------------------------------------|---------------|----------------|
| Agency              |                                                  | Analysis Year | 2035           |
| Jurisdiction        |                                                  | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw SD 153<br>& Deer Blvd - Summer | Units         | U.S. Customary |

| Direction i Geometric Data            |              |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 1                           | Eastbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 15.0  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 51.3         |                                        |       |
| Direction 1 Adjustment Fact           | ors          |                                        |       |
| Driver Population                     | Balanced Mix | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.950        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.939        |                                        |       |
| Direction 1 Demand and Cap            | pacity       |                                        |       |
| Volume(V) veh/h                       | 283          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 157   |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2024  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2024  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.08  |
| Direction 1 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 51.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 3.1   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 3.8          |                                        |       |
| Direction 1 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 157          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.81  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |

| Direction 2                           | Westbound    |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 3.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 54.3         |                                        |       |
| Direction 2 Adjustment Fac            | tors         |                                        |       |
| Driver Population                     | Balanced Mix | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.950        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.939        |                                        |       |
| Direction 2 Demand and Ca             | pacity       | ·                                      |       |
| Volume(V) veh/h                       | 364          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 202   |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2084  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2084  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.10  |
| Direction 2 Speed and Dens            | ity          |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 54.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 3.7   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 0.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 157          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.81  |
|                                       |              |                                        |       |

#### siact Infa

| Pro    | ject Infor      | mation              |                                            |         |                                   |                        |                    |                     |
|--------|-----------------|---------------------|--------------------------------------------|---------|-----------------------------------|------------------------|--------------------|---------------------|
| Analy  | /st             |                     | SRF Consulting                             | Dat     | ate                               |                        |                    | 10/14/2022          |
| Agen   | ю               |                     |                                            | Ana     | nalysis                           | Year                   |                    | 2035                |
| Juriso | diction         |                     |                                            | Tim     | me Ana                            | alyzed                 |                    |                     |
| Proje  | ct Description  | ١                   | 16002 - SD 153 btw SE<br>& SD 50 - Fall AM | 52 Un   | nits                              |                        |                    | U.S. Customary      |
|        |                 |                     | Se                                         | egmer   | nt 1                              |                        |                    |                     |
| Veh    | icle Input      | S                   |                                            |         |                                   |                        |                    |                     |
| Segn   | nent Type       |                     | Passing Zone                               | Ler     | ngth, f                           | ť                      |                    | 12460               |
| Lane   | Width, ft       |                     | 11                                         | Sho     | oulder                            | <sup>.</sup> Width, ft | t                  | 1                   |
| Spee   | d Limit, mi/h   |                     | 55                                         | Aco     | cess P                            | oint Dens              | ity, pts/mi        | 9.0                 |
| Der    | nand and        | Capacity            |                                            |         |                                   |                        |                    |                     |
| Direc  | tional Demar    | nd Flow Rate, veh/h | 67                                         | Ор      | oposin                            | g Deman                | d Flow Rate, veh/h | 34                  |
| Peak   | Hour Factor     |                     | 0.90                                       | Tot     | tal Tru                           | cks, %                 |                    | 0.00                |
| Segn   | nent Capacity   | , veh/h             | 1700                                       | De      | emand,                            | /Capacity              | (D/C)              | 0.04                |
| Inte   | ermediate       | Results             |                                            |         |                                   |                        |                    |                     |
| Segn   | nent Vertical ( | Class               | 1                                          |         | Free-Flow Speed, mi/h             |                        | mi/h               | 56.4                |
| Spee   | d Slope Coef    | ficient             | 3.31633                                    |         | eed Po                            | ower Coet              | fficient           | 0.61325             |
| PF SI  | ope Coefficie   | nt                  | -1.16800                                   |         | Power                             | r Coefficie            | ent                | 0.79052             |
| In Pa  | ssing Lane Ef   | fective Length?     | No                                         |         | tal Seg                           | jment De               | nsity, veh/mi/ln   | 0.2                 |
| %lmp   | proved % Foll   | owers               | 0.0                                        | % I     | % Improved Avg Speed              |                        | Speed              | 0.0                 |
| Sub    | segment         | Data                |                                            |         |                                   |                        |                    |                     |
| #      | Segment Ty      | pe                  | Length, ft                                 | Radius, | ft                                |                        | Superelevation, %  | Average Speed, mi/h |
| 1      | Tangent         |                     | 12460                                      | -       |                                   |                        | -                  | 56.4                |
| Veh    | icle Resu       | ts                  |                                            |         |                                   |                        |                    |                     |
| Avera  | age Speed, m    | i/h                 | 56.4                                       | Per     | ercent Followers, %               |                        | %                  | 12.8                |
| Segn   | nent Travel Tii | me, minutes         | 2.51                                       | Fol     | Follower Density, followers/mi/ln |                        | followers/mi/ln    | 0.2                 |
| Vehic  | le LOS          |                     | A                                          |         |                                   |                        |                    |                     |
| Bicy   | cle Resul       | ts                  |                                            |         |                                   |                        |                    |                     |
| Perce  | ent Occupied    | Parking             | 0                                          | Pav     | Pavement Condition Rating         |                        | on Rating          | 3                   |
| Flow   | Rate Outside    | Lane, veh/h         | 67                                         | Bic     | Bicycle Effective Width, ft       |                        | /idth, ft          | 20                  |
| Bicyc  | le LOS Score    |                     | 2.63                                       | Bic     | cycle E                           | ffective S             | peed Factor        | 4.79                |
| Bicyc  | le LOS          |                     | С                                          |         |                                   |                        |                    |                     |
| Faci   | ility Resul     | ts                  |                                            |         |                                   |                        |                    |                     |
|        | т               | Follower            | Density, followers/mi/l                    | In      |                                   |                        | LO                 | S                   |
|        | 1               |                     | 0.2                                        |         |                                   |                        | A                  |                     |

#### siact Infa

| Proj    | ect Infor      | mation              |                                            |        |                                   |                     |                    |                     |
|---------|----------------|---------------------|--------------------------------------------|--------|-----------------------------------|---------------------|--------------------|---------------------|
| Analys  | st             |                     | SRF Consulting                             | C      | Date                              |                     |                    | 10/14/2022          |
| Agenc   | су             |                     |                                            | A      | Analysis                          | Year                |                    | 2035                |
| Jurisdi | iction         |                     |                                            | Т      | Time Analyzed                     |                     |                    |                     |
| Projec  | t Description  | ١                   | 16002 - SD 153 btw SD<br>& SD 50 - Fall PM | 0 52 U | Jnits                             |                     |                    | U.S. Customary      |
|         |                |                     | Se                                         | egme   | ent 1                             |                     |                    |                     |
| Vehi    | cle Input      | S                   |                                            |        |                                   |                     |                    |                     |
| Segm    | ent Type       |                     | Passing Zone                               | L      | ength, f                          | 't                  |                    | 12460               |
| Lane \  | Nidth, ft      |                     | 11                                         | S      | Shoulde                           | r Width, f          | t                  | 1                   |
| Speed   | l Limit, mi/h  |                     | 55                                         | А      | Access P                          | oint Dens           | ity, pts/mi        | 9.0                 |
| Dem     | nand and       | Capacity            |                                            |        |                                   |                     |                    |                     |
| Direct  | ional Demar    | nd Flow Rate, veh/h | 67                                         | С      | Opposin                           | g Deman             | d Flow Rate, veh/h | 74                  |
| Peak H  | Hour Factor    |                     | 0.90                                       | Т      | lotal Tru                         | cks, %              |                    | 0.00                |
| Segm    | ent Capacity   | , veh/h             | 1700                                       | C      | Demand                            | /Capacity           | r (D/C)            | 0.04                |
| Inte    | rmediate       | Results             |                                            |        |                                   |                     |                    |                     |
| Segm    | ent Vertical ( | Class               | 1                                          |        | Free-Flow Speed, mi/h             |                     | mi/h               | 56.4                |
| Speed   | Slope Coeff    | ficient             | 3.34493                                    |        | Speed Po                          | ower Coe            | fficient           | 0.58673             |
| PF Slo  | pe Coefficie   | nt                  | -1.19167                                   |        | PF Powe                           | r Coefficie         | ent                | 0.78366             |
| In Pas  | sing Lane Eff  | fective Length?     | No                                         |        | Total Segment Density, veh/mi/ln  |                     | nsity, veh/mi/ln   | 0.2                 |
| %Imp    | roved % Foll   | owers               | 0.0                                        | %      | % Improved Avg Speed              |                     | Speed              | 0.0                 |
| Subs    | segment        | Data                |                                            |        |                                   |                     |                    |                     |
| #       | Segment Typ    | ре                  | Length, ft                                 | Radius | s, ft                             |                     | Superelevation, %  | Average Speed, mi/h |
| 1       | Tangent        |                     | 12460                                      | -      |                                   |                     | -                  | 56.4                |
| Vehi    | cle Resul      | ts                  |                                            |        |                                   |                     |                    |                     |
| Avera   | ge Speed, m    | i/h                 | 56.4                                       | Р      | Percent I                         | ercent Followers, % |                    | 13.3                |
| Segm    | ent Travel Tir | me, minutes         | 2.51                                       | F      | Follower Density, followers/mi/ln |                     | followers/mi/ln    | 0.2                 |
| Vehicl  | e LOS          |                     | A                                          |        |                                   |                     |                    |                     |
| Bicy    | cle Resul      | ts                  |                                            |        |                                   |                     |                    |                     |
| Percer  | nt Occupied    | Parking             | 0                                          | P      | Pavemer                           | nt Conditi          | on Rating          | 3                   |
| Flow F  | Rate Outside   | Lane, veh/h         | 67                                         | В      | Bicycle E                         | ffective W          | /idth, ft          | 20                  |
| Bicycle | e LOS Score    |                     | 2.63                                       | В      | Bicycle Effective Speed Factor    |                     | peed Factor        | 4.79                |
| Bicycle | e LOS          |                     | С                                          |        |                                   |                     |                    |                     |
| Facil   | lity Resul     | ts                  |                                            |        |                                   |                     |                    |                     |
|         | т              | Follower            | Density, followers/mi/l                    | n      |                                   |                     | LO                 | S                   |
|         | 1              |                     | 0.2                                        |        |                                   |                     | A                  |                     |

| HCS7 Two-Lane Hi | ighway Report |
|------------------|---------------|
|------------------|---------------|

#### ct Info • -

| Project Info     | ormation             |                                           |            |                                   |                    |                     |
|------------------|----------------------|-------------------------------------------|------------|-----------------------------------|--------------------|---------------------|
| Analyst          |                      | SRF Consulting                            | Date       | Date                              |                    | 10/14/2022          |
| Agency           |                      |                                           | Analysi    | s Year                            |                    | 2035                |
| Jurisdiction     |                      |                                           | Time A     | nalyzed                           |                    |                     |
| Project Descript | ion                  | 16002 - SD 153 btw SE<br>& SD 50 - Summer | 0 52 Units |                                   |                    | U.S. Customary      |
|                  |                      | Se                                        | egment 1   | I                                 |                    |                     |
| Vehicle Inp      | uts                  |                                           |            |                                   |                    |                     |
| Segment Type     |                      | Passing Zone                              | Length     | , ft                              |                    | 12460               |
| Lane Width, ft   |                      | 11                                        | Should     | er Width, f                       | t                  | 1                   |
| Speed Limit, mi, | ′h                   | 50                                        | Access     | Point Dens                        | sity, pts/mi       | 9.0                 |
| Demand ar        | d Capacity           |                                           |            |                                   |                    |                     |
| Directional Dem  | and Flow Rate, veh/h | 113                                       | Opposi     | ng Deman                          | d Flow Rate, veh/h | 114                 |
| Peak Hour Facto  | or                   | 0.90                                      | Total Tr   | ucks, %                           |                    | 0.00                |
| Segment Capac    | ity, veh/h           | 1700                                      | Deman      | d/Capacity                        | r (D/C)            | 0.07                |
| Intermedia       | te Results           |                                           |            |                                   |                    |                     |
| Segment Vertica  | al Class             | 1                                         | Free-Fl    | Free-Flow Speed, mi/h             |                    | 50.7                |
| Speed Slope Co   | efficient            | 3.05745                                   | Speed      | Power Coe                         | fficient           | 0.56805             |
| PF Slope Coeffic | ient                 | -1.22314                                  | PF Pow     | er Coefficie                      | ent                | 0.76116             |
| In Passing Lane  | Effective Length?    | No                                        | Total S    | egment De                         | nsity, veh/mi/ln   | 0.5                 |
| %Improved % F    | ollowers             | 0.0                                       | % Impr     | % Improved Avg Speed              |                    | 0.0                 |
| Subsegmer        | nt Data              |                                           |            |                                   |                    |                     |
| # Segment        | Туре                 | Length, ft                                | Radius, ft |                                   | Superelevation, %  | Average Speed, mi/h |
| 1 Tangent        |                      | 12460                                     | -          |                                   | -                  | 50.4                |
| Vehicle Res      | ults                 |                                           |            |                                   |                    |                     |
| Average Speed,   | mi/h                 | 50.4                                      | Percent    | Followers                         | , %                | 20.8                |
| Segment Travel   | Time, minutes        | 2.81                                      | Followe    | Follower Density, followers/mi/ln |                    | 0.5                 |
| Vehicle LOS      |                      | A                                         |            |                                   |                    |                     |
| Bicycle Res      | ults                 |                                           |            |                                   |                    |                     |
| Percent Occupie  | ed Parking           | 0                                         | Paveme     | ent Conditi                       | on Rating          | 3                   |
| Flow Rate Outsi  | de Lane, veh/h       | 113                                       | Bicycle    | Effective V                       | Vidth, ft          | 18                  |
| Bicycle LOS Sco  | re                   | 3.25                                      | Bicycle    | Effective S                       | peed Factor        | 4.62                |
| Bicycle LOS      |                      | С                                         |            |                                   |                    |                     |
| Facility Res     | ults                 |                                           |            |                                   |                    |                     |
| т                | Followe              | r Density, followers/mi/l                 | n          |                                   | LC                 | os                  |
| 1                |                      | 0.5                                       |            |                                   | Δ                  | \                   |

|                                     | HCS7 Two-Lan                                                  | e High    | way Report                |                     |
|-------------------------------------|---------------------------------------------------------------|-----------|---------------------------|---------------------|
| Project Information                 |                                                               |           |                           |                     |
| Analyst                             | SRF Consulting                                                | Date      |                           | 10/14/2022          |
| Agency                              |                                                               | Analysis  | Year                      | 2035                |
| Jurisdiction                        |                                                               | Time An   | alyzed                    |                     |
| Project Description                 | 16002 - SD 314 btw SD 5<br>& West City Limits Rd -<br>Fall AM | 0 Units   |                           | U.S. Customary      |
|                                     | Seg                                                           | ment 1    |                           |                     |
| Vehicle Inputs                      |                                                               |           |                           |                     |
| Segment Type                        | Passing Zone                                                  | Length,   | ft                        | 22070               |
| Lane Width, ft                      | 11                                                            | Shoulde   | r Width, ft               | 3                   |
| Speed Limit, mi/h                   | 55                                                            | Access F  | Point Density, pts/mi     | 8.0                 |
| Demand and Capacity                 |                                                               |           |                           |                     |
| Directional Demand Flow Rate, veh/h | 230                                                           | Opposir   | g Demand Flow Rate, veh/h | 58                  |
| Peak Hour Factor                    | 0.90                                                          | Total Tru | icks, %                   | 15.00               |
| Segment Capacity, veh/h             | 1700                                                          | Demanc    | l/Capacity (D/C)          | 0.14                |
| Intermediate Results                |                                                               |           |                           |                     |
| Segment Vertical Class              | 1                                                             | Free-Flo  | w Speed, mi/h             | 57.5                |
| Speed Slope Coefficient             | 3.39664                                                       | Speed P   | ower Coefficient          | 0.59639             |
| PF Slope Coefficient                | -1.17745                                                      | PF Powe   | r Coefficient             | 0.79189             |
| In Passing Lane Effective Length?   | No                                                            | Total Se  | gment Density, veh/mi/ln  | 1.3                 |
| %Improved % Followers               | 0.0                                                           | % Impro   | ved Avg Speed             | 0.0                 |
| Subsegment Data                     | ÷                                                             |           |                           | ·                   |
| # Segment Type                      | Length, ft R                                                  | adius, ft | Superelevation, %         | Average Speed, mi/h |
| 1 Tangent                           | 22070 -                                                       |           | -                         | 56.5                |
| Vehicle Results                     | · · ·                                                         |           |                           |                     |
| Average Speed, mi/h                 | 56.5                                                          | Percent   | Followers, %              | 30.8                |
| Segment Travel Time, minutes        | 4.44                                                          | Follower  | Density, followers/mi/ln  | 1.3                 |
| Vehicle LOS                         | A                                                             |           |                           |                     |
| Bicycle Results                     | 1                                                             |           |                           |                     |
| Percent Occupied Parking            | 0                                                             | Paveme    | nt Condition Rating       | 4                   |
| Flow Rate Outside Lane, veh/h       | 230                                                           | _         | Effective Width, ft       | 14                  |
| Bicycle LOS Score                   | 9.24                                                          |           | ffective Speed Factor     | 4.79                |
| Bicycle LOS                         | F                                                             | · ·       |                           |                     |
| Facility Results                    | 1                                                             |           |                           |                     |
| -                                   | r Density, followers/mi/ln                                    |           |                           | OS                  |

| 1                     | 1.3                                      |                           |       | A                              |   |  |
|-----------------------|------------------------------------------|---------------------------|-------|--------------------------------|---|--|
| Copyright © 2023 Univ | versity of Florida. All Rights Reserved. | HCS 11 Two-Lane Version 7 | 7.9.6 | Generated: 10/13/2023 09:19:39 | ) |  |
|                       |                                          |                           |       |                                |   |  |

SD 314 btw SD 50 & West City Limits Rd - Fall AM.xuf

|                                     | HCS7 Two-Lan                                                  | e High                      | way Report                |                     |
|-------------------------------------|---------------------------------------------------------------|-----------------------------|---------------------------|---------------------|
| Project Information                 |                                                               |                             |                           |                     |
| Analyst                             | SRF Consulting                                                | Date                        |                           | 10/14/2022          |
| Agency                              |                                                               | Analysis                    | Year                      | 2035                |
| Jurisdiction                        |                                                               | Time An                     | alyzed                    |                     |
| Project Description                 | 16002 - SD 314 btw SD 5<br>& West City Limits Rd -<br>Fall PM | 0 Units                     |                           | U.S. Customary      |
|                                     | Seg                                                           | ment 1                      |                           |                     |
| Vehicle Inputs                      |                                                               |                             |                           |                     |
| Segment Type                        | Passing Zone                                                  | Length,                     | ft                        | 22070               |
| Lane Width, ft                      | 11                                                            | Shoulde                     | r Width, ft               | 3                   |
| Speed Limit, mi/h                   | 55                                                            | Access F                    | oint Density, pts/mi      | 8.0                 |
| Demand and Capacity                 |                                                               |                             |                           |                     |
| Directional Demand Flow Rate, veh/h | 91                                                            | Opposir                     | g Demand Flow Rate, veh/h | 118                 |
| Peak Hour Factor                    | 0.90                                                          | Total Tru                   | cks, %                    | 8.00                |
| Segment Capacity, veh/h             | 1700                                                          | Demanc                      | /Capacity (D/C)           | 0.05                |
| Intermediate Results                |                                                               | <u> </u>                    |                           | - 1                 |
| Segment Vertical Class              | 1                                                             | Free-Flo                    | w Speed, mi/h             | 57.7                |
| Speed Slope Coefficient             | 3.44298                                                       | Speed P                     | ower Coefficient          | 0.56669             |
| PF Slope Coefficient                | -1.20375                                                      | PF Powe                     | r Coefficient             | 0.78371             |
| In Passing Lane Effective Length?   | No                                                            | Total Se                    | gment Density, veh/mi/ln  | 0.3                 |
| %Improved % Followers               | 0.0                                                           | % Impro                     | ved Avg Speed             | 0.0                 |
| Subsegment Data                     |                                                               |                             |                           |                     |
| # Segment Type                      | Length, ft R                                                  | adius, ft                   | Superelevation, %         | Average Speed, mi/h |
| 1 Tangent                           | 22070 -                                                       |                             | -                         | 57.7                |
| Vehicle Results                     |                                                               |                             |                           |                     |
| Average Speed, mi/h                 | 57.7                                                          | Percent                     | Followers, %              | 16.8                |
| Segment Travel Time, minutes        | 4.34                                                          | Follower                    | Density, followers/mi/ln  | 0.3                 |
| Vehicle LOS                         | A                                                             |                             |                           |                     |
| Bicycle Results                     | -                                                             |                             |                           | -                   |
| Percent Occupied Parking 0          |                                                               | Paveme                      | nt Condition Rating       | 4                   |
| Flow Rate Outside Lane, veh/h       | 91                                                            | Bicycle Effective Width, ft |                           | 22                  |
| Bicycle LOS Score                   | 4.28                                                          | Bicycle E                   | ffective Speed Factor     | 4.79                |
| Bicycle LOS                         | D                                                             |                             |                           |                     |
| Facility Results                    |                                                               |                             |                           |                     |
| -                                   | r Density, followers/mi/ln                                    |                             | 1                         | DS                  |

| 1 0.3                                                        |                        | А     |                                |
|--------------------------------------------------------------|------------------------|-------|--------------------------------|
| Copyright © 2023 University of Florida. All Rights Reserved. | HCS 1 Two-Lane Version | 7.9.6 | Generated: 10/13/2023 09:20:01 |

SD 314 btw SD 50 & West City Limits Rd - Fall PM.xuf

|                                     | HCS7 Two-Lan                                                 | e Highv    | way Re                            | port               |                     |
|-------------------------------------|--------------------------------------------------------------|------------|-----------------------------------|--------------------|---------------------|
| Project Information                 |                                                              |            |                                   |                    |                     |
| Analyst                             | SRF Consulting                                               | Date       |                                   |                    | 10/14/2022          |
| Agency                              |                                                              | Analysis   | Year                              |                    | 2035                |
| Jurisdiction                        |                                                              | Time An    | alyzed                            |                    |                     |
| Project Description                 | 16002 - SD 314 btw SD 5<br>& West City Limits Rd -<br>Summer | 0 Units    |                                   |                    | U.S. Customary      |
|                                     | Seg                                                          | jment 1    |                                   |                    |                     |
| Vehicle Inputs                      |                                                              |            |                                   |                    |                     |
| Segment Type                        | Passing Zone                                                 | Length,    | ft                                |                    | 22070               |
| Lane Width, ft                      | 11                                                           | Shoulde    | r Width, ft                       |                    | 3                   |
| Speed Limit, mi/h                   | 55                                                           | Access P   | oint Densi                        | ty, pts/mi         | 8.0                 |
| Demand and Capacity                 |                                                              |            |                                   |                    |                     |
| Directional Demand Flow Rate, veh/h | 152                                                          | Opposin    | ig Demand                         | l Flow Rate, veh/h | 94                  |
| Peak Hour Factor                    | 0.90                                                         | Total Tru  | cks, %                            |                    | 0.00                |
| Segment Capacity, veh/h             | 1700                                                         | Demand     | emand/Capacity (D/C)              |                    | 0.09                |
| Intermediate Results                |                                                              |            |                                   |                    | -                   |
| Segment Vertical Class              | 1                                                            | Free-Flo   | w Speed, n                        | ni/h               | 58.0                |
| Speed Slope Coefficient             | 3.44566                                                      | Speed P    | ower Coeff                        | ficient            | 0.57676             |
| PF Slope Coefficient                | -1.19464                                                     | PF Powe    | PF Power Coefficient              |                    | 0.78595             |
| In Passing Lane Effective Length?   | No                                                           | Total Seg  | Total Segment Density, veh/mi/ln  |                    | 0.6                 |
| %Improved % Followers               | 0.0                                                          | % Impro    | ved Avg S                         | peed               | 0.0                 |
| Subsegment Data                     |                                                              |            |                                   |                    |                     |
| # Segment Type                      | Length, ft F                                                 | Radius, ft |                                   | Superelevation, %  | Average Speed, mi/h |
| 1 Tangent                           | 22070 -                                                      |            |                                   | -                  | 57.4                |
| Vehicle Results                     | · · ·                                                        |            |                                   |                    | - <b>'</b>          |
| Average Speed, mi/h                 | 57.4                                                         | Percent    | Followers,                        | %                  | 23.8                |
| Segment Travel Time, minutes        | 4.37                                                         | Follower   | Follower Density, followers/mi/ln |                    | 0.6                 |
| Vehicle LOS                         | A                                                            |            |                                   |                    |                     |
| Bicycle Results                     | -                                                            |            |                                   |                    | -                   |
| Percent Occupied Parking            | 0                                                            | Pavemer    | Pavement Condition Rating         |                    | 4                   |
| Flow Rate Outside Lane, veh/h       | 152                                                          |            | ffective W                        | -                  | 18                  |
| Bicycle LOS Score                   | 3.09                                                         | -          |                                   | eed Factor         | 4.79                |
| Bicycle LOS                         | С                                                            | -          |                                   |                    |                     |
| Facility Results                    |                                                              |            |                                   |                    |                     |
| -                                   | r Density, followers/mi/ln                                   |            |                                   | LC                 | )5                  |
|                                     |                                                              |            | <u> </u>                          |                    | -                   |

| 1                         | 0.6                                 |                          | Α                              |
|---------------------------|-------------------------------------|--------------------------|--------------------------------|
| Copyright © 2023 Universi | ty of Florida. All Rights Reserved. | HCS T Two-Lane Version 7 | Generated: 10/13/2023 09:20:31 |

SD 314 btw SD 50 & West City Limits Rd - Summer.xuf

| HCS7 Two-L | ane Highway. | Report |
|------------|--------------|--------|
|------------|--------------|--------|

## **Project Information**

| Project Infor        | mation             |                                            |            |                                   |                    |                     |
|----------------------|--------------------|--------------------------------------------|------------|-----------------------------------|--------------------|---------------------|
| Analyst              |                    | SRF Consulting                             | Date       |                                   |                    | 10/14/2022          |
| Agency               |                    |                                            | Analysi    | Analysis Year                     |                    | 2050                |
| Jurisdiction         |                    |                                            | Time A     | nalyzed                           |                    |                     |
| Project Descriptior  | 1                  | 16002 - SD 50 btw SD<br>& SD 153 - Fall AM | 52 Units   |                                   |                    | U.S. Customary      |
|                      |                    | Se                                         | egment 1   |                                   |                    |                     |
| Vehicle Input        | S                  |                                            |            |                                   |                    |                     |
| Segment Type         |                    | Passing Zone                               | Length,    | ft                                |                    | 5280                |
| Lane Width, ft       |                    | 12                                         | Should     | er Width, f                       | ť                  | 6                   |
| Speed Limit, mi/h    |                    | 65                                         | Access     | Point Dens                        | sity, pts/mi       | 7.0                 |
| Demand and           | Capacity           |                                            |            |                                   |                    | - ·                 |
| Directional Deman    | d Flow Rate, veh/h | 443                                        | Opposi     | ng Deman                          | d Flow Rate, veh/h | 218                 |
| Peak Hour Factor     |                    | 0.90                                       | Total Tr   | ucks, %                           |                    | 10.00               |
| Segment Capacity,    | veh/h              | 1700                                       | Deman      | d/Capacity                        | / (D/C)            | 0.26                |
| Intermediate         | Results            |                                            |            |                                   |                    | ÷                   |
| Segment Vertical (   | lass               | 1                                          | Free-Flo   | Free-Flow Speed, mi/h             |                    | 72.0                |
| Speed Slope Coeff    | icient             | 4.21499                                    | Speed I    | Power Coe                         | fficient           | 0.53440             |
| PF Slope Coefficie   | nt                 | -1.14070                                   | PF Pow     | er Coeffici                       | ent                | 0.84305             |
| In Passing Lane Eff  | ective Length?     | No                                         | Total Se   | egment De                         | ensity, veh/mi/ln  | 2.8                 |
| %Improved % Foll     | owers              | 0.0                                        | % Impr     | % Improved Avg Speed              |                    | 0.0                 |
| Subsegment           | Data               |                                            |            |                                   |                    | ÷                   |
| # Segment Typ        | )e                 | Length, ft                                 | Radius, ft |                                   | Superelevation, %  | Average Speed, mi/h |
| 1 Tangent            |                    | 5280                                       | -          |                                   | -                  | 69.6                |
| Vehicle Resul        | ts                 |                                            |            |                                   | •                  | ·                   |
| Average Speed, m     | /h                 | 69.6                                       | Percent    | Percent Followers, %              |                    | 43.7                |
| Segment Travel Tir   | ne, minutes        | 0.86                                       | Followe    | Follower Density, followers/mi/ln |                    | 2.8                 |
| Vehicle LOS          |                    | В                                          |            |                                   |                    |                     |
| Bicycle Resul        | ts                 | -                                          |            |                                   |                    |                     |
| Percent Occupied     | Parking            | 0                                          | Paveme     | Pavement Condition Rating         |                    | 4                   |
| Flow Rate Outside    | Lane, veh/h        | 443                                        | Bicycle    | Effective V                       | Vidth, ft          | 24                  |
| Bicycle LOS Score 5. |                    | 5.62                                       | Bicycle    | Bicycle Effective Speed Factor    |                    | 5.07                |
| Bicycle LOS          |                    | F                                          |            |                                   |                    |                     |
| Facility Resul       | ts                 |                                            |            |                                   |                    |                     |
| т                    | Follower           | <sup>-</sup> Density, followers/mi/l       | n          |                                   | LC                 | DS                  |
| 1                    |                    | 2.8                                        |            |                                   | Ε                  | 3                   |

| HCS7 Two-Lane Highway Report |
|------------------------------|
|                              |

### **Project Information**

| <b>Project Infor</b>   | mation              |                                      |         |                                   |                           |                    |                     |
|------------------------|---------------------|--------------------------------------|---------|-----------------------------------|---------------------------|--------------------|---------------------|
| Analyst                |                     | SRF Consulting                       |         | Date                              |                           |                    | 10/14/2022          |
| Agency                 |                     |                                      |         | Analysis                          | Year                      |                    | 2050                |
| Jurisdiction           |                     |                                      |         | Time An                           | alyzed                    |                    |                     |
| Project Description    | n                   | 16002 - SD 50 b<br>& SD 153 - Fall F |         | Units                             |                           |                    | U.S. Customary      |
|                        |                     |                                      | Segr    | nent 1                            |                           |                    |                     |
| Vehicle Input          | ts                  |                                      |         |                                   |                           |                    |                     |
| Segment Type           |                     | Passing Zone                         |         | Length,                           | ft                        |                    | 5280                |
| Lane Width, ft         |                     | 12                                   |         | Shoulde                           | r Width, f                | t                  | 6                   |
| Speed Limit, mi/h      |                     | 65                                   |         | Access F                          | Point Dens                | sity, pts/mi       | 7.0                 |
| Demand and             | Capacity            |                                      |         |                                   |                           |                    |                     |
| Directional Demar      | nd Flow Rate, veh/h | 320                                  |         | Opposir                           | ng Deman                  | d Flow Rate, veh/h | 491                 |
| Peak Hour Factor       |                     | 0.90                                 |         | Total Tru                         | ıcks, %                   |                    | 6.00                |
| Segment Capacity       | , veh/h             | 1700                                 |         | Demand                            | l/Capacity                | r (D/C)            | 0.19                |
| Intermediate           | Results             |                                      |         |                                   |                           |                    |                     |
| Segment Vertical (     | Class               | 1                                    |         | Free-Flow Speed, mi/h             |                           | mi/h               | 72.2                |
| Speed Slope Coef       | ficient             | 4.29896                              |         | Speed P                           | ower Coe                  | fficient           | 0.48327             |
| PF Slope Coefficie     | nt                  | -1.17231                             |         | PF Powe                           | er Coeffici               | ent                | 0.82586             |
| In Passing Lane Ef     | fective Length?     | No                                   |         | Total Seg                         | gment De                  | nsity, veh/mi/ln   | 1.7                 |
| %Improved % Foll       | owers               | 0.0                                  |         | % Improved Avg Speed              |                           | Speed              | 0.0                 |
| Subsegment             | Data                |                                      |         |                                   |                           |                    |                     |
| # Segment Ty           | ре                  | Length, ft                           | Ra      | dius, ft                          |                           | Superelevation, %  | Average Speed, mi/h |
| 1 Tangent              |                     | 5280                                 | -       |                                   |                           | -                  | 70.1                |
| Vehicle Resu           | lts                 |                                      |         |                                   |                           |                    |                     |
| Average Speed, m       | i/h                 | 70.1                                 |         | Percent                           | Percent Followers, %      |                    | 36.7                |
| Segment Travel Ti      | me, minutes         | 0.86                                 |         | Follower Density, followers/mi/ln |                           | followers/mi/ln    | 1.7                 |
| Vehicle LOS            |                     | A                                    |         |                                   |                           |                    |                     |
| Bicycle Resul          | ts                  |                                      |         |                                   |                           |                    |                     |
| Percent Occupied       | Parking             | 0                                    |         | Paveme                            | Pavement Condition Rating |                    | 4                   |
| Flow Rate Outside      | Lane, veh/h         | 320                                  |         | Bicycle Effective Width, ft       |                           | Vidth, ft          | 24                  |
| Bicycle LOS Score 3.92 |                     | Bicycle Effective Speed Factor       |         | peed Factor                       | 5.07                      |                    |                     |
| Bicycle LOS            |                     | D                                    |         |                                   |                           |                    |                     |
| Facility Resul         | ts                  |                                      |         |                                   |                           |                    |                     |
| т                      | Followe             | r Density, follower                  | s/mi/ln |                                   |                           | LC                 | )S                  |
| 1                      |                     | 1.7                                  |         |                                   |                           |                    | ł                   |

# HCS7 Two-Lane Highway Report

| Pro   | ject Infor      | mation              |                                           |            |                                     |                    |                     |
|-------|-----------------|---------------------|-------------------------------------------|------------|-------------------------------------|--------------------|---------------------|
| Anal  | yst             |                     | SRF Consulting                            | Date       |                                     |                    | 10/14/2022          |
| Ager  | псу             |                     |                                           | Analysi    | Analysis Year                       |                    | 2050                |
| Juris | diction         |                     |                                           | Time A     | nalyzed                             |                    |                     |
| Proje | ect Description | ٦                   | 16002 - SD 50 btw SD<br>& SD 153 - Summer | 52 Units   |                                     |                    | U.S. Customary      |
|       |                 |                     | Se                                        | egment 1   |                                     |                    |                     |
| Veł   | nicle Input     | ts                  |                                           |            |                                     |                    |                     |
| Segr  | nent Type       |                     | Passing Zone                              | Length     | ft                                  |                    | 5280                |
| Lane  | Width, ft       |                     | 12                                        | Should     | er Width, f                         | t                  | 6                   |
| Spee  | ed Limit, mi/h  |                     | 65                                        | Access     | Point Dens                          | sity, pts/mi       | 7.0                 |
| Dei   | mand and        | Capacity            |                                           |            |                                     |                    |                     |
| Dire  | ctional Demar   | nd Flow Rate, veh/h | 510                                       | Opposi     | ng Deman                            | d Flow Rate, veh/h | 330                 |
| Peak  | Hour Factor     |                     | 0.90                                      | Total Tr   | ucks, %                             |                    | 6.00                |
| Segr  | ment Capacity   | , veh/h             | 1700                                      | Deman      | d/Capacity                          | / (D/C)            | 0.30                |
| Inte  | ermediate       | Results             |                                           |            |                                     |                    |                     |
| Segr  | nent Vertical ( | Class               | 1                                         | Free-Fl    | Free-Flow Speed, mi/h               |                    | 72.2                |
| Spee  | ed Slope Coef   | ficient             | 4.25755                                   | Speed      | Power Coe                           | fficient           | 0.50922             |
| PF S  | lope Coefficie  | nt                  | -1.15703                                  | PF Pow     | er Coefficie                        | ent                | 0.83475             |
| In Pa | ssing Lane Ef   | fective Length?     | No                                        | Total Se   | Total Segment Density, veh/mi/ln    |                    | 3.5                 |
| %lm   | proved % Foll   | owers               | 0.0                                       | % Impr     | % Improved Avg Speed                |                    | 0.0                 |
| Sub   | osegment        | Data                |                                           |            |                                     |                    |                     |
| #     | Segment Ty      | pe                  | Length, ft                                | Radius, ft |                                     | Superelevation, %  | Average Speed, mi/h |
| 1     | Tangent         |                     | 5280                                      | -          |                                     | -                  | 69.4                |
| Veł   | nicle Resul     | lts                 | -                                         | -          |                                     | -                  |                     |
| Aver  | age Speed, m    | i/h                 | 69.4                                      | Percent    | Percent Followers, %                |                    | 48.3                |
| Segr  | nent Travel Ti  | me, minutes         | 0.86                                      | Followe    | Follower Density, followers/mi/ln   |                    | 3.5                 |
| Vehi  | cle LOS         |                     | В                                         |            |                                     |                    |                     |
| Bic   | ycle Resul      | ts                  |                                           |            |                                     |                    |                     |
| Perc  | ent Occupied    | Parking             | 0                                         | Paveme     | ent Conditi                         | ion Rating         | 4                   |
| Flow  | Rate Outside    | Lane, veh/h         | 510                                       | Bicycle    | Bicycle Effective Width, ft         |                    | 24                  |
| Bicy  | cle LOS Score   |                     | 4.15                                      | Bicycle    | Bicycle Effective Speed Factor 5.07 |                    | 5.07                |
| Bicyo | cle LOS         |                     | D                                         |            |                                     |                    |                     |
| Fac   | ility Resul     | ts                  |                                           |            |                                     |                    |                     |
|       | т               | Follower            | Density, followers/mi/l                   | n          |                                     | LO                 | s                   |
|       | 1               |                     | 3.5                                       |            |                                     | В                  |                     |

| HCS7 Two-Lane | Highway Report |
|---------------|----------------|
|---------------|----------------|

| <b>Project Infor</b> | mation              |                                              |                     |                                   |                    |                     |
|----------------------|---------------------|----------------------------------------------|---------------------|-----------------------------------|--------------------|---------------------|
| Analyst              |                     | SRF Consulting                               | Date                |                                   |                    | 10/14/2022          |
| Agency               |                     |                                              | Analysis            | s Year                            |                    | 2050                |
| Jurisdiction         |                     |                                              | Time Ar             | nalyzed                           |                    |                     |
| Project Description  | 1                   | 16002 - SD 50 btw SD 7<br>& SD 314 - Fall AM | 153 Units           |                                   |                    | U.S. Customary      |
|                      |                     | Se                                           | egment 1            |                                   |                    |                     |
| Vehicle Input        | S                   |                                              |                     |                                   |                    |                     |
| Segment Type         |                     | Passing Zone                                 | Length,             | ft                                |                    | 2880                |
| Lane Width, ft       |                     | 12                                           | Shoulde             | er Width, f                       | t                  | 6                   |
| Speed Limit, mi/h    |                     | 65                                           | Access I            | Point Dens                        | sity, pts/mi       | 8.0                 |
| Demand and           | Capacity            |                                              |                     |                                   |                    |                     |
| Directional Demar    | nd Flow Rate, veh/h | 681                                          | Opposi              | ng Deman                          | d Flow Rate, veh/h | 251                 |
| Peak Hour Factor     |                     | 0.90                                         | Total Tru           | ucks, %                           |                    | 10.00               |
| Segment Capacity     | , veh/h             | 1700                                         | Demano              | d/Capacity                        | r (D/C)            | 0.40                |
| Intermediate         | Results             |                                              |                     |                                   |                    |                     |
| Segment Vertical (   | Class               | 1                                            | Free-Flo            | Free-Flow Speed, mi/h             |                    | 71.8                |
| Speed Slope Coef     | ficient             | 4.18583                                      | Speed F             | Power Coe                         | fficient           | 0.52605             |
| PF Slope Coefficie   | nt                  | -1.17954                                     | .17954 PF Power Coe |                                   | ent                | 0.83178             |
| In Passing Lane Eff  | fective Length?     | No Total                                     |                     | Total Segment Density, veh/mi/ln  |                    | 5.7                 |
| %Improved % Foll     | owers               | 0.0                                          | % Impro             | % Improved Avg Speed              |                    | 0.0                 |
| Subsegment           | Data                |                                              |                     |                                   |                    |                     |
| # Segment Typ        | pe                  | Length, ft                                   | Radius, ft          |                                   | Superelevation, %  | Average Speed, mi/h |
| 1 Tangent            |                     | 2880                                         | -                   | -                                 |                    | 68.6                |
| Vehicle Resul        | ts                  |                                              |                     |                                   |                    |                     |
| Average Speed, m     | i/h                 | 68.6                                         | Percent             | Percent Followers, %              |                    | 57.6                |
| Segment Travel Tir   | me, minutes         | 0.48                                         | Followe             | Follower Density, followers/mi/ln |                    | 5.7                 |
| Vehicle LOS          |                     | С                                            |                     |                                   |                    |                     |
| Bicycle Resul        | ts                  |                                              |                     |                                   |                    |                     |
| Percent Occupied     | Parking             | 0                                            | Paveme              | Pavement Condition Rating         |                    | 4                   |
| Flow Rate Outside    | Lane, veh/h         | 681                                          | Bicycle             | Effective V                       | Vidth, ft          | 24                  |
| Bicycle LOS Score    |                     | 5.84                                         | Bicycle             | Effective S                       | peed Factor        | 5.07                |
| Bicycle LOS          |                     | F                                            |                     |                                   |                    |                     |
| Facility Resul       | ts                  |                                              |                     |                                   |                    |                     |
| т                    | Follower            | r Density, followers/mi/lı                   | n                   |                                   | LO                 | s                   |
| 1                    |                     | 5.7                                          |                     | C                                 |                    |                     |

| HCS7 Two-Lane Hi | ighway Report |
|------------------|---------------|
|------------------|---------------|

#### ct Info • -

| Project In             | formation              |                                              |            |                                   |                    |                     |
|------------------------|------------------------|----------------------------------------------|------------|-----------------------------------|--------------------|---------------------|
| Analyst                |                        | SRF Consulting                               | Date       |                                   |                    | 10/14/2022          |
| Agency                 |                        |                                              | Analysis   | Analysis Year                     |                    | 2050                |
| Jurisdiction           |                        |                                              | Time Ar    | nalyzed                           |                    |                     |
| Project Descr          | iption                 | 16002 - SD 50 btw SD 7<br>& SD 314 - Fall PM | 153 Units  |                                   |                    | U.S. Customary      |
|                        |                        | Se                                           | gment 1    |                                   |                    |                     |
| Vehicle In             | puts                   |                                              |            |                                   |                    |                     |
| Segment Typ            | е                      | Passing Zone                                 | Length,    | ft                                |                    | 2880                |
| Lane Width, f          | ť                      | 12                                           | Shoulde    | er Width, f                       | t                  | 6                   |
| Speed Limit, ı         | mi/h                   | 65                                           | Access F   | Point Dens                        | sity, pts/mi       | 8.0                 |
| Demand a               | and Capacity           |                                              |            |                                   |                    |                     |
| Directional D          | emand Flow Rate, veh/h | 672                                          | Opposir    | ng Deman                          | d Flow Rate, veh/h | 432                 |
| Peak Hour Fa           | ctor                   | 0.90                                         | Total Tru  | ucks, %                           |                    | 8.00                |
| Segment Cap            | acity, veh/h           | 1700                                         | Demano     | d/Capacity                        | r (D/C)            | 0.40                |
| Intermed               | iate Results           |                                              |            |                                   |                    |                     |
| Segment Vertical Class |                        | 1                                            | Free-Flo   | ow Speed,                         | mi/h               | 71.8                |
| Speed Slope            | Coefficient            | 4.24069                                      | Speed P    | Speed Power Coefficient           |                    | 0.49174             |
| PF Slope Coe           | fficient               | -1.20181                                     | PF Powe    | er Coefficie                      | ent                | 0.82077             |
| In Passing La          | ne Effective Length?   | No                                           | Total Se   | gment De                          | nsity, veh/mi/ln   | 5.7                 |
| %Improved %            | 6 Followers            | 0.0                                          | % Impro    | % Improved Avg Speed              |                    | 0.0                 |
| Subsegm                | ent Data               |                                              |            |                                   |                    |                     |
| # Segmei               | nt Type                | Length, ft                                   | Radius, ft |                                   | Superelevation, %  | Average Speed, mi/h |
| 1 Tangen               | t                      | 2880                                         | -          |                                   | -                  | 68.6                |
| Vehicle R              | esults                 |                                              |            |                                   |                    |                     |
| Average Spee           | ed, mi/h               | 68.6                                         | Percent    | Percent Followers, %              |                    | 58.0                |
| Segment Trav           | vel Time, minutes      | 0.48                                         | Followe    | Follower Density, followers/mi/ln |                    | 5.7                 |
| Vehicle LOS            |                        | С                                            |            |                                   |                    |                     |
| Bicycle Re             | esults                 |                                              |            |                                   |                    |                     |
| Percent Occu           | pied Parking           | 0                                            | Paveme     | Pavement Condition Rating         |                    | 4                   |
| Flow Rate Ou           | tside Lane, veh/h      | 672                                          | Bicycle I  | Effective V                       | Vidth, ft          | 24                  |
| Bicycle LOS S          | core                   | 5.02                                         | Bicycle I  | Effective S                       | peed Factor        | 5.07                |
| Bicycle LOS            |                        | E                                            |            |                                   |                    |                     |
| Facility R             | esults                 |                                              |            |                                   |                    |                     |
| т                      | Followe                | r Density, followers/mi/lı                   | n          |                                   | LO                 | S                   |
| 1                      |                        | 5.7                                          |            | С                                 |                    |                     |

# HCS7 Two-Lane Highway Report

| Pro                               | ject Infor      | mation              |                                           |                 |                                   |                     |                     |
|-----------------------------------|-----------------|---------------------|-------------------------------------------|-----------------|-----------------------------------|---------------------|---------------------|
| Analy                             | yst             |                     | SRF Consulting                            | Date            |                                   |                     | 10/14/2022          |
| Ager                              | псу             |                     |                                           | Analy           | Analysis Year                     |                     | 2050                |
| Juriso                            | diction         |                     |                                           | Time            | Analyzed                          |                     |                     |
| Proje                             | ect Description | ٦                   | 16002 - SD 50 btw SD<br>& SD 314 - Summer | 153 Units       |                                   |                     | U.S. Customary      |
|                                   |                 |                     | Se                                        | egment          | 1                                 |                     |                     |
| Veh                               | nicle Input     | ts                  |                                           |                 |                                   |                     |                     |
| Segn                              | nent Type       |                     | Passing Zone                              | Leng            | th, ft                            |                     | 5280                |
| Lane                              | Width, ft       |                     | 12                                        | Shou            | lder Width,                       | ft                  | 6                   |
| Spee                              | ed Limit, mi/h  |                     | 65                                        | Acces           | ss Point Den                      | sity, pts/mi        | 6.0                 |
| Der                               | mand and        | Capacity            |                                           |                 |                                   |                     |                     |
| Direc                             | ctional Demar   | nd Flow Rate, veh/h | 679                                       | Оррс            | osing Demar                       | nd Flow Rate, veh/h | 413                 |
| Peak                              | Hour Factor     |                     | 0.90                                      | Total           | Trucks, %                         |                     | 4.00                |
| Segn                              | nent Capacity   | , veh/h             | 1700                                      | Dema            | and/Capacit                       | y (D/C)             | 0.40                |
| Inte                              | ermediate       | Results             |                                           |                 |                                   |                     |                     |
| Segn                              | nent Vertical ( | Class               | 1                                         | Free-           | Flow Speed,                       | mi/h                | 72.5                |
| Spee                              | ed Slope Coef   | ficient             | 4.29715                                   | Speed Power Coe |                                   | efficient           | 0.49468             |
| PF SI                             | ope Coefficie   | nt                  | -1.16363                                  | PF Pc           | ower Coeffici                     | ient                | 0.83040             |
| In Pa                             | issing Lane Eff | fective Length?     | No                                        | Total           | Total Segment Density, veh/mi/ln  |                     | 5.6                 |
| %lm                               | proved % Foll   | owers               | 0.0                                       | % Im            | % Improved Avg Speed              |                     | 0.0                 |
| Sub                               | osegment        | Data                |                                           |                 |                                   |                     |                     |
| #                                 | Segment Ty      | pe                  | Length, ft                                | Radius, ft      |                                   | Superelevation, %   | Average Speed, mi/h |
| 1                                 | Tangent         |                     | 5280                                      | -               |                                   | -                   | 69.2                |
| Veh                               | nicle Resu      | lts                 |                                           |                 |                                   |                     |                     |
| Avera                             | age Speed, m    | i/h                 | 69.2                                      | Perce           | Percent Followers, %              |                     | 57.0                |
| Segn                              | nent Travel Ti  | me, minutes         | 0.87                                      | Follo           | Follower Density, followers/mi/ln |                     | 5.6                 |
| Vehio                             | cle LOS         |                     | С                                         |                 |                                   |                     |                     |
| Bicy                              | ycle Resul      | ts                  |                                           |                 |                                   |                     |                     |
| Perce                             | ent Occupied    | Parking             | 0                                         | Paver           | Pavement Condition Rating         |                     | 4                   |
| Flow Rate Outside Lane, veh/h 679 |                 | Bicyc               | Bicycle Effective Width, ft               |                 | 24                                |                     |                     |
| Bicyc                             | le LOS Score    |                     | 3.66                                      | Вісус           | le Effective S                    | Speed Factor        | 5.07                |
| Bicyc                             | cle LOS         |                     | D                                         |                 |                                   |                     |                     |
| Fac                               | ility Resul     | ts                  |                                           |                 |                                   |                     |                     |
|                                   | т               | Follower            | Density, followers/mi/l                   | n               |                                   | LC                  | IS                  |
|                                   | 1               |                     | 5.6                                       |                 |                                   | C                   |                     |

## **Project Information**

| Analyst             | SRF Consulting                                                    | Date          | 10/14/2022     |
|---------------------|-------------------------------------------------------------------|---------------|----------------|
| Agency              |                                                                   | Analysis Year | 2050           |
| Jurisdiction        |                                                                   | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Deer<br>Blvd & West City Limits Rd<br>- Fall AM | Units         | U.S. Customary |

| Direction 1                           | Eastbound    |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 8.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.0         |                                        |       |
| Direction 1 Adjustment Fact           | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 1 Demand and Cap            | pacity       |                                        |       |
| Volume(V) veh/h                       | 716          | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 402   |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2060  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2060  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.20  |
| Direction 1 Speed and Densi           | ity          |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.0  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 7.6   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |       |
| Direction 1 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 398          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 2.48  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |

| Direction 2 Geometric Data            |              |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 2                           | Westbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 7.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.3         |                                        |       |
| Direction 2 Adjustment Factor         | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 2 Demand and Cap            | oacity       |                                        |       |
| Volume(V) veh/h                       | 284          | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 160   |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2064  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2064  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.08  |
| Direction 2 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 3.0   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 1.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vol),veh/h | 398          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 2.48  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |

SD 52 btw Deer Blvd & West City Limits Rd - Fall AM.xuf

## **Project Information**

| Analyst             | SRF Consulting                                                    | Date          | 10/14/2022     |
|---------------------|-------------------------------------------------------------------|---------------|----------------|
| Agency              |                                                                   | Analysis Year | 2035           |
| Jurisdiction        |                                                                   | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Deer<br>Blvd & West City Limits Rd<br>- Fall PM | Units         | U.S. Customary |

| Direction 1                           | Eastbound    |                                        |       |  |
|---------------------------------------|--------------|----------------------------------------|-------|--|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |  |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |  |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |  |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 8.0   |  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |  |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |  |
| Free-Flow Speed (FFS), mi/h           | 53.0         |                                        |       |  |
| Direction 1 Adjustment Fact           | ors          |                                        |       |  |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |  |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |  |
| Driver Population CAF                 | 1.000        |                                        |       |  |
| Direction 1 Demand and Capacity       |              |                                        |       |  |
| Volume(V) veh/h                       | 407          | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |  |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 228   |  |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2060  |  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2060  |  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.11  |  |
| Direction 1 Speed and Densi           | ity          |                                        |       |  |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.0  |  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 4.3   |  |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |  |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |       |  |
| Direction 1 Bicycle LOS               |              |                                        |       |  |
| Flow Rate in Outside Lane (vOL),veh/h | 226          | Effective Speed Factor (St)            | 4.62  |  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 2.20  |  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |  |

|                                       | Martha and   |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 2                           | Westbound    | - · -                                  | 1     |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 7.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.3         |                                        |       |
| Direction 2 Adjustment Fact           | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 2 Demand and Ca             | pacity       |                                        |       |
| Volume(V) veh/h                       | 698          | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 392   |
| Total Trucks, %                       | 1.00         | Capacity (c), pc/h/ln                  | 2064  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2064  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.19  |
| Direction 2 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 53.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 7.4   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 1.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 226          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 2.20  |
| Average Effective Width (We), ft      |              |                                        |       |

SD 52 btw Deer Blvd & West City Limits Rd - Fall PM.xuf

## **Project Information**

| Analyst             | SRF Consulting                                                   | Date          | 10/14/2022     |
|---------------------|------------------------------------------------------------------|---------------|----------------|
| Agency              |                                                                  | Analysis Year | 2050           |
| Jurisdiction        |                                                                  | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Deer<br>Blvd & West City Limits Rd<br>- Summer | Units         | U.S. Customary |

| Direction 1                           | Eastbound         |                                        |       |
|---------------------------------------|-------------------|----------------------------------------|-------|
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Level |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base              | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0              | Access Point Density, pts/mi           | 8.0   |
| Lane Width, ft                        | 12                | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL             | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.0              |                                        |       |
| Direction 1 Adjustment Fact           | ors               |                                        |       |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.898             |                                        |       |
| Direction 1 Demand and Ca             | pacity            |                                        |       |
| Volume(V) veh/h                       | 641               | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90              | Flow Rate (Vp), pc/h/ln                | 360   |
| Total Trucks, %                       | 1.00              | Capacity (c), pc/h/ln                  | 2060  |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 2060  |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.17  |
| Direction 1 Speed and Densi           | ity               |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0               | Average Speed (S), mi/h                | 53.0  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0               | Density (D ), pc/mi/ln                 | 6.8   |
| Median Type Adjustment (fM)           | 0.0               | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 2.0               |                                        |       |
| Direction 1 Bicycle LOS               |                   |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 356               | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18                | Bicyle LOS Score (BLOS)                | 2.43  |
| Average Effective Width (We), ft      | 24                | Bicycle Level of Service (LOS)         | В     |

| Direction 2                           | Westbound         |                                        |       |
|---------------------------------------|-------------------|----------------------------------------|-------|
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Level |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base              | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0              | Access Point Density, pts/mi           | 7.0   |
| Lane Width, ft                        | 12                | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL             | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 53.3              |                                        |       |
| Direction 2 Adjustment Fact           | ors               |                                        | ÷     |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.898             |                                        |       |
| Direction 2 Demand and Cap            | pacity            |                                        | ·     |
| Volume(V) veh/h                       | 968               | Heavy Vehicle Adjustment Factor (fHV)  | 0.990 |
| Peak Hour Factor                      | 0.90              | Flow Rate (Vp), pc/h/ln                | 543   |
| Total Trucks, %                       | 1.00              | Capacity (c), pc/h/ln                  | 2064  |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 2064  |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.26  |
| Direction 2 Speed and Densi           | ty                |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0               | Average Speed (S), mi/h                | 53.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0               | Density (D ), pc/mi/ln                 | 10.2  |
| Median Type Adjustment (fM)           | 0.0               | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 1.8               |                                        |       |
| Direction 2 Bicycle LOS               |                   |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 356               | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18                | Bicyle LOS Score (BLOS)                | 2.43  |
| Average Effective Width (We), ft      | 24                | Bicycle Level of Service (LOS)         | В     |

SD 52 btw Deer Blvd & West City Limits Rd - Summer.xuf

## **Project Information**

| Analyst             | SRF Consulting                                              | Date          | 10/13/2022     |
|---------------------|-------------------------------------------------------------|---------------|----------------|
| Agency              |                                                             | Analysis Year | 2050           |
| Jurisdiction        |                                                             | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Gavin's<br>Point Rd & SD 153 - Fall<br>AM | Units         | U.S. Customary |

| Direction 1                           | Eastbound    |                                        |         |
|---------------------------------------|--------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0         | Access Point Density, pts/mi           | 8.0     |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 48.0         |                                        |         |
| Direction 1 Adjustment Fact           | ors          |                                        |         |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 1.000        |                                        |         |
| Direction 1 Demand and Ca             | pacity       |                                        |         |
| Volume(V) veh/h                       | 173          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 96      |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 1960    |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 1960    |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.05    |
| Direction 1 Speed and Densi           | ity          |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 48.0    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 2.0     |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |         |
| Direction 1 Bicycle LOS               |              |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 96           | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 17           | Bicyle LOS Score (BLOS)                | 2.36    |
| Average Effective Width (We), ft      | 22           | Bicycle Level of Service (LOS)         | В       |

| Direction 2                           | Westbound    |                                        |         |
|---------------------------------------|--------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0         | Access Point Density, pts/mi           | 2.0     |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 49.5         |                                        |         |
| Direction 2 Adjustment Fact           | ors          | ·                                      | ·       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 1.000        |                                        |         |
| Direction 2 Demand and Cap            | bacity       | ·                                      | ÷       |
| Volume(V) veh/h                       | 83           | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 46      |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 1990    |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 1990    |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.02    |
| Direction 2 Speed and Densi           | ty           |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 49.5    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 0.9     |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 0.5          |                                        |         |
| Direction 2 Bicycle LOS               |              |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 96           | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 17           | Bicyle LOS Score (BLOS)                | 2.36    |
| Average Effective Width (We), ft      | 22           | Bicycle Level of Service (LOS)         | В       |

Rights Reserved. HCS TWO INformation Constraints and SD 52 btw Gavin's Point Rd & SD 153 - Fall AM.xuf

## **Project Information**

| Analyst             | SRF Consulting                                              | Date          | 10/13/2022     |
|---------------------|-------------------------------------------------------------|---------------|----------------|
| Agency              |                                                             | Analysis Year | 2050           |
| Jurisdiction        |                                                             | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw Gavin's<br>Point Rd & SD 153 - Fall<br>PM | Units         | U.S. Customary |

| Direction i Geometric Data            |              |                                        |         |
|---------------------------------------|--------------|----------------------------------------|---------|
| Direction 1                           | Eastbound    |                                        |         |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0         | Access Point Density, pts/mi           | 8.0     |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 48.0         |                                        |         |
| Direction 1 Adjustment Fact           | ors          |                                        |         |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 1.000        |                                        |         |
| Direction 1 Demand and Cap            | pacity       |                                        |         |
| Volume(V) veh/h                       | 241          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90         | Flow Rate (V <sub>p</sub> ), pc/h/ln   | 134     |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 1960    |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 1960    |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.07    |
| Direction 1 Speed and Densi           | ity          |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 48.0    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 2.8     |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 2.0          |                                        |         |
| Direction 1 Bicycle LOS               |              |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 134          | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 17           | Bicyle LOS Score (BLOS)                | 2.53    |
| Average Effective Width (We), ft      | 22           | Bicycle Level of Service (LOS)         | С       |

| Direction 2                           | Westbound    |                                        |         |
|---------------------------------------|--------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0         | Access Point Density, pts/mi           | 2.0     |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 49.5         |                                        |         |
| Direction 2 Adjustment Fact           | ors          |                                        |         |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 1.000        |                                        |         |
| Direction 2 Demand and Cap            | bacity       | ·                                      | ÷       |
| Volume(V) veh/h                       | 216          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 120     |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 1990    |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 1990    |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.06    |
| Direction 2 Speed and Densi           | ty           |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 49.5    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 2.4     |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 0.5          |                                        |         |
| Direction 2 Bicycle LOS               |              |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 134          | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 17           | Bicyle LOS Score (BLOS)                | 2.53    |
| Average Effective Width (We), ft      | 22           | Bicycle Level of Service (LOS)         | С       |

Rights Reserved. HCS TWO INformation Constraints SD 52 btw Gavin's Point Rd & SD 153 - Fall PM.xuf

## **Project Information**

| Analyst      | SRF Consulting                                             | Date          | 10/13/2022     |
|--------------|------------------------------------------------------------|---------------|----------------|
| Agency       |                                                            | Analysis Year | 2050           |
| Jurisdiction |                                                            | Time Analyzed |                |
|              | 16002 - SD 52 btw Gavin's<br>Point Rd & SD 153 -<br>Summer | Units         | U.S. Customary |

| Direction 1                           | Eastbound         |                                        |         |
|---------------------------------------|-------------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base              | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0              | Access Point Density, pts/mi           | 8.0     |
| Lane Width, ft                        | 12                | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL             | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 48.0              |                                        |         |
| Direction 1 Adjustment Fact           | ors               |                                        |         |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 0.898             |                                        |         |
| Direction 1 Demand and Cap            | pacity            | ·                                      | ·       |
| Volume(V) veh/h                       | 288               | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90              | Flow Rate (Vp), pc/h/ln                | 160     |
| Total Trucks, %                       | 0.00              | Capacity (c), pc/h/ln                  | 1960    |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 1960    |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.08    |
| Direction 1 Speed and Densi           | ty                |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0               | Average Speed (S), mi/h                | 48.0    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0               | Density (D ), pc/mi/ln                 | 3.3     |
| Median Type Adjustment (fM)           | 0.0               | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 2.0               |                                        |         |
| Direction 1 Bicycle LOS               | ·                 |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 160               | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 17                | Bicyle LOS Score (BLOS)                | 2.62    |
| Average Effective Width (We), ft      | 22                | Bicycle Level of Service (LOS)         | С       |

| Direction 2                           | Westbound         |                                        |         |
|---------------------------------------|-------------------|----------------------------------------|---------|
| Number of Lanes (N), In               | 2                 | Terrain Type                           | Rolling |
| Segment Length (L), ft                | -                 | Percent Grade, %                       | -       |
| Measured or Base Free-Flow Speed      | Base              | Grade Length, mi                       | -       |
| Base Free-Flow Speed (BFFS), mi/h     | 50.0              | Access Point Density, pts/mi           | 2.0     |
| Lane Width, ft                        | 12                | Left-Side Lateral Clearance (LCR), ft  | 6       |
| Median Type                           | TWLTL             | Total Lateral Clearance (TLC), ft      | 12      |
| Free-Flow Speed (FFS), mi/h           | 49.5              |                                        |         |
| Direction 2 Adjustment Fact           | ors               | ·                                      | ÷       |
| Driver Population                     | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF)    | 1.000   |
| Driver Population SAF                 | 0.913             | Final Capacity Adjustment Factor (CAF) | 1.000   |
| Driver Population CAF                 | 0.898             |                                        |         |
| Direction 2 Demand and Cap            | bacity            | ·                                      |         |
| Volume(V) veh/h                       | 350               | Heavy Vehicle Adjustment Factor (fHV)  | 1.000   |
| Peak Hour Factor                      | 0.90              | Flow Rate (Vp), pc/h/ln                | 194     |
| Total Trucks, %                       | 0.00              | Capacity (c), pc/h/ln                  | 1990    |
| Single-Unit Trucks (SUT), %           | -                 | Adjusted Capacity (cadj), pc/h/ln      | 1990    |
| Tractor-Trailers (TT), %              | -                 | Volume-to-Capacity Ratio (v/c)         | 0.10    |
| Direction 2 Speed and Densi           | ty                |                                        |         |
| Lane Width Adjustment (fLW)           | 0.0               | Average Speed (S), mi/h                | 49.5    |
| Total Lateral Clearance Adj. (fLLC)   | 0.0               | Density (D ), pc/mi/ln                 | 3.9     |
| Median Type Adjustment (fM)           | 0.0               | Level of Service (LOS)                 | A       |
| Access Point Density Adjustment (fA)  | 0.5               |                                        |         |
| Direction 2 Bicycle LOS               |                   |                                        |         |
| Flow Rate in Outside Lane (vOL),veh/h | 160               | Effective Speed Factor (St)            | 4.62    |
| Effective Width of Volume (Wv), ft    | 17                | Bicyle LOS Score (BLOS)                | 2.62    |
| Average Effective Width (We), ft      | 22                | Bicycle Level of Service (LOS)         | С       |

Rights Reserved. HCS TWO MULTITUTE VERSION 7.2.0 SD 52 btw Gavin's Point Rd & SD 153 - Summer.xuf

|       |                                 | HCS7 Two-La                                     | ne High    | way Re                            | eport              |                     |
|-------|---------------------------------|-------------------------------------------------|------------|-----------------------------------|--------------------|---------------------|
| Pro   | oject Information               |                                                 |            |                                   |                    |                     |
| Ana   | lyst                            | SRF Consulting                                  | Date       |                                   |                    | 10/14/2022          |
| Age   | ncy                             |                                                 | Analysi    | s Year                            |                    | 2050                |
| Juris | diction                         |                                                 | Time A     | nalyzed                           |                    |                     |
| Proj  | ect Description                 | 16002 SD 52 btw SD 5<br>Gavin's Point Rd - Fall |            |                                   |                    | U.S. Customary      |
|       |                                 | Se                                              | egment 1   |                                   |                    |                     |
| Vel   | hicle Inputs                    |                                                 |            |                                   |                    |                     |
| Segi  | ment Type                       | Passing Zone                                    | Length     | ft                                |                    | 18480               |
| Lane  | e Width, ft                     | 12                                              | Should     | er Width, f                       | t                  | 5                   |
| Spee  | ed Limit, mi/h                  | 55                                              | Access     | Point Dens                        | sity, pts/mi       | 7.0                 |
| De    | mand and Capacity               |                                                 |            |                                   |                    |                     |
| Dire  | ctional Demand Flow Rate, veh/h | 47                                              | Opposi     | ng Deman                          | d Flow Rate, veh/h | 17                  |
| Peak  | k Hour Factor                   | 0.90                                            | Total Tr   | Total Trucks, %                   |                    | 0.00                |
| Segi  | ment Capacity, veh/h            | 1700                                            | Deman      | Demand/Capacity (D/C)             |                    | 0.03                |
| Int   | ermediate Results               |                                                 |            |                                   |                    | -1                  |
| Segi  | Segment Vertical Class 1        |                                                 | Free-Fl    | Free-Flow Speed, mi/h             |                    | 60.3                |
| Spee  | ed Slope Coefficient            | 3.50919                                         | Speed      | Speed Power Coefficient           |                    | 0.63140             |
| PF S  | lope Coefficient                | -1.13788                                        | PF Pow     | PF Power Coefficient              |                    | 0.80697             |
| In Pa | assing Lane Effective Length?   | No                                              | Total Se   | Total Segment Density, veh/mi/ln  |                    | 0.1                 |
| %Im   | proved % Followers              | 0.0                                             | % Impr     | % Improved Avg Speed              |                    | 0.0                 |
| Sul   | bsegment Data                   |                                                 |            |                                   |                    |                     |
| #     | Segment Type                    | Length, ft                                      | Radius, ft |                                   | Superelevation, %  | Average Speed, mi/h |
| 1     | Tangent                         | 18480                                           | -          |                                   | -                  | 60.3                |
| Vel   | hicle Results                   | -                                               |            |                                   | •                  |                     |
| Aver  | rage Speed, mi/h                | 60.3                                            | Percent    | Followers                         | , %                | 9.1                 |
| Segi  | ment Travel Time, minutes       | 3.49                                            | Followe    | Follower Density, followers/mi/In |                    | 0.1                 |
| Vehi  | icle LOS                        | A                                               |            |                                   |                    |                     |
| Bic   | cycle Results                   | -                                               |            |                                   |                    |                     |
| Perc  | ent Occupied Parking            | 0                                               | Paveme     | ent Conditi                       | on Rating          | 3                   |
|       | v Rate Outside Lane, veh/h      |                                                 |            | Bicycle Effective Width, ft       |                    | 35                  |
|       | cle LOS Score                   | 0.00                                            |            |                                   | peed Factor        | 4.79                |
|       | cle LOS                         | A                                               |            |                                   |                    |                     |
| -     | cility Results                  |                                                 |            |                                   |                    |                     |
|       | -                               | r Density, followers/mi/l                       | n          |                                   | LC                 | S S                 |
|       | 1                               | 0.1                                             |            |                                   | A                  |                     |

|                          |                                  | HCS7 Two-                                  | Lane                        | Highv                             | vay Re                | eport              |                     |
|--------------------------|----------------------------------|--------------------------------------------|-----------------------------|-----------------------------------|-----------------------|--------------------|---------------------|
| Project Ir               | formation                        |                                            |                             |                                   |                       |                    |                     |
| Analyst                  |                                  | SRF Consulting                             |                             | Date                              |                       |                    | 10/14/2022          |
| Agency                   |                                  |                                            |                             | Analysis                          | Year                  |                    | 2050                |
| Jurisdiction             |                                  |                                            |                             | Time An                           | alyzed                |                    |                     |
| Project Descr            | iption                           | 16002 SD 52 btw SI<br>Gavin's Point Rd - F |                             | Units                             |                       |                    | U.S. Customary      |
|                          |                                  |                                            | Segn                        | nent 1                            |                       |                    |                     |
| Vehicle Ir               | puts                             |                                            |                             |                                   |                       |                    |                     |
| Segment Typ              | e                                | Passing Zone                               |                             | Length, f                         | ft                    |                    | 18480               |
| Lane Width, f            | t                                | 12                                         |                             | Shoulder                          | r Width, f            | t                  | 5                   |
| Speed Limit,             | mi/h                             | 55                                         |                             | Access P                          | oint Dens             | ity, pts/mi        | 7.0                 |
| Demand                   | and Capacity                     |                                            |                             |                                   |                       |                    |                     |
| Directional D            | emand Flow Rate, veh/h           | 34                                         |                             | Opposin                           | g Deman               | d Flow Rate, veh/h | 29                  |
| Peak Hour Fa             | ctor                             | 0.90                                       |                             | Total Trucks, %                   |                       |                    | 0.00                |
| Segment Cap              | oacity, veh/h                    | 1700                                       |                             | Demand                            | Demand/Capacity (D/C) |                    | 0.02                |
| Intermed                 | iate Results                     |                                            |                             |                                   |                       |                    | 1                   |
| Segment Vertical Class 1 |                                  | Free-Flov                                  | w Speed,                    | mi/h                              | 60.3                  |                    |                     |
| Speed Slope              | Coefficient                      | 3.52259                                    |                             | Speed Po                          | ower Coe              | fficient           | 0.61819             |
| PF Slope Coe             | fficient                         | -1.14930                                   |                             | PF Power Coefficient              |                       | ent                | 0.80347             |
| In Passing La            | ne Effective Length?             | No                                         |                             | Total Segment Density, veh/mi/ln  |                       | nsity, veh/mi/ln   | 0.0                 |
| %Improved %              | 6 Followers                      | 0.0                                        |                             | % Improved Avg Speed              |                       | Speed              | 0.0                 |
| Subsegm                  | ent Data                         |                                            |                             |                                   |                       |                    |                     |
| # Segme                  | nt Type                          | Length, ft                                 | Rac                         | lius, ft                          |                       | Superelevation, %  | Average Speed, mi/h |
| 1 Tangen                 | t                                | 18480                                      | -                           |                                   |                       | -                  | 60.3                |
| Vehicle R                | esults                           |                                            |                             |                                   |                       | 1                  |                     |
| Average Spee             | ed, mi/h                         | 60.3                                       |                             | Percent I                         | Followers             | . %                | 7.4                 |
| Segment Trav             | vel Time, minutes                | 3.49                                       |                             | Follower Density, followers/mi/In |                       | followers/mi/ln    | 0.0                 |
| Vehicle LOS              |                                  | A                                          |                             |                                   |                       |                    |                     |
| Bicycle R                | esults                           |                                            |                             |                                   |                       |                    |                     |
| Percent Occu             | pied Parking                     | 0                                          |                             | Pavemer                           | nt Conditi            | on Rating          | 3                   |
| Flow Rate Ou             | www. Rate Outside Lane, veh/h 34 |                                            | Bicycle Effective Width, ft |                                   | /idth, ft             | 36                 |                     |
| Bicycle LOS S            | core                             | 0.00                                       |                             | Bicycle E                         | ffective S            | peed Factor        | 4.79                |
| Bicycle LOS              |                                  | A                                          |                             |                                   |                       |                    |                     |
| Facility R               | esults                           |                                            |                             |                                   |                       |                    |                     |
| T                        | Follower                         | r Density, followers/n                     | ni/ln                       |                                   |                       | LC                 | S                   |
| 1                        |                                  | 0.0                                        | -                           |                                   |                       | Δ                  |                     |

|                                     | HCS7 Two-Lar                                              | ne Highway R        | eport               |                     |
|-------------------------------------|-----------------------------------------------------------|---------------------|---------------------|---------------------|
| Project Information                 |                                                           |                     |                     |                     |
| Analyst                             | SRF Consulting                                            | Date                |                     | 10/14/2022          |
| Agency                              |                                                           | Analysis Year       |                     | 2050                |
| Jurisdiction                        |                                                           | Time Analyzed       |                     |                     |
| Project Description                 | 16002 - SD 52 btw SD 50<br>& Gavin's Point Rd -<br>Summer | ) Units             |                     | U.S. Customary      |
|                                     | Seg                                                       | gment 1             |                     |                     |
| Vehicle Inputs                      |                                                           |                     |                     |                     |
| Segment Type                        | Passing Zone                                              | Length, ft          |                     | 18480               |
| Lane Width, ft                      | 12                                                        | Shoulder Width,     | ft                  | 5                   |
| Speed Limit, mi/h                   | 55                                                        | Access Point Den    | sity, pts/mi        | 7.0                 |
| Demand and Capacity                 |                                                           | •                   |                     |                     |
| Directional Demand Flow Rate, veh/h | 66                                                        | Opposing Demar      | nd Flow Rate, veh/h | 43                  |
| Peak Hour Factor                    | 0.90                                                      | Total Trucks, %     |                     | 0.00                |
| Segment Capacity, veh/h             | 1700                                                      | Demand/Capacit      | y (D/C)             | 0.04                |
| Intermediate Results                |                                                           |                     | -                   |                     |
| Segment Vertical Class              | 1                                                         | Free-Flow Speed,    | , mi/h              | 60.3                |
| Speed Slope Coefficient             | 3.53511                                                   | Speed Power Coe     | efficient           | 0.60621             |
| PF Slope Coefficient                | -1.15968                                                  | PF Power Coeffic    | ient                | 0.80030             |
| In Passing Lane Effective Length?   | No                                                        | Total Segment De    | ensity, veh/mi/ln   | 0.1                 |
| %Improved % Followers               | 0.0                                                       | % Improved Avg      | Speed               | 0.0                 |
| Subsegment Data                     |                                                           |                     |                     |                     |
| # Segment Type                      | Length, ft                                                | Radius, ft          | Superelevation, %   | Average Speed, mi/h |
| 1 Tangent                           | 18480 ·                                                   | -                   | -                   | 60.3                |
| Vehicle Results                     | · · ·                                                     |                     |                     | - <b>-</b>          |
| Average Speed, mi/h                 | 60.3                                                      | Percent Followers   | s, %                | 12.3                |
| Segment Travel Time, minutes        | 3.49                                                      | Follower Density,   | followers/mi/ln     | 0.1                 |
| Vehicle LOS                         | A                                                         |                     |                     |                     |
| Bicycle Results                     |                                                           |                     |                     |                     |
| Percent Occupied Parking            | 0                                                         | Pavement Condit     | ion Rating          | 3                   |
| Flow Rate Outside Lane, veh/h       | 66                                                        | Bicycle Effective   | Width, ft           | 34                  |
| Bicycle LOS Score                   | 0.00                                                      | Bicycle Effective S | Speed Factor        | 4.79                |
| Bicycle LOS                         | A                                                         |                     |                     |                     |
| Facility Results                    |                                                           |                     |                     |                     |
| -                                   | r Density, followers/mi/ln                                |                     | LC                  | -                   |

| 1                     | 0.1                                      | 1                                  |              | A                              |
|-----------------------|------------------------------------------|------------------------------------|--------------|--------------------------------|
| Copyright © 2023 Univ | versity of Florida. All Rights Reserved. | HCS 🖿 Two-Lane Version 7           | 7.9.6        | Generated: 10/13/2023 09:29:14 |
|                       |                                          | SD 52 btw SD 50 & Gavin's Point Rd | - Summer.xuf |                                |

## **Project Information**

| Analyst             | SRF Consulting                                    | Date          | 10/14/2022     |
|---------------------|---------------------------------------------------|---------------|----------------|
| Agency              |                                                   | Analysis Year | 2050           |
| Jurisdiction        |                                                   | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw SD 153<br>& Deer Blvd - Fall AM | Units         | U.S. Customary |

| Direction i Geometric Data            |              |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 1                           | Eastbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 15.0  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 51.3         |                                        |       |
| Direction 1 Adjustment Factor         | ors          |                                        |       |
| Driver Population                     | Balanced Mix | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.950        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.939        |                                        |       |
| Direction 1 Demand and Cap            | acity        |                                        |       |
| Volume(V) veh/h                       | 327          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 182   |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2024  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2024  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.09  |
| Direction 1 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 51.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 3.6   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 3.8          |                                        |       |
| Direction 1 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 182          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.88  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |
|                                       |              |                                        |       |

| Direction 2 Geometric Data                                                   |              |                                                        |       |
|------------------------------------------------------------------------------|--------------|--------------------------------------------------------|-------|
| Direction 2                                                                  | Westbound    |                                                        |       |
| Number of Lanes (N), In                                                      | 2            | Terrain Type                                           | Level |
| Segment Length (L), ft                                                       | -            | Percent Grade, %                                       | -     |
| Measured or Base Free-Flow Speed                                             | Base         | Grade Length, mi                                       | -     |
| Base Free-Flow Speed (BFFS), mi/h                                            | 55.0         | Access Point Density, pts/mi                           | 3.0   |
| Lane Width, ft                                                               | 12           | Left-Side Lateral Clearance (LCR), ft                  | 6     |
| Median Type                                                                  | TWLTL        | Total Lateral Clearance (TLC), ft                      | 12    |
| Free-Flow Speed (FFS), mi/h                                                  | 54.3         |                                                        |       |
| Direction 2 Adjustment Fact                                                  | ors          |                                                        |       |
| Driver Population                                                            | Balanced Mix | Final Speed Adjustment Factor (SAF)                    | 1.000 |
| Driver Population SAF                                                        | 0.950        | Final Capacity Adjustment Factor (CAF)                 | 1.000 |
| Driver Population CAF                                                        | 0.939        |                                                        |       |
| Direction 2 Demand and Ca                                                    | pacity       |                                                        |       |
| Volume(V) veh/h                                                              | 144          | Heavy Vehicle Adjustment Factor (fHV)                  | 1.000 |
| Peak Hour Factor                                                             | 0.90         | Flow Rate (Vp), pc/h/ln                                | 80    |
| Total Trucks, %                                                              | 0.00         | Capacity (c), pc/h/ln                                  | 2084  |
| Single-Unit Trucks (SUT), %                                                  | -            | Adjusted Capacity (cadj), pc/h/ln                      | 2084  |
| Tractor-Trailers (TT), %                                                     | -            | Volume-to-Capacity Ratio (v/c)                         | 0.04  |
| Direction 2 Speed and Dens                                                   | ity          |                                                        |       |
| Lane Width Adjustment (fLW)                                                  | 0.0          | Average Speed (S), mi/h                                | 54.2  |
| Total Lateral Clearance Adj. (fLLC)                                          | 0.0          | Density (D ), pc/mi/ln                                 | 1.5   |
| Median Type Adjustment (fM)                                                  | 0.0          | Level of Service (LOS)                                 | A     |
| Access Point Density Adjustment (fA)                                         | 0.8          |                                                        |       |
| Direction 2 Bicycle LOS                                                      |              |                                                        |       |
|                                                                              | 1            |                                                        | 4.62  |
|                                                                              | 182          | Effective Speed Factor (St)                            | 4.62  |
| Flow Rate in Outside Lane (vol.),veh/h<br>Effective Width of Volume (Wv), ft | 182<br>18    | Effective Speed Factor (St)<br>Bicyle LOS Score (BLOS) | 1.88  |

## **Project Information**

| Analyst             | SRF Consulting                                    | Date          | 10/14/2022     |
|---------------------|---------------------------------------------------|---------------|----------------|
| Agency              |                                                   | Analysis Year | 2050           |
| Jurisdiction        |                                                   | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw SD 153<br>& Deer Blvd - Fall PM | Units         | U.S. Customary |

| Eastbound    |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2            | Terrain Type                                                                                                                                                                                                                                                                                                                                                                                                                                      | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -            | Percent Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Base         | Grade Length, mi                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 55.0         | Access Point Density, pts/mi                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12           | Left-Side Lateral Clearance (LCR), ft                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TWLTL        | Total Lateral Clearance (TLC), ft                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 51.3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ors          |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| All Familiar | Final Speed Adjustment Factor (SAF)                                                                                                                                                                                                                                                                                                                                                                                                               | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.000        | Final Capacity Adjustment Factor (CAF)                                                                                                                                                                                                                                                                                                                                                                                                            | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.000        |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| pacity       |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 236          | Heavy Vehicle Adjustment Factor (fHV)                                                                                                                                                                                                                                                                                                                                                                                                             | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.90         | Flow Rate (V <sub>p</sub> ), pc/h/ln                                                                                                                                                                                                                                                                                                                                                                                                              | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.00         | Capacity (c), pc/h/ln                                                                                                                                                                                                                                                                                                                                                                                                                             | 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -            | Adjusted Capacity (cadj), pc/h/ln                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -            | Volume-to-Capacity Ratio (v/c)                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ty           |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.0          | Average Speed (S), mi/h                                                                                                                                                                                                                                                                                                                                                                                                                           | 51.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0          | Density (D ), pc/mi/ln                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.0          | Level of Service (LOS)                                                                                                                                                                                                                                                                                                                                                                                                                            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 131          | Effective Speed Factor (St)                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 18           | Bicyle LOS Score (BLOS)                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 24           | Bicycle Level of Service (LOS)                                                                                                                                                                                                                                                                                                                                                                                                                    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | 2         Base         55.0         12         TWLTL         51.3         Juit Familiar         All Familiar         1.000         Juit Familiar         1.000         Juit Familiar         1.000         Juit Familiar         0.00         Juit Familiar         0.00         0.90         0.00         -         236         0.90         0.00         -         0.00         0.00         0.00         0.0         3.8         Juit Familiar | 2Terrain Type2-Percent Grade, %BaseGrade Length, mi55.0Access Point Density, pts/mi12Left-Side Lateral Clearance (LCR), ftTWLTLTotal Lateral Clearance (TLC), ft51.3OrsAll FamiliarAll FamiliarFinal Speed Adjustment Factor (SAF)1.000Final Capacity Adjustment Factor (CAF)1.000Final Capacity Adjustment Factor (CAF)0.00Capacity (c), pc/h/ln0.90Flow Rate (Vp), pc/h/ln0.00Capacity (c.adj), pc/h/ln-Adjusted Capacity (cadj), pc/h/ln-Volume-to-Capacity Ratio (v/c)tty0.0Density (D), pc/mi/ln0.0Level of Service (LOS)3.8131Effective Speed Factor (St)18Bicyle LOS Score (BLOS) |

| Direction 2 Geometric Data            |              |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Direction 2                           | Westbound    |                                        |       |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 3.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 54.3         |                                        |       |
| Direction 2 Adjustment Fact           | ors          |                                        |       |
| Driver Population                     | All Familiar | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 1.000        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 1.000        |                                        |       |
| Direction 2 Demand and Ca             | pacity       |                                        |       |
| Volume(V) veh/h                       | 374          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.90         | Flow Rate (V <sub>p</sub> ), pc/h/ln   | 208   |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2084  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2084  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.10  |
| Direction 2 Speed and Densi           | ty           |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 54.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 3.8   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 0.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vol),veh/h | 131          | Effective Speed Factor (St)            | 4.62  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.72  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |

SD 52 btw SD 153 & Deer Blvd - Fall PM.xuf

## **Project Information**

| Analyst             | SRF Consulting                                   | Date          | 10/14/2022     |
|---------------------|--------------------------------------------------|---------------|----------------|
| Agency              |                                                  | Analysis Year | 2050           |
| Jurisdiction        |                                                  | Time Analyzed |                |
| Project Description | 16002 - SD 52 btw SD 153<br>& Deer Blvd - Summer | Units         | U.S. Customary |

| Direction i Geometric Data            |              |                                        |       |  |
|---------------------------------------|--------------|----------------------------------------|-------|--|
| Direction 1                           | Eastbound    |                                        |       |  |
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |  |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |  |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |  |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 15.0  |  |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |  |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |  |
| Free-Flow Speed (FFS), mi/h           | 51.3         |                                        |       |  |
| Direction 1 Adjustment Factor         | ors          |                                        |       |  |
| Driver Population                     | Balanced Mix | Final Speed Adjustment Factor (SAF)    | 1.000 |  |
| Driver Population SAF                 | 0.950        | Final Capacity Adjustment Factor (CAF) | 1.000 |  |
| Driver Population CAF                 | 0.939        |                                        |       |  |
| Direction 1 Demand and Cap            | oacity       |                                        |       |  |
| Volume(V) veh/h                       | 373          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |  |
| Peak Hour Factor                      | 0.90         | Flow Rate (V <sub>p</sub> ), pc/h/ln   | 207   |  |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2024  |  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2024  |  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.10  |  |
| Direction 1 Speed and Densi           | ty           |                                        |       |  |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 51.2  |  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 4.0   |  |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |  |
| Access Point Density Adjustment (fA)  | 3.8          |                                        |       |  |
| Direction 1 Bicycle LOS               |              |                                        |       |  |
| Flow Rate in Outside Lane (vOL),veh/h | 207          | Effective Speed Factor (St) 4.62       |       |  |
| Effective Width of Volume (Wv), ft    | 18           | Bicyle LOS Score (BLOS)                | 1.95  |  |
| Average Effective Width (We), ft      | 24           | Bicycle Level of Service (LOS)         | В     |  |

| Direction 2                           | Westbound    |                                        |       |
|---------------------------------------|--------------|----------------------------------------|-------|
| Number of Lanes (N), In               | 2            | Terrain Type                           | Level |
| Segment Length (L), ft                | -            | Percent Grade, %                       | -     |
| Measured or Base Free-Flow Speed      | Base         | Grade Length, mi                       | -     |
| Base Free-Flow Speed (BFFS), mi/h     | 55.0         | Access Point Density, pts/mi           | 3.0   |
| Lane Width, ft                        | 12           | Left-Side Lateral Clearance (LCR), ft  | 6     |
| Median Type                           | TWLTL        | Total Lateral Clearance (TLC), ft      | 12    |
| Free-Flow Speed (FFS), mi/h           | 54.3         |                                        |       |
| Direction 2 Adjustment Fac            | tors         |                                        | ·     |
| Driver Population                     | Balanced Mix | Final Speed Adjustment Factor (SAF)    | 1.000 |
| Driver Population SAF                 | 0.950        | Final Capacity Adjustment Factor (CAF) | 1.000 |
| Driver Population CAF                 | 0.939        |                                        |       |
| Direction 2 Demand and Ca             | pacity       |                                        |       |
| Volume(V) veh/h                       | 479          | Heavy Vehicle Adjustment Factor (fHV)  | 1.000 |
| Peak Hour Factor                      | 0.90         | Flow Rate (Vp), pc/h/ln                | 266   |
| Total Trucks, %                       | 0.00         | Capacity (c), pc/h/ln                  | 2084  |
| Single-Unit Trucks (SUT), %           | -            | Adjusted Capacity (cadj), pc/h/ln      | 2084  |
| Tractor-Trailers (TT), %              | -            | Volume-to-Capacity Ratio (v/c)         | 0.13  |
| Direction 2 Speed and Dens            | ity          |                                        |       |
| Lane Width Adjustment (fLW)           | 0.0          | Average Speed (S), mi/h                | 54.2  |
| Total Lateral Clearance Adj. (fLLC)   | 0.0          | Density (D ), pc/mi/ln                 | 4.9   |
| Median Type Adjustment (fM)           | 0.0          | Level of Service (LOS)                 | A     |
| Access Point Density Adjustment (fA)  | 0.8          |                                        |       |
| Direction 2 Bicycle LOS               |              |                                        |       |
| Flow Rate in Outside Lane (vOL),veh/h | 207          | Effective Speed Factor (St)            | 4.62  |
|                                       | 18           | Bicyle LOS Score (BLOS)                | 1.95  |
| Effective Width of Volume (Wv), ft    |              |                                        |       |

| HCS7 Two-Lane | Highway | Report |
|---------------|---------|--------|
|---------------|---------|--------|

#### viact Infa

| Pro                      | ject Infor     | mation              |                                               |                       |                                   |               |                    |                     |  |
|--------------------------|----------------|---------------------|-----------------------------------------------|-----------------------|-----------------------------------|---------------|--------------------|---------------------|--|
| Analy                    | /st            |                     | SRF Consulting                                | Da                    | ate                               |               |                    | 10/14/2022          |  |
| Agen                     | ю              |                     |                                               | Ana                   |                                   | Analysis Year |                    | 2050                |  |
| Juriso                   | diction        |                     |                                               |                       | ime Ana                           | alyzed        |                    |                     |  |
| Proje                    | ct Description | ١                   | 16002 - SD 153 btw SD 52<br>& SD 50 - Fall AM |                       | Inits                             |               |                    | U.S. Customary      |  |
|                          |                |                     | Se                                            | egme                  | ent 1                             |               |                    |                     |  |
| Veh                      | icle Input     | S                   |                                               |                       |                                   |               |                    |                     |  |
| Segn                     | nent Type      |                     | Passing Zone                                  |                       | ength, f                          | 't            |                    | 12460               |  |
| Lane                     | Width, ft      |                     | 11                                            | Sh                    | houlde                            | r Width, f    | t                  | 1                   |  |
| Spee                     | d Limit, mi/h  |                     | 55                                            | Ac                    | ccess P                           | oint Dens     | ity, pts/mi        | 9.0                 |  |
| Der                      | nand and       | Capacity            |                                               |                       |                                   |               |                    |                     |  |
| Direc                    | tional Demar   | nd Flow Rate, veh/h | 88                                            | O                     | )pposin                           | g Deman       | d Flow Rate, veh/h | 46                  |  |
| Peak                     | Hour Factor    |                     | 0.90                                          | То                    | otal Tru                          | cks, %        |                    | 0.00                |  |
| Segn                     | nent Capacity  | , veh/h             | 1700                                          | De                    | emand                             | /Capacity     | (D/C)              | 0.05                |  |
| Inte                     | ermediate      | Results             |                                               |                       |                                   |               |                    |                     |  |
| Segment Vertical Class 1 |                | 1 Free-Flc          |                                               | Free-Flow Speed, mi/h |                                   | mi/h          | 56.4               |                     |  |
| Spee                     | d Slope Coef   | ficient             | 3.32546                                       | Sp                    | Speed Power Coefficient           |               | fficient           | 0.60459             |  |
| PF SI                    | ope Coefficie  | nt                  | -1.17570                                      | PF                    | F Powe                            | r Coefficie   | ent                | 0.78828             |  |
| In Pa                    | ssing Lane Ef  | fective Length?     | No                                            | То                    | Total Segment Density, veh/mi/ln  |               | nsity, veh/mi/ln   | 0.2                 |  |
| %lmp                     | proved % Foll  | owers               | 0.0                                           | %                     | % Improved Avg Speed              |               | Speed              | 0.0                 |  |
| Sub                      | segment        | Data                |                                               |                       |                                   |               |                    |                     |  |
| #                        | Segment Ty     | pe                  | Length, ft                                    | Radius,               | s, ft                             |               | Superelevation, %  | Average Speed, mi/h |  |
| 1                        | Tangent        |                     | 12460                                         | -                     |                                   |               | -                  | 56.4                |  |
| Veh                      | icle Resu      | ts                  |                                               |                       |                                   |               |                    |                     |  |
| Avera                    | age Speed, m   | i/h                 | 56.4                                          | Pe                    | Percent Followers, %              |               | %                  | 15.9                |  |
| Segn                     | nent Travel Ti | me, minutes         | 2.51                                          | Fo                    | Follower Density, followers/mi/ln |               | followers/mi/ln    | 0.2                 |  |
| Vehic                    | cle LOS        |                     | A                                             |                       |                                   |               |                    |                     |  |
| Bicy                     | cle Resul      | ts                  |                                               |                       |                                   |               |                    |                     |  |
| Perce                    | ent Occupied   | Parking             | 0                                             | Pa                    | avemer                            | nt Conditi    | on Rating          | 3                   |  |
| Flow                     | Rate Outside   | Lane, veh/h         | 88                                            | Bio                   | icycle E                          | ffective W    | /idth, ft          | 19                  |  |
| Bicycle LOS Score 2.97   |                | Bio                 | Bicycle Effective Speed Factor 4.             |                       | 4.79                              |               |                    |                     |  |
| Bicyc                    | le LOS         |                     | С                                             |                       |                                   |               |                    |                     |  |
| Faci                     | ility Resul    | ts                  |                                               |                       |                                   |               |                    |                     |  |
|                          | т              | Follower            | Density, followers/mi/l                       | In                    |                                   |               | LO                 | S                   |  |
|                          | 1              |                     | 0.2                                           |                       |                                   |               | A                  |                     |  |

| HCS7 Two-Lane Hi | ighway Report |
|------------------|---------------|
|------------------|---------------|

#### **Project Information**

| Proje                    | ct Infor      | mation             |                                               |                       |                                   |             |                    |                     |
|--------------------------|---------------|--------------------|-----------------------------------------------|-----------------------|-----------------------------------|-------------|--------------------|---------------------|
| Analyst                  |               |                    | SRF Consulting                                |                       | Date                              |             |                    | 10/14/2022          |
| Agency                   | ,             |                    |                                               |                       | Analysis Year                     |             |                    | 2050                |
| Jurisdict                | tion          |                    |                                               |                       | Time An                           | alyzed      |                    |                     |
| Project                  | Descriptior   | 1                  | 16002 - SD 153 btw SD 52<br>& SD 50 - Fall PM |                       | Units                             |             |                    | U.S. Customary      |
|                          |               |                    | S                                             | Segn                  | nent 1                            |             |                    |                     |
| Vehic                    | le Input      | s                  |                                               |                       |                                   |             |                    |                     |
| Segmen                   | nt Type       |                    | Passing Zone                                  |                       | Length, t                         | ft          |                    | 12460               |
| Lane Wi                  | 'idth, ft     |                    | 11                                            |                       | Shoulde                           | r Width, f  | t                  | 1                   |
| Speed L                  | Limit, mi/h   |                    | 55                                            |                       | Access P                          | oint Dens   | sity, pts/mi       | 9.0                 |
| Dema                     | and and       | Capacity           |                                               |                       |                                   |             |                    |                     |
| Directio                 | onal Deman    | d Flow Rate, veh/h | 89                                            |                       | Opposin                           | g Deman     | d Flow Rate, veh/h | 99                  |
| Peak Ho                  | our Factor    |                    | 0.90                                          |                       | Total Tru                         | cks, %      |                    | 0.00                |
| Segmen                   | nt Capacity,  | veh/h              | 1700                                          |                       | Demand                            | /Capacity   | r (D/C)            | 0.05                |
| Interr                   | mediate       | Results            |                                               |                       | -                                 |             |                    |                     |
| Segment Vertical Class 1 |               | 1                  |                                               | Free-Flow Speed, mi/h |                                   | 56.4        |                    |                     |
| Speed S                  | Slope Coeff   | icient             | 3.35857                                       |                       | Speed Power Coefficient           |             | fficient           | 0.57473             |
| PF Slope                 | e Coefficier  | nt                 | -1.20247                                      |                       | PF Powe                           | r Coefficie | ent                | 0.78053             |
| In Passir                | ng Lane Eff   | ective Length?     | No                                            |                       | Total Segment Density, veh/mi/ln  |             | nsity, veh/mi/ln   | 0.3                 |
| %Impro                   | oved % Foll   | owers              | 0.0                                           |                       | % Improved Avg Speed              |             | Speed              | 0.0                 |
| Subse                    | egment        | Data               |                                               |                       |                                   |             |                    |                     |
| # Se                     | egment Typ    | De                 | Length, ft                                    | Rad                   | lius, ft                          |             | Superelevation, %  | Average Speed, mi/h |
| 1 Ta                     | angent        |                    | 12460                                         | -                     |                                   |             | -                  | 56.4                |
| Vehic                    | le Resul      | ts                 |                                               |                       |                                   |             |                    |                     |
| Average                  | e Speed, mi   | /h                 | 56.4                                          |                       | Percent Followers, %              |             | , %                | 16.6                |
| Segmen                   | nt Travel Tir | ne, minutes        | 2.51                                          |                       | Follower Density, followers/mi/In |             | followers/mi/ln    | 0.3                 |
| Vehicle                  | LOS           |                    | A                                             |                       |                                   |             |                    |                     |
| Bicycl                   | le Resul      | ts                 | ·                                             |                       |                                   |             |                    |                     |
| Percent                  | Occupied      | Parking            | 0                                             |                       | Pavement Condition Rating         |             | on Rating          | 3                   |
| Flow Ra                  | ate Outside   | Lane, veh/h        | 89                                            |                       | Bicycle E                         | ffective W  | Vidth, ft          | 19                  |
| Bicycle I                | LOS Score     |                    | 2.97                                          |                       |                                   |             | 4.79               |                     |
| Bicycle I                | LOS           |                    | С                                             |                       |                                   |             |                    |                     |
| Facilit                  | ty Resul      | ts                 |                                               |                       |                                   |             |                    |                     |
|                          | т             | Follower           | Density, followers/mi                         | /In                   |                                   |             | LO                 | S                   |
|                          | 1             |                    | 0.3                                           |                       |                                   |             | A                  |                     |

#### ct Info • -

| Project                  | t Inforr   | nation             |                                              |                       |                                   |             |                    |                     |
|--------------------------|------------|--------------------|----------------------------------------------|-----------------------|-----------------------------------|-------------|--------------------|---------------------|
| Analyst                  |            |                    | SRF Consulting                               |                       | Date                              |             |                    | 10/14/2022          |
| Agency                   |            |                    |                                              |                       | Analysis Year                     |             |                    | 2050                |
| Jurisdictio              | on         |                    |                                              |                       | Time An                           | alyzed      |                    |                     |
| Project D                | escription |                    | 16002 - SD 153 btw SD 52<br>& SD 50 - Summer |                       | Units                             |             |                    | U.S. Customary      |
|                          |            |                    | Se                                           | egm                   | ent 1                             |             |                    |                     |
| Vehicle                  | e Input    | S                  |                                              |                       |                                   |             |                    |                     |
| Segment                  | Туре       |                    | Passing Zone                                 |                       | Length, f                         | ft          |                    | 12460               |
| Lane Wid                 | lth, ft    |                    | 11                                           |                       | Shoulde                           | r Width, ft | t                  | 1                   |
| Speed Lir                | mit, mi/h  |                    | 50                                           |                       | Access P                          | oint Dens   | ity, pts/mi        | 9.0                 |
| Demar                    | nd and     | Capacity           |                                              |                       |                                   |             |                    |                     |
| Direction                | al Deman   | d Flow Rate, veh/h | 149                                          |                       | Opposin                           | g Deman     | d Flow Rate, veh/h | 150                 |
| Peak Hou                 | ur Factor  |                    | 0.90                                         | -                     | Total Tru                         | cks, %      |                    | 0.00                |
| Segment                  | Capacity,  | veh/h              | 1700                                         |                       | Demand                            | /Capacity   | (D/C)              | 0.09                |
| Interm                   | nediate    | Results            |                                              |                       |                                   |             |                    |                     |
| Segment Vertical Class 1 |            | 1 Free-Fl          |                                              | Free-Flow Speed, mi/h |                                   | mi/h        | 50.7               |                     |
| Speed Slo                | ope Coeffi | cient              | 3.07351                                      |                       | Speed Power Coefficient           |             | fficient           | 0.55474             |
| PF Slope                 | Coefficier | ıt                 | -1.23580                                     |                       | PF Power Coefficient              |             | ent                | 0.75772             |
| In Passing               | g Lane Eff | ective Length?     | No                                           |                       | Total Segment Density, veh/mi/ln  |             | nsity, veh/mi/ln   | 0.8                 |
| %Improv                  | ed % Follo | owers              | 0.0                                          |                       | % Improved Avg Speed              |             | Speed              | 0.0                 |
| Subseg                   | gment      | Data               |                                              |                       |                                   |             |                    |                     |
| # Seg                    | gment Typ  | e                  | Length, ft                                   | Radiu                 | us, ft                            |             | Superelevation, %  | Average Speed, mi/h |
| 1 Tan                    | ngent      |                    | 12460                                        | -                     |                                   |             | -                  | 50.1                |
| Vehicle                  | e Resul    | ts                 | •                                            |                       |                                   |             | -                  |                     |
| Average S                | Speed, mi  | /h                 | 50.1                                         |                       | Percent Followers, %              |             | %                  | 25.3                |
| Segment                  | Travel Tin | ne, minutes        | 2.83                                         |                       | Follower Density, followers/mi/ln |             | followers/mi/ln    | 0.8                 |
| Vehicle LO               | OS         |                    | A                                            |                       |                                   |             |                    |                     |
| Bicycle                  | e Result   | ts                 |                                              |                       |                                   |             |                    |                     |
| Percent C                | Dccupied F | Parking            | 0                                            |                       | Pavement Condition Rating         |             | on Rating          | 3                   |
| Flow Rate                | e Outside  | Lane, veh/h        | 149                                          |                       | Bicycle E                         | ffective W  | /idth, ft          | 16                  |
| Bicycle LC               | OS Score   |                    | 3.73                                         |                       | Bicycle E                         | ffective S  | peed Factor        | 4.62                |
| Bicycle LC               | OS         |                    | D                                            |                       |                                   |             |                    |                     |
| Facility                 | y Resul    | ts                 |                                              |                       |                                   |             |                    |                     |
| т                        | •          | Follower           | Density, followers/mi/                       | In                    |                                   |             | LO                 | Ś                   |
| 1                        |            |                    | 0.8                                          |                       |                                   | A           |                    |                     |

|                                     | HCS7 Two-Lan                                                  | e High    | way Report                |                     |
|-------------------------------------|---------------------------------------------------------------|-----------|---------------------------|---------------------|
| Project Information                 |                                                               |           |                           |                     |
| Analyst                             | SRF Consulting                                                | Date      |                           | 10/14/2022          |
| Agency                              |                                                               | Analysis  | Year                      | 2050                |
| Jurisdiction                        |                                                               | Time An   | alyzed                    |                     |
| Project Description                 | 16002 - SD 314 btw SD 5<br>& West City Limits Rd -<br>Fall AM | 0 Units   |                           | U.S. Customary      |
|                                     | Seg                                                           | ment 1    |                           |                     |
| Vehicle Inputs                      |                                                               |           |                           |                     |
| Segment Type                        | Passing Zone                                                  | Length,   | ft                        | 22070               |
| Lane Width, ft                      | 11                                                            | Shoulde   | r Width, ft               | 3                   |
| Speed Limit, mi/h                   | 55                                                            | Access F  | Point Density, pts/mi     | 8.0                 |
| Demand and Capacity                 |                                                               |           |                           |                     |
| Directional Demand Flow Rate, veh/h | 302                                                           | Opposir   | g Demand Flow Rate, veh/h | 77                  |
| Peak Hour Factor                    | 0.90                                                          | Total Tru | icks, %                   | 15.00               |
| Segment Capacity, veh/h             | 1700                                                          | Demand    | /Capacity (D/C)           | 0.18                |
| Intermediate Results                | -                                                             |           |                           | -                   |
| Segment Vertical Class              | 1                                                             | Free-Flo  | w Speed, mi/h             | 57.5                |
| Speed Slope Coefficient             | 3.40861                                                       | Speed P   | ower Coefficient          | 0.58555             |
| PF Slope Coefficient                | -1.18707                                                      | PF Powe   | r Coefficient             | 0.78905             |
| In Passing Lane Effective Length?   | No                                                            | Total Se  | gment Density, veh/mi/ln  | 2.0                 |
| %Improved % Followers               | 0.0                                                           | % Impro   | ved Avg Speed             | 0.0                 |
| Subsegment Data                     |                                                               |           |                           |                     |
| # Segment Type                      | Length, ft R                                                  | adius, ft | Superelevation, %         | Average Speed, mi/h |
| 1 Tangent                           | 22070 -                                                       |           | -                         | 56.2                |
| Vehicle Results                     |                                                               |           |                           |                     |
| Average Speed, mi/h                 | 56.2                                                          | Percent   | Followers, %              | 37.0                |
| Segment Travel Time, minutes        | 4.47                                                          | Follower  | Density, followers/mi/ln  | 2.0                 |
| Vehicle LOS                         | A                                                             |           |                           |                     |
| Bicycle Results                     |                                                               |           |                           | ·                   |
| Percent Occupied Parking            | 0                                                             | Paveme    | nt Condition Rating       | 4                   |
| Flow Rate Outside Lane, veh/h       | 302                                                           | Bicycle E | ffective Width, ft        | 14                  |
| Bicycle LOS Score                   | 9.38                                                          | Bicycle E | ffective Speed Factor     | 4.79                |
| Bicycle LOS                         | F                                                             |           |                           |                     |
| Facility Results                    | · · · · · · · · · · · · · · · · · · ·                         |           |                           |                     |
| -                                   | r Density, followers/mi/ln                                    |           | 14                        | OS                  |

| 1                     | 2.0                                      |                        |       | A                              |
|-----------------------|------------------------------------------|------------------------|-------|--------------------------------|
| Copyright © 2023 Univ | versity of Florida. All Rights Reserved. | HCS 1 Two-Lane Version | 7.9.6 | Generated: 10/13/2023 09:32:53 |

SD 314 btw SD 50 & West City Limits Rd - Fall AM.xuf

|                                     | HCS7 Two-Lan                                                  | e High    | way Report                 |                     |
|-------------------------------------|---------------------------------------------------------------|-----------|----------------------------|---------------------|
| Project Information                 |                                                               |           |                            |                     |
| Analyst                             | SRF Consulting                                                | Date      |                            | 10/14/2022          |
| Agency                              |                                                               | Analysis  | Year                       | 2050                |
| Jurisdiction                        |                                                               | Time An   | alyzed                     |                     |
| Project Description                 | 16002 - SD 314 btw SD 5<br>& West City Limits Rd -<br>Fall PM | 0 Units   |                            | U.S. Customary      |
|                                     | Seg                                                           | ment 1    |                            |                     |
| Vehicle Inputs                      |                                                               |           |                            |                     |
| Segment Type                        | Passing Zone                                                  | Length,   | ft                         | 22070               |
| Lane Width, ft                      | 11                                                            | Shoulde   | r Width, ft                | 3                   |
| Speed Limit, mi/h                   | 55                                                            | Access F  | Point Density, pts/mi      | 8.0                 |
| Demand and Capacity                 |                                                               |           |                            |                     |
| Directional Demand Flow Rate, veh/h | 121                                                           | Opposir   | g Demand Flow Rate, veh/h  | 156                 |
| Peak Hour Factor                    | 0.90                                                          | Total Tru | icks, %                    | 8.00                |
| Segment Capacity, veh/h             | 1700                                                          | Demanc    | /Capacity (D/C)            | 0.07                |
| Intermediate Results                | - 1                                                           | <u> </u>  |                            | -                   |
| Segment Vertical Class              | 1                                                             | Free-Flo  | w Speed, mi/h              | 57.7                |
| Speed Slope Coefficient             | 3.45977                                                       | Speed P   | ower Coefficient           | 0.55285             |
| PF Slope Coefficient                | -1.21608                                                      | PF Powe   | r Coefficient              | 0.78002             |
| In Passing Lane Effective Length?   | No                                                            | Total Se  | gment Density, veh/mi/ln   | 0.4                 |
| %Improved % Followers               | 0.0                                                           | % Impro   | ved Avg Speed              | 0.0                 |
| Subsegment Data                     |                                                               |           |                            |                     |
| # Segment Type                      | Length, ft R                                                  | adius, ft | Superelevation, %          | Average Speed, mi/h |
| 1 Tangent                           | 22070 -                                                       |           | -                          | 57.3                |
| Vehicle Results                     | <u> </u>                                                      |           | •                          |                     |
| Average Speed, mi/h                 | 57.3                                                          | Percent   | Followers, %               | 20.9                |
| Segment Travel Time, minutes        | 4.38                                                          | Follower  | · Density, followers/mi/ln | 0.4                 |
| Vehicle LOS                         | A                                                             |           |                            |                     |
| Bicycle Results                     |                                                               |           |                            |                     |
| Percent Occupied Parking            | 0                                                             | Paveme    | nt Condition Rating        | 4                   |
| Flow Rate Outside Lane, veh/h 121   |                                                               | _         | ffective Width, ft         | 20                  |
| Bicycle LOS Score                   | 4.84                                                          |           | ffective Speed Factor      | 4.79                |
| Bicycle LOS                         | E                                                             |           |                            |                     |
| Facility Results                    |                                                               |           |                            |                     |
| -                                   | r Density, followers/mi/ln                                    |           |                            | OS                  |

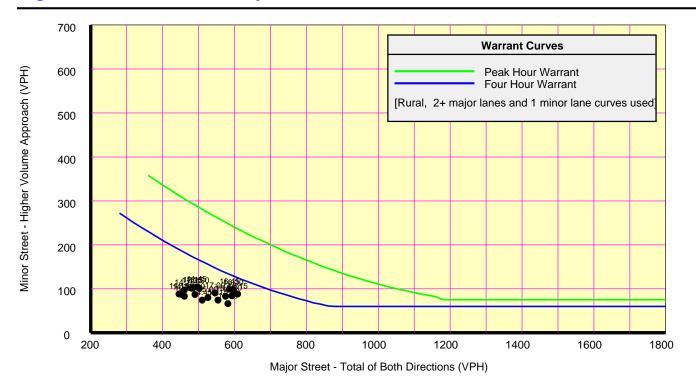
| 1 0.4                                                        |                         |       | 4                              |
|--------------------------------------------------------------|-------------------------|-------|--------------------------------|
| Copyright © 2023 University of Florida. All Rights Reserved. | HCS 11 Two-Lane Version | 7.9.6 | Generated: 10/13/2023 09:33:18 |

SD 314 btw SD 50 & West City Limits Rd - Fall PM.xuf

|                     |                                                                         | HCS7 Two             | -Lane     | Highv       | vay Re           | eport              |                     |  |  |
|---------------------|-------------------------------------------------------------------------|----------------------|-----------|-------------|------------------|--------------------|---------------------|--|--|
| Project Infor       | mation                                                                  |                      |           |             |                  |                    |                     |  |  |
| Analyst             |                                                                         | SRF Consulting       |           | Date        |                  |                    | 10/14/2022          |  |  |
| Agency              |                                                                         |                      |           | Analysis    | Year             |                    | 2050                |  |  |
| Jurisdiction        |                                                                         |                      |           | Time An     | alyzed           |                    |                     |  |  |
| Project Descriptior | scription 16002 - SD 314 btw SD 50<br>& West City Limits Rd -<br>Summer |                      |           |             |                  |                    | U.S. Customary      |  |  |
|                     |                                                                         |                      | Segn      | nent 1      |                  |                    |                     |  |  |
| Vehicle Input       | S                                                                       |                      |           |             |                  |                    |                     |  |  |
| Segment Type        |                                                                         | Passing Zone         |           | Length, f   | ft               |                    | 22070               |  |  |
| Measured FFS        |                                                                         | Measured             |           | Free-Flo    | w Speed,         | mi/h               | 60.0                |  |  |
| Demand and          | Capacity                                                                |                      |           |             |                  |                    |                     |  |  |
| Directional Deman   | d Flow Rate, veh/h                                                      | 201                  |           | Opposin     | g Deman          | d Flow Rate, veh/h | 124                 |  |  |
| Peak Hour Factor    |                                                                         | 0.90                 |           | Total Tru   | cks, %           |                    | 0.00                |  |  |
| Segment Capacity,   | veh/h                                                                   | 1700                 | Demand    | /Capacity   | r (D/C)          | 0.12               |                     |  |  |
| Intermediate        | Results                                                                 | •                    |           |             |                  |                    |                     |  |  |
| Segment Vertical C  | Class                                                                   | 1                    | Free-Flo  | w Speed,    | mi/h             | 60.0               |                     |  |  |
| Speed Slope Coeff   | ïcient                                                                  | 4.38196              |           | Speed Po    | ower Coe         | fficient           | 0.56406             |  |  |
| PF Slope Coefficier | nt                                                                      | -1.19745             | PF Powe   | r Coefficie | ent              | 0.78836            |                     |  |  |
| In Passing Lane Eff | ective Length?                                                          | No                   | Total Seg | gment De    | nsity, veh/mi/ln | 1.0                |                     |  |  |
| %Improved % Foll    | owers                                                                   | 0.0                  | % Impro   | ved Avg S   | Speed            | 0.0                |                     |  |  |
| Subsegment          | Data                                                                    | •                    |           |             |                  |                    | ·                   |  |  |
| # Segment Typ       | be                                                                      | Length, ft           | Rac       | dius, ft    |                  | Superelevation, %  | Average Speed, mi/h |  |  |
| 1 Tangent           |                                                                         | 22070                | -         | -           |                  |                    | 58.8                |  |  |
| Vehicle Resul       | ts                                                                      |                      |           |             |                  | 1                  |                     |  |  |
| Average Speed, mi   | i/h                                                                     | 58.8                 |           | Percent I   | Followers,       | , %                | 28.7                |  |  |
| Segment Travel Tir  | me, minutes                                                             | 4.27                 |           | Follower    | Density,         | followers/mi/ln    | 1.0                 |  |  |
| Vehicle LOS         |                                                                         | A                    |           |             |                  |                    |                     |  |  |
| Bicycle Resul       | ts                                                                      |                      |           |             |                  |                    |                     |  |  |
| Percent Occupied    | Parking                                                                 | 0                    |           | Pavemer     | nt Conditi       | on Rating          | 4                   |  |  |
| Flow Rate Outside   | Lane, veh/h                                                             | 201                  |           |             |                  | /idth, ft          | 14                  |  |  |
| Bicycle LOS Score   |                                                                         | 3.87                 |           |             |                  | peed Factor        | 4.79                |  |  |
| Bicycle LOS         |                                                                         | D                    |           |             |                  |                    |                     |  |  |
| Facility Resul      | ts                                                                      |                      |           | •           |                  |                    |                     |  |  |
| T                   |                                                                         | r Density, followers | /mi/ln    |             |                  | LC                 | 95                  |  |  |
| 1                   |                                                                         | 1.0                  |           | Α           |                  |                    |                     |  |  |

 1
 1.

 Copyright © 2023 University of Florida. All Rights Reserved.


Generated: 10/13/2023 09:33:49

SD 314 btw SD 50 & West City Limits Rd - Summer.xuf

## Organization Title Goes Here

# Signal Warrants - Summary

| Major Street Approaches                                                                                                                                | Minor Street Approaches                                                                                 |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------|
| <i>Eastbound:</i> SD-52<br>Number of Lanes: 2<br>85% Speed > 40 MPH.<br>Total Approach Volume: 2,059                                                   | <i>Northbound:</i> <b>DEER BLVD</b><br>Number of Lanes: <b>1</b><br>Total Approach Volume: <b>1,132</b> |               |
| Westbound: SD-52<br>Number of Lanes: 2<br>85% Speed > 40 MPH.                                                                                          | Southbound: DEER BLVD<br>Number of Lanes: 1                                                             |               |
| Total Approach Volume: 2,763                                                                                                                           | Total Approach Volume: 107                                                                              |               |
| Warrant Summary (Rural values apply.)                                                                                                                  |                                                                                                         |               |
| Warrant 1 - Eight Hour Vehicular Volumes                                                                                                               |                                                                                                         | Not Satisfied |
| Warrant 1A - Minimum Vehicular Volume<br>Required volumes reached for 0 hours, 8 are needed                                                            | Not Satisfied                                                                                           |               |
| Warrant 1B - Interruption of Continuous Traffic<br>Required volumes reached for 0 hours, 8 are needed                                                  | Not Satisfied                                                                                           |               |
| Warrant 1C - Combination of Warrants<br>Required 1A volumes reached for 7 hours, 8 are needed<br>Required 1B volumes reached for 3 hours, 8 are needed | Not Satisfied                                                                                           |               |
| Warrant 2 - Four Hour Volumes<br>Number of hours (0) volumes exceed minimum < minimum required (4).                                                    |                                                                                                         | Not Satisfied |
| Warrant 3 - Peak Hour                                                                                                                                  |                                                                                                         | Not Evaluated |
| Warrant 3A - Peak Hour Delay                                                                                                                           | Not Evaluated                                                                                           |               |
| Warrant 3B - Peak Hour Volumes                                                                                                                         | Not Evaluated                                                                                           |               |
| Warrant 4 - Pedestrian Volumes                                                                                                                         |                                                                                                         | Not Evaluated |
| Warrant 5 - School Crossing                                                                                                                            |                                                                                                         | Not Evaluated |
| Warrant 6 - Coordinated Signal System                                                                                                                  |                                                                                                         | Not Evaluated |
| Warrant 7 - Crash Experience                                                                                                                           |                                                                                                         | Not Evaluated |
| Warrant 8 - Roadway Network                                                                                                                            |                                                                                                         | Not Evaluated |
| Warrant 9 - Intersection Near a Grade Crossing                                                                                                         |                                                                                                         | Not Evaluated |

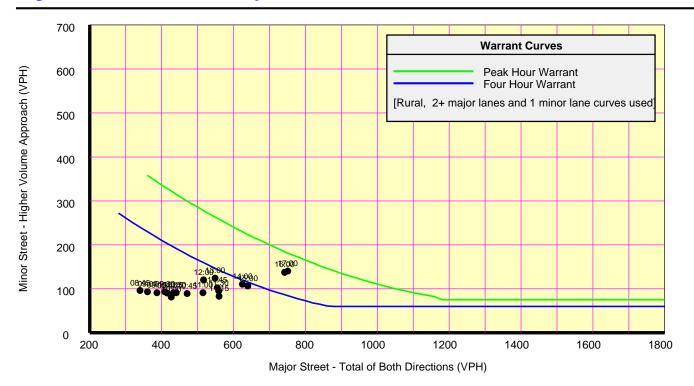


### Signal Warrants - Summary

#### Analysis of 8-Hour Volume Warrants:

War 1A-Minimum Volume

War 1B-Interruption of Traffic


War 1C-Combination of Warrants

| Hour  | Major | Minor |     | Maj | Min | Hour  | Major | Minor |     | Minor |     | Maj   | Min   | Hour | Major | Mir | or  | 1A | 1B |
|-------|-------|-------|-----|-----|-----|-------|-------|-------|-----|-------|-----|-------|-------|------|-------|-----|-----|----|----|
| Begin | Total | Vol   | Dir | 420 | 105 | Begin | Total | Vol   | Dir | 630   | 53  | Begin | Total | Vol  | Dir   | Met | Met |    |    |
| 16:15 | 609   | 88    | NB  | Yes | No  | 16:15 | 609   | 88    | NB  | No    | Yes | 16:00 | 593   | 84   | NB    | Yes | -   |    |    |
| 16:30 | 597   | 97    | NB  | Yes | No  | 16:30 | 597   | 97    | NB  | No    | Yes | 16:45 | 586   | 99   | NB    | -   | Yes |    |    |
| 16:00 | 593   | 84    | NB  | Yes | No  | 16:00 | 593   | 84    | NB  | No    | Yes | 15:45 | 575   | 83   | NB    | No  | Yes |    |    |
| 16:45 | 586   | 99    | NB  | Yes | No  | 16:45 | 586   | 99    | NB  | No    | Yes | 17:00 | 546   | 90   | NB    | Yes | -   |    |    |
| 15:30 | 582   | 66    | NB  | Yes | No  | 15:30 | 582   | 66    | NB  | No    | Yes | 14:45 | 510   | 74   | NB    | -   | Yes |    |    |
| 15:45 | 575   | 83    | NB  | Yes | No  | 15:45 | 575   | 83    | NB  | No    | Yes | 12:30 | 490   | 87   | NB    | Yes | No  |    |    |
| 15:15 | 554   | 74    | NB  | Yes | No  | 15:15 | 554   | 74    | NB  | No    | Yes | 11:30 | 481   | 101  | NB    | Yes | No  |    |    |
| 17:00 | 546   | 90    | NB  | Yes | No  | 17:00 | 546   | 90    | NB  | No    | Yes | 14:30 | 455   | 86   | NB    | Yes | No  |    |    |
| 15:00 | 526   | 80    | NB  | Yes | No  | 15:00 | 526   | 80    | NB  | No    | Yes | 13:30 | 417   | 108  | NB    | Yes | No  |    |    |
| 14:45 | 510   | 74    | NB  | Yes | No  | 14:45 | 510   | 74    | NB  | No    | Yes | 10:30 | 382   | 84   | NB    | Yes | No  |    |    |
| 12:00 | 502   | 101   | NB  | Yes | No  | 12:00 | 502   | 101   | NB  | No    | Yes | 09:30 | 343   | 89   | NB    | Yes | No  |    |    |
| 11:45 | 495   | 104   | NB  | Yes | No  | 11:45 | 495   | 104   | NB  | No    | Yes | 15:30 | 582   | 66   | NB    | No  | -   |    |    |
| 12:30 | 490   | 87    | NB  | Yes | No  | 12:30 | 490   | 87    | NB  | No    | Yes | 12:00 | 502   | 101  | NB    | -   | No  |    |    |
| 12:15 | 484   | 102   | NB  | Yes | No  | 12:15 | 484   | 102   | NB  | No    | Yes | 11:45 | 495   | 104  | NB    | -   | No  |    |    |
| 11:30 | 481   | 101   | NB  | Yes | No  | 11:30 | 481   | 101   | NB  | No    | Yes | 12:15 | 484   | 102  | NB    | -   | No  |    |    |
| 14:15 | 461   | 97    | NB  | Yes | No  | 14:15 | 461   | 97    | NB  | No    | Yes | 14:15 | 461   | 97   | NB    | -   | No  |    |    |
| 12:45 | 461   | 83    | NB  | Yes | No  | 12:45 | 461   | 83    | NB  | No    | Yes | 12:45 | 461   | 83   | NB    | -   | No  |    |    |
| 14:30 | 455   | 86    | NB  | Yes | No  | 14:30 | 455   | 86    | NB  | No    | Yes | 11:15 | 446   | 88   | NB    | -   | No  |    |    |
| 11:15 | 446   | 88    | NB  | Yes | No  | 11:15 | 446   | 88    | NB  | No    | Yes | 14:00 | 439   | 100  | NB    | -   | No  |    |    |
| 14:00 | 439   | 100   | NB  | Yes | No  | 14:00 | 439   | 100   | NB  | No    | Yes | 13:00 | 436   | 85   | NB    | -   | No  |    |    |
| 13:00 | 436   | 85    | NB  | Yes | No  | 13:00 | 436   | 85    | NB  | No    | Yes | 13:15 | 426   | 88   | NB    | -   | No  |    |    |
| 13:15 | 426   | 88    | NB  | Yes | No  | 13:15 | 426   | 88    | NB  | No    | Yes | 11:00 | 421   | 91   | NB    | -   | No  |    |    |
| 11:00 | 421   | 91    | NB  | Yes | No  | 11:00 | 421   | 91    | NB  | No    | Yes | 13:45 | 418   | 109  | NB    | -   | No  |    |    |
| 13:45 | 418   | 109   | NB  | No  | Yes | 13:45 | 418   | 109   | NB  | No    | Yes | 10:45 | 407   | 82   | NB    | -   | No  |    |    |

## Organization Title Goes Here

# Signal Warrants - Summary

| Major Street Approaches                                                                                                                                | Minor Street Approaches                            |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------|
| Eastbound: SD-52<br>Number of Lanes: 2<br>85% Speed > 40 MPH.                                                                                          | <i>Northbound:</i> DEER BLVD<br>Number of Lanes: 1 |               |
| Total Approach Volume: 2,397                                                                                                                           | Total Approach Volume: 1,323                       |               |
| Westbound: SD-52<br>Number of Lanes: 2<br>85% Speed > 40 MPH.                                                                                          | Southbound: DEER BLVD<br>Number of Lanes: 1        |               |
| Total Approach Volume: 3,379                                                                                                                           | Total Approach Volume: 140                         |               |
| Warrant Summary (Rural values apply.)                                                                                                                  |                                                    |               |
| Warrant 1 - Eight Hour Vehicular Volumes                                                                                                               |                                                    | Not Satisfied |
| Warrant 1A - Minimum Vehicular Volume<br>Required volumes reached for 6 hours, 8 are needed                                                            | Not Satisfied                                      |               |
| Warrant 1B - Interruption of Continuous Traffic<br>Required volumes reached for 3 hours, 8 are needed                                                  | Not Satisfied                                      |               |
| Warrant 1C - Combination of Warrants<br>Required 1A volumes reached for 8 hours, 8 are needed<br>Required 1B volumes reached for 7 hours, 8 are needed | Not Satisfied                                      |               |
| Warrant 2 - Four Hour Volumes<br>Number of hours (3) volumes exceed minimum < minimum required (4).                                                    |                                                    | Not Satisfied |
| Warrant 3 - Peak Hour                                                                                                                                  |                                                    | Not Evaluated |
| Warrant 3A - Peak Hour Delay                                                                                                                           | Not Evaluated                                      |               |
| Warrant 3B - Peak Hour Volumes                                                                                                                         | Not Evaluated                                      |               |
| Warrant 4 - Pedestrian Volumes                                                                                                                         |                                                    | Not Evaluated |
| Warrant 5 - School Crossing                                                                                                                            |                                                    | Not Evaluated |
| Warrant 6 - Coordinated Signal System                                                                                                                  |                                                    | Not Evaluated |
| Warrant 7 - Crash Experience                                                                                                                           |                                                    | Not Evaluated |
| Warrant 8 - Roadway Network                                                                                                                            |                                                    | Not Evaluated |
| Warrant 9 - Intersection Near a Grade Crossing                                                                                                         |                                                    | Not Evaluated |

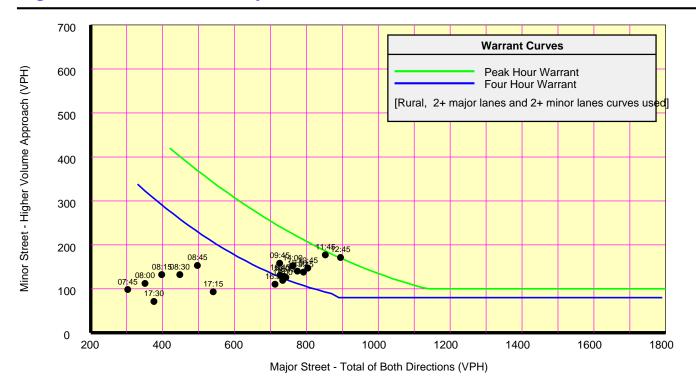


### Signal Warrants - Summary

#### Analysis of 8-Hour Volume Warrants:

War 1A-Minimum Volume

War 1B-Interruption of Traffic


War 1C-Combination of Warrants

| Hour  | Major | Min | or  | Maj | Min | Hour  | Major | laior Minor |     | Minor |     | Minor |            | Maj | Min | Hour | Major | Mir | or | 1A | 1B |
|-------|-------|-----|-----|-----|-----|-------|-------|-------------|-----|-------|-----|-------|------------|-----|-----|------|-------|-----|----|----|----|
| Begin | Total | Vol | Dir | 420 | 105 | Begin | Total | Vol         | Dir | 630   | 53  | Begin | Total      | Vol | Dir | Met  | Met   |     |    |    |    |
| 17:00 | 751   | 140 | NB  | Yes | Yes | 17:00 | 751   | 140         | NB  | Yes   | Yes | 16:45 | 793        | 136 | NB  | Yes  | -     |     |    |    |    |
| 16:00 | 742   | 137 | NB  | Yes | Yes | 16:00 | 742   | 137         | NB  | Yes   | Yes | 17:00 | 751        | 140 | NB  | -    | Yes   |     |    |    |    |
| 15:00 | 640   | 106 | NB  | Yes | Yes | 15:00 | 640   | 106         | NB  | Yes   | Yes | 16:00 | 742        | 140 | NB  | -    | Yes   |     |    |    |    |
| 14:00 | 625   | 110 | NB  | Yes | Yes | 14:15 | 626   | 100         | NB  | No    | Yes | 15:45 | 733        | 122 | NB  | Yes  | -     |     |    |    |    |
|       |       | 124 |     |     |     | -     | 625   | 109         |     | -     |     | 15:45 | 733<br>640 | 122 |     |      |       |     |    |    |    |
| 13:00 | 549   |     | NB  | Yes | Yes | 14:00 |       |             | NB  | No    | Yes |       |            |     | NB  | -    | Yes   |     |    |    |    |
| 12:00 | 517   | 120 | NB  | Yes | Yes | 14:45 | 617   | 123         | NB  | No    | Yes | 14:00 | 625        | 110 | NB  | -    | Yes   |     |    |    |    |
| 11:15 | 560   | 83  | NB  | Yes | No  | 14:30 | 595   | 119         | NB  | No    | Yes | 14:45 | 617        | 123 | NB  | Yes  | -     |     |    |    |    |
| 11:30 | 559   | 95  | NB  | Yes | No  | 13:45 | 595   | 108         | NB  | No    | Yes | 13:45 | 595        | 108 | NB  | Yes  | -     |     |    |    |    |
| 11:45 | 555   | 102 | NB  | Yes | No  | 13:30 | 576   | 104         | NB  | No    | Yes | 11:45 | 555        | 102 | NB  | Yes  | -     |     |    |    |    |
| 11:00 | 515   | 91  | NB  | Yes | No  | 11:15 | 560   | 83          | NB  | No    | Yes | 13:00 | 549        | 124 | NB  | -    | Yes   |     |    |    |    |
| 10:45 | 471   | 89  | NB  | Yes | No  | 11:30 | 559   | 95          | NB  | No    | Yes | 12:45 | 527        | 129 | NB  | Yes  | -     |     |    |    |    |
| 10:30 | 441   | 91  | NB  | Yes | No  | 11:45 | 555   | 102         | NB  | No    | Yes | 12:00 | 517        | 120 | NB  | -    | Yes   |     |    |    |    |
| 10:15 | 433   | 91  | NB  | Yes | No  | 13:15 | 552   | 110         | NB  | No    | Yes | 11:00 | 515        | 91  | NB  | -    | Yes   |     |    |    |    |
| 10:00 | 427   | 81  | NB  | Yes | No  | 13:00 | 549   | 124         | NB  | No    | Yes | 10:45 | 471        | 89  | NB  | Yes  | No    |     |    |    |    |
| 09:45 | 416   | 90  | NB  | No  | No  | 12:30 | 531   | 133         | NB  | No    | Yes | 09:45 | 416        | 90  | NB  | Yes  | No    |     |    |    |    |
| 09:30 | 409   | 93  | NB  | No  | No  | 12:45 | 527   | 129         | NB  | No    | Yes | 08:45 | 340        | 96  | NB  | Yes  | No    |     |    |    |    |
| 09:15 | 387   | 91  | NB  | No  | No  | 12:00 | 517   | 120         | NB  | No    | Yes | 10:30 | 441        | 91  | NB  | -    | No    |     |    |    |    |
| 09:00 | 361   | 93  | NB  | No  | No  | 11:00 | 515   | 91          | NB  | No    | Yes | 10:15 | 433        | 91  | NB  | -    | No    |     |    |    |    |
| 08:45 | 340   | 96  | NB  | No  | No  | 12:15 | 505   | 136         | NB  | No    | Yes | 10:00 | 427        | 81  | NB  | -    | No    |     |    |    |    |
| 08:30 | 320   | 101 | NB  | No  | No  | 10:45 | 471   | 89          | NB  | No    | Yes | 09:30 | 409        | 93  | NB  | -    | No    |     |    |    |    |
| 08:15 | 288   | 104 | NB  | No  | No  | 10:30 | 441   | 91          | NB  | No    | Yes | 09:15 | 387        | 91  | NB  | -    | No    |     |    |    |    |
| 07:45 | 282   | 129 | NB  | No  | Yes | 10:15 | 433   | 91          | NB  | No    | Yes | 09:00 | 361        | 93  | NB  | -    | No    |     |    |    |    |
| 07:15 | 281   | 124 | NB  | No  | Yes | 10:00 | 427   | 81          | NB  | No    | Yes | 08:30 | 320        | 101 | NB  | No   | No    |     |    |    |    |
| 07:30 | 280   | 129 | NB  | No  | Yes | 09:45 | 416   | 90          | NB  | No    | Yes | 08:15 | 288        | 104 | NB  | No   | No    |     |    |    |    |

## Organization Title Goes Here

# Signal Warrants - Summary

| Major Street Approaches                                                                                                                                 | Minor Street Approaches                                                                                 |               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------|
| <i>Eastbound:</i> SD-52<br>Number of Lanes: 2<br>85% Speed > 40 MPH.<br>Total Approach Volume: <b>3,386</b>                                             | <i>Northbound:</i> <b>DEER BLVD</b><br>Number of Lanes: <b>2</b><br>Total Approach Volume: <b>1,570</b> |               |
| Westbound: SD-52<br>Number of Lanes: 2<br>85% Speed > 40 MPH.                                                                                           | Southbound: DEER BLVD<br>Number of Lanes: 2                                                             |               |
| Total Approach Volume: 4,127                                                                                                                            | Total Approach Volume: 197                                                                              |               |
| Warrant Summary (Rural values apply.)                                                                                                                   |                                                                                                         |               |
| Warrant 1 - Eight Hour Vehicular Volumes                                                                                                                |                                                                                                         | Satisfied     |
| Warrant 1A - Minimum Vehicular Volume<br>Required volumes reached for 7 hours, 8 are needed                                                             | Not Satisfied                                                                                           |               |
| Warrant 1B - Interruption of Continuous Traffic<br>Required volumes reached for 8 hours, 8 are needed                                                   | Satisfied                                                                                               |               |
| Warrant 1C - Combination of Warrants<br>Required 1A volumes reached for 10 hours, 8 are needed<br>Required 1B volumes reached for 9 hours, 8 are needed | Satisfied                                                                                               |               |
| Warrant 2 - Four Hour Volumes<br>Number of hours (8) volumes exceed minimum >= minimum required (-                                                      |                                                                                                         | Satisfied     |
| Warrant 3 - Peak Hour                                                                                                                                   |                                                                                                         | Not Evaluated |
| Warrant 3A - Peak Hour Delay                                                                                                                            | Not Evaluated                                                                                           |               |
| Warrant 3B - Peak Hour Volumes                                                                                                                          | Not Evaluated                                                                                           |               |
| Warrant 4 - Pedestrian Volumes                                                                                                                          |                                                                                                         | Not Evaluated |
| Warrant 5 - School Crossing                                                                                                                             |                                                                                                         | Not Evaluated |
| Warrant 6 - Coordinated Signal System                                                                                                                   |                                                                                                         | Not Evaluated |
| Warrant 7 - Crash Experience                                                                                                                            |                                                                                                         | Not Evaluated |
| Warrant 8 - Roadway Network                                                                                                                             |                                                                                                         | Not Evaluated |
| Warrant 9 - Intersection Near a Grade Crossing                                                                                                          |                                                                                                         | Not Evaluated |



### Signal Warrants - Summary

#### Analysis of 8-Hour Volume Warrants:

War 1A-Minimum Volume

War 1B-Interruption of Traffic

War 1C-Combination of Warrants

| Hour           | Major      | Min      | or  | Maj | Min | Hour  | Major      | Minor        |     | Maj | Min | Hour  | Major | Min      | or  | 1A  | 1B  |
|----------------|------------|----------|-----|-----|-----|-------|------------|--------------|-----|-----|-----|-------|-------|----------|-----|-----|-----|
| Begin          | Total      | Vol      | Dir | 420 | 140 | Begin | Total      | Vol          | Dir | 630 | 70  | Begin | Total | Vol      | Dir | Met | Met |
| 12:45          | 895        | 171      | NB  | Yes | Yes | 12:30 | 884        | 181          | NB  | Yes | Yes | 12:00 | 860   | 177      | NB  | Yes | Yes |
| 11:45          | 853        | 177      | NB  | Yes | Yes | 11:30 | 841        | 155          | NB  | Yes | Yes | 13:00 | 853   | 152      | NB  | Yes | Yes |
| 10:45          | 804        | 147      | NB  | Yes | Yes | 13:30 | 833        | 150          | NB  | Yes | Yes | 11:00 | 822   | 157      | NB  | Yes | Yes |
| 15:00          | 775        | 140      | NB  | Yes | Yes | 10:30 | 821        | 157          | NB  | Yes | Yes | 15:00 | 775   | 140      | NB  | Yes | Yes |
| 14:00          | 762        | 152      | NB  | Yes | Yes | 15:30 | 779        | 141          | NB  | Yes | Yes | 10:00 | 764   | 146      | NB  | Yes | Yes |
| 09:45          | 726        | 158      | NB  | Yes | Yes | 14:30 | 715        | 136          | NB  | Yes | Yes | 14:00 | 762   | 152      | NB  | Yes | Yes |
| 08:45          | 497        | 153      | NB  | Yes | Yes | 16:30 | 713        | 110          | NB  | Yes | Yes | 16:00 | 738   | 128      | NB  | Yes | Yes |
| 13:45          | 792        | 138      | NB  | Yes | No  | 09:30 | 656        | 165          | NB  | Yes | Yes | 17:00 | 734   | 119      | NB  | Yes | Yes |
| 16:15          | 743        | 126      | NB  | Yes | No  | 09:15 | 609        | 147          | NB  | No  | Yes | 09:00 | 544   | 168      | NB  | Yes | Yes |
| 16:00          | 738        | 128      | NB  | Yes | No  | 09:00 | 544        | 168          | NB  | No  | Yes | 08:00 | 351   | 112      | NB  | Yes | No  |
| 17:00          | 734        | 119      | NB  | Yes | No  | 03:00 | 497        | 153          | NB  | No  | Yes | 08:45 | 497   | 153      | NB  | -   | No  |
| 16:45          | 727        | 131      | NB  | Yes | No  | 08:30 | 448        | 132          | NB  | No  | Yes | 08:30 | 448   | 132      | NB  | _   | No  |
| 16:30          | 713        | 110      | NB  | Yes | No  | 08:15 | 398        | 132          | NB  | No  | Yes | 08:15 | 398   | 132      | NB  | _   | No  |
| 17:15          | 541        | 93       | NB  | Yes | No  | 17:30 | 376        | 71           | NB  | No  | Yes | 07:45 | 303   | 98       | NB  | No  | No  |
| 08:30          | 448        | 132      | NB  | Yes | No  | 08:00 | 351        | 112          | NB  | No  | Yes | 07:40 | 254   | 86       | NB  | No  | No  |
| 08:15          | 398        | 132      | NB  | No  | No  | 07:45 | 303        | 98           | NB  | No  | Yes | 07:15 | 234   | 80       | NB  | No  | No  |
| 17:30          | 376        | 71       | NB  | No  | No  | 07:43 | 254        | - 30<br>- 86 | NB  | No  | Yes | 07:13 | 206   | 65       | NB  | No  | No  |
| 08:00          | 370        | 112      | NB  | No  | No  | 07:15 | 234        | 80           | NB  | No  | Yes | 07:00 | 183   | 65       | NB  | No  | No  |
| 08.00<br>07:45 | 303        | 98       | NB  | No  | No  | 07:13 | 206        | 65           | NB  | No  | No  | 06:43 | 161   | 61       | NB  | No  | No  |
|                | 303<br>254 |          | NB  | -   | No  |       | 206<br>187 | 05<br>25     | NB  | -   | _   |       | 141   | -        |     | -   | No  |
| 07:30          | -          | 86<br>00 |     | No  |     | 17:45 | -          | _            |     | No  | No  | 06:15 |       | 56       | NB  | No  | -   |
| 07:15<br>07:00 | 222        | 80<br>65 | NB  | No  | No  | 06:45 | 183        | 65           | NB  | No  | No  | 06:00 | 104   | 54<br>20 | NB  | No  | No  |
| 07:00          | 206        | 65<br>05 | NB  | No  | No  | 06:30 | 161        | 61<br>50     | NB  | No  | No  | 05:45 | 53    | 36       | NB  | No  | No  |
| 17:45          | 187        | 25       | NB  | No  | No  | 06:15 | 141        | 56           | NB  | No  | No  | 05:30 | 32    | 25       | NB  | No  | No  |
| 06:45          | 183        | 65       | NB  | No  | No  | 06:00 | 104        | 54           | NB  | No  | No  | 05:15 | 12    | 12       | NB  | No  | No  |